A Target-Triggered Emission Enhancement Strategy Based on a Y-Shaped DNA Fluorescent Nanoprobe with Aggregation-Induced Emission Characteristic for microRNA Imaging in Living Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Principle of the YFNP-Based miRNA Assay
2.2. Synthesis and Characterizations of the YFNP
2.3. Feasibility of the YFNP-Based miRNA Assay
2.4. Sensitivity and Selectivity the YFNP-Based miRNA Assay
2.5. Intracellular miR-21 Imaging
3. Materials and Methods
3.1. Materials
3.2. Apparatus
3.3. Synthesis and Purification of the YFNP-1 and YFNP-2
3.4. Preparation of the YFNP
3.5. Electrophoresis Characterization
3.6. In Vitro miRNA Detection
3.7. Cell Culture
3.8. MTT Assay
3.9. Intracellular miRNA Imaging
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; et al. MicroRNA expression profiles classify human cancers. Nature 2005, 435, 834–838. [Google Scholar] [CrossRef]
- Yu, X.; Li, Z.; Shen, J.; Chan, M.T.; Wu, W.K. Role of microRNAs in primary central nervous system lymphomas. Cell Prolif. 2016, 49, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Tabnak, P.; Masrouri, S.; Geraylow, K.R.; Zarei, M.; Esmailpoor, Z.H. Targeting miRNAs with anesthetics in cancer: Current understanding and future perspectives. Biomed. Pharmacother. 2021, 144, 112309. [Google Scholar] [CrossRef] [PubMed]
- Varallyay, E.; Burgyan, J.; Havelda, Z. MicroRNA detection by northern blotting using locked nucleic acid probes. Nat. Protoc. 2008, 3, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhu, W.; Li, H.; Wen, W.; Cheng, W.; Wang, F.; Wu, Y.; Qi, L.; Fan, Y.; Chen, Y.; et al. Diagnostic value of a plasma microRNA signature in gastric cancer: A microRNA expression analysis. Sci. Rep. 2015, 5, 11251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iizuka, R.; Ueno, T.; Funatsu, T. Detection and Quantification of MicroRNAs by Ligase-Assisted Sandwich Hybridization on a Microarray. Methods Mol. Biol. 2016, 1368, 53–65. [Google Scholar]
- Yang, Q.; Chang, X.; Lee, J.Y.; Olivera, T.R.; Saji, M.; Wisniewski, H.; Kim, S.; Zhang, F. Recent Advances in Self-Assembled DNA Nanostructures for Bioimaging. ACS Appl. Bio. Mater. 2022, 5, 4652–4667. [Google Scholar] [CrossRef]
- Li, L.; Meng, Y.; Li, L.; Wang, S.; Ding, J.; Zhou, W. A tetrahedral DNA nanoflare for fluorometric determination of nucleic acids and imaging of microRNA using toehold strands. Mikrochim. Acta 2019, 186, 824. [Google Scholar] [CrossRef]
- Wang, Y.X.; Wang, D.X.; Wang, J.; Liu, B.; Tang, A.N.; Kong, D.M. DNA nanolantern-mediated catalytic hairpin assembly nanoamplifiers for simultaneous detection of multiple microRNAs. Talanta 2022, 236, 122846. [Google Scholar] [CrossRef]
- Huang, Q.; Ma, P.Q.; Li, H.D.; Yin, B.C.; Ye, B.C. Catalytic-Hairpin-Assembly-Assisted DNA Tetrahedron Nanoprobe for Intracellular MicroRNA Imaging. ACS Appl. Bio. Mater. 2020, 3, 2861–2866. [Google Scholar] [CrossRef]
- Zhao, W.; Jiang, Y.; Zhou, H.; Zhang, S. Hairpin-functionalized DNA tetrahedra for miRNA imaging in living cells via self-assembly to form dendrimers. Analyst 2022, 147, 2074–2079. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Luo, M.; Wang, J.; Niu, H.; Shen, Z.; Wu, Z.S. Rigidified DNA Triangle-Protected Molecular Beacon from Endogenous Nuclease Digestion for Monitoring microRNA Expression in Living Cells. ACS Sens. 2020, 5, 2378–2387. [Google Scholar] [CrossRef]
- Li, Z.; Li, Q.; Wu, Y.; Yuan, K.; Shi, M.; Li, Y.; Meng, H.M.; Li, Z. Multivalent self-assembled nano string lights for tumor-targeted delivery and accelerated biomarker imaging in living cells and in vivo. Analyst 2022, 147, 811–818. [Google Scholar] [CrossRef]
- Mei, J.; Huang, Y.; Tian, H. Progress and Trends in AIE-Based Bioprobes: A Brief Overview. ACS Appl. Mater. Interfaces 2018, 10, 12217–12261. [Google Scholar] [CrossRef] [PubMed]
- Min, X.; Zhang, M.; Huang, F.; Lou, X.; Xia, F. Live Cell MicroRNA Imaging Using Exonuclease III-Aided Recycling Amplification Based on Aggregation-Induced Emission Luminogens. ACS Appl. Mater. Interfaces 2016, 8, 8998–9003. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Xie, Z.; Lam, J.W.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; Zhu, D.; et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 18, 1740–1741. [Google Scholar] [CrossRef]
- Ma, J.; Gu, Y.; Ma, D.; Lu, W.; Qiu, J. Insights into AIE materials: A focus on biomedical applications of fluorescence. Front. Chem. 2022, 10, 985578. [Google Scholar] [CrossRef]
- Wang, X.; Xu, M.; Huang, K.; Lou, X.; Xia, F. AIEgens/Nucleic Acid Nanostructures for Bioanalytical Applications. Chem. Asian J. 2019, 14, 689–699. [Google Scholar] [CrossRef]
- Min, X.; Zhuang, Y.; Zhang, Z.; Jia, Y.; Hakeem, A.; Zheng, F.; Cheng, Y.; Tang, B.Z.; Lou, X.; Xia, F. Lab in a Tube: Sensitive Detection of MicroRNAs in Urine Samples from Bladder Cancer Patients Using a Single-Label DNA Probe with AIEgens. ACS Appl. Mater. Interfaces 2015, 7, 16813–16818. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Li, D.L.; Tian, X.; Zhang, C.Y. A copper-free and enzyme-free click chemistry-mediated single quantum dot nanosensor for accurate detection of microRNAs in cancer cells and tissues. Chem. Sci. 2021, 12, 10426–10435. [Google Scholar] [CrossRef]
- Qi, Y.; Qiu, L.; Fan, W.; Liu, C.; Li, Z. An enzyme-free flow cytometric bead assay for the sensitive detection of microRNAs based on click nucleic acid ligation-mediated signal amplification. Analyst 2017, 142, 2967–2973. [Google Scholar] [CrossRef]
- Shi, J.; Deng, Q.; Wan, C.; Zheng, M.; Huang, F.; Tang, B. Fluorometric probing of the lipase level as acute pancreatitis biomarkers based on interfacially controlled aggregation-induced emission (AIE). Chem. Sci. 2017, 8, 6188–6195. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Shi, L.; Wei, H. A “turn on” fluorescent probe for heparin and its oversulfated chondroitin sulfate contaminant. Chem. Sci. 2015, 6, 6361–6366. [Google Scholar] [CrossRef] [Green Version]
- Qing, Y.; Yang, Y.; Ouyang, P.; Fang, C.; Fang, H.; Liao, Y.; Li, H.; Wang, Z.; Du, J. Gold Nanoparticle-Based Enzyme-Assisted Cyclic Amplification for the Highly-Sensitive Detection of miRNA-21. Biosensors 2022, 12, 724. [Google Scholar] [CrossRef]
- Li, Y.Q.; Kwok, R.T.K.; Tang, B.Z.; Liu, B. Specific nucleic acid detection based on fluorescent light-up probe from fluorogens with aggregation-induced emission characteristics. RSC Adv. 2013, 3, 10135–10138. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Kwok, R.T.K.; Tang, B.Z.; Liu, B. Hybridization induced fluorescence turn-on of AIEgen-oligonucleotide conjugates for specific DNA detection. RSC Adv. 2015, 5, 28332–28337. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Zhou, J.; Xu, G.; Li, C.; Ling, P.; Liu, B.; Ju, H.; Lei, J. DNA quadruplexes as molecular scaffolds for controlled assembly of fluorogens with aggregation-induced emission. Chem. Sci. 2018, 9, 2559–2566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, J.; Leung, N.L.; Kwok, R.T.; Lam, J.W.; Tang, B.Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Chen, Z.; Huang, Y.; Li, J.; Xiao, F.; Zhai, S.; Wang, Z.; Zhang, X.; Tian, L. A pH responsive fluorescent probe based on dye modified i-motif nucleic acids. Org. Biomol. Chem. 2018, 16, 9402–9408. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Lu, J.; Xiao, F.; Huang, Y.; Zhang, X.; Tian, L. A self-delivery DNA nanoprobe for reliable microRNA imaging in live cells by aggregation induced red-shift-emission. Chem. Commun. 2020, 56, 1501–1504. [Google Scholar] [CrossRef]
- Ma, C.; Liu, H.; Wu, K.; Chen, M.; Zheng, L.; Wang, J. An Exonuclease I-Based Quencher-Free Fluorescent Method Using DNA Hairpin Probes for Rapid Detection of MicroRNA. Sensors 2017, 17, 760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Qu, Y.; Yuan, F.; Quan, X. A visible and label-free colorimetric sensor for miRNA-21 detection based on peroxidase-like activity of graphene/gold-nanoparticle hybrids. Anal. Methods 2016, 8, 2005–2012. [Google Scholar] [CrossRef]
- Oladepo, S.A. Design and Characterization of a Singly Labeled Fluorescent Smart Probe for In Vitro Detection of miR-21. Appl. Spectrosc. 2018, 72, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; He, K.; Liao, R.; Chen, C.; Chen, X.; Cai, C. An interference-free and label-free sandwich-type magnetic silicon microsphere -rGO-based probe for fluorescence detection of microRNA. Talanta 2017, 174, 679–683. [Google Scholar] [CrossRef]
- Hu, X.M.; Li, R.T.; Zhang, M.M.; Wu, K.Y.; Li, H.H.; Huang, N.H.; Sun, B.; Chen, J.X. Phenanthroline-linked berberine dimer and fluorophore-tagged DNA conjugate for the selective detection of microRNA-185: Experimental and molecular docking studies. Anal. Chim. Acta 2019, 1051, 153–159. [Google Scholar] [CrossRef]
- Wu, H.; Xu, M.; Chen, Y.; Zhang, H.; Shen, Y.; Tang, Y. A Highly Sensitive and Selective Nano-Fluorescent Probe for Ratiometric and Visual Detection of Oxytetracycline Benefiting from Dual Roles of Nitrogen-Doped Carbon Dots. Nanomaterials 2022, 12, 4306. [Google Scholar] [CrossRef]
- Gu, J.; Qiao, Z.; He, X.; Yu, Y.; Lei, Y.; Tang, J.; Shi, H.; He, D.; Wang, K. Enzyme-free amplified detection of miRNA based on target-catalyzed hairpin assembly and DNA-stabilized fluorescent silver nanoclusters. Analyst 2020, 145, 5194–5199. [Google Scholar] [CrossRef]
- Gong, X.; Wei, J.; Liu, J.; Li, R.; Liu, X.; Wang, F. Programmable intracellular DNA biocomputing circuits for reliable cell recognitions. Chem. Sci. 2019, 10, 2989–2997. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Li, C.; Liu, X.; Zhou, X.; Wang, F. Construction of an enzyme-free concatenated DNA circuit for signal amplification and intracellular imaging. Chem. Sci. 2018, 9, 5842–5849. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Pei, H.; Zhu, B.; Liang, L.; Wei, M.; He, Y.; Chen, N.; Li, D.; Huang, Q.; Fan, C. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 2011, 5, 8783–8789. [Google Scholar] [CrossRef]
- Yue, S.; Song, X.; Song, W.; Bi, S. An enzyme-free molecular catalytic device: Dynamically self-assembled DNA dendrimers for in situ imaging of microRNAs in live cells. Chem. Sci. 2019, 10, 1651–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Li, F.; Guo, L.; Zhao, Y.; Li, J.; Liu, X.; Wang, L.; Fan, C. The uptake behavior of DNA six-helix nanostructure with different mammalian cell lines. Sci. Sin. Chim. 2017, 47, 109–115. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, Z.; Xiao, F.; Chao, Z.; Lu, J.; Wang, Z.; Tian, L. The Hydrophobicity of AIE Dye Facilitates DNA Condensation for Carrier-Free Gene Therapy. Adv. Funct. Mater. 2022, 32, 2207845. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Wang, Z.; Yuan, Y.; Liu, B.; Yu, J.; Wei, Z.; Yun, K. A Target-Triggered Emission Enhancement Strategy Based on a Y-Shaped DNA Fluorescent Nanoprobe with Aggregation-Induced Emission Characteristic for microRNA Imaging in Living Cells. Molecules 2023, 28, 2149. https://doi.org/10.3390/molecules28052149
Chen Z, Wang Z, Yuan Y, Liu B, Yu J, Wei Z, Yun K. A Target-Triggered Emission Enhancement Strategy Based on a Y-Shaped DNA Fluorescent Nanoprobe with Aggregation-Induced Emission Characteristic for microRNA Imaging in Living Cells. Molecules. 2023; 28(5):2149. https://doi.org/10.3390/molecules28052149
Chicago/Turabian StyleChen, Zhe, Zhuoyi Wang, Yihua Yuan, Bo Liu, Jiangbo Yu, Zhiwen Wei, and Keming Yun. 2023. "A Target-Triggered Emission Enhancement Strategy Based on a Y-Shaped DNA Fluorescent Nanoprobe with Aggregation-Induced Emission Characteristic for microRNA Imaging in Living Cells" Molecules 28, no. 5: 2149. https://doi.org/10.3390/molecules28052149
APA StyleChen, Z., Wang, Z., Yuan, Y., Liu, B., Yu, J., Wei, Z., & Yun, K. (2023). A Target-Triggered Emission Enhancement Strategy Based on a Y-Shaped DNA Fluorescent Nanoprobe with Aggregation-Induced Emission Characteristic for microRNA Imaging in Living Cells. Molecules, 28(5), 2149. https://doi.org/10.3390/molecules28052149