Prediction of the n-Octanol/Water Partition Coefficients of Basic Compounds Using Multi-Parameter QSRR Models Based on IS-RPLC Retention Behavior in a Wide pH Range
Abstract
:1. Introduction
2. Results and Discussion
2.1. Establishment of logD–logkw Models and Comparison with Previous Work
2.2. Establishment of Multi-Parameter QSRR Models
2.3. External Validation of Multi-Parameter Models and Sample logD Determination
3. Materials and Methods
3.1. Materials
3.2. Instruments and Equipment
3.3. Chromatographic Condition
3.4. Experimental Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Tao, N.; Liu, G.; Bai, L.; Tang, L.; Guo, C.H. Genotoxicity and growth inhibition effects of aniline on wheat. Chemosphere 2017, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Y.; Yang, X.; Zhang, H.B. Design, synthesis and cytotoxic activity of novel hybrid compounds between aza-brazilin and imidazolium. Chin. J. Org. Chem. 2015, 35, 1276–1285. [Google Scholar] [CrossRef] [Green Version]
- Keshavarz, M.H.; Esmailpoor, K.; Tehrani, M.K. Theoretical prediction of physicochemical properties, performances and sensitivities of some new derivatives of dinitro triazolyl triazine. Propell. Explos. Pyrot. 2010, 35, 482–486. [Google Scholar] [CrossRef]
- Agnieszka, G.S.; Ewelina, W.; Maciej, G. Quantitative multi-species toxicity modeling: Does a multi-species, machine learning model provide better performance than a single-species model for the evaluation of acute aquatic toxicity by organic pollutants? Sci. Total Environ. 2022, 861, 160590. [Google Scholar] [CrossRef]
- Kang, X.J.; Hu, B.; Perdana, M.C.; Zhao, Y.S.; Chen, Z.B. Extreme learning machine models for predicting the n-octanol/water partition coefficient (Kow) data of organic compounds. J. Environ. Chem. Eng. 2022, 10, 108552. [Google Scholar] [CrossRef]
- Celik, G.; Beil, S.; Stolte, S.; Markiewicz, M. Environmental hazard screening of heterocyclic polyaromatic hydrocarbons: Physicochemical data and in silico models. Environ. Sci. Technol. 2022, 57, 570–581. [Google Scholar] [CrossRef] [PubMed]
- OECD iLibrary. OECD Guidelines for the Testing of Chemicals, Section 1, Physical-Chemical Properties. Test No. 107: Partition Coefficient (n-Octanol/Water): Shake Flask Method. Available online: https://www.oecd-ilibrary.org/environment/test-no-107-partition-coefficient-n-octanol-water-shake-flask-method_9789264069626-en (accessed on 25 February 2023).
- Ishak, H.; Mokbel, I.; Saab, J.; Stephan, J.; Paricaud, P.; Jose, J.; Goutaudier, C. Experimental measurements and thermodynamic modelling of aqueous solubilities, octanol-water partition coefficients and vapor pressures of dimethyl phthalate and butyl benzyl phthalate. J. Chem. Thermodyn. 2019, 131, 286–293. [Google Scholar] [CrossRef]
- Vieira, N.S.M.; Bastos, J.C.; Rebelo, L.P.N. Human cytotoxicity and octanol/water partition coefficients of fluorinated ionic liquids. Chemosphere 2019, 216, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Arslan, E.; Findik, B.K.; Aviyente, V.A. Blind SAMPL6 challenge: Insight into the octanol-water partition coefficients of drug-like molecules via a DFT approach. J. Comput. Aid. Mol. Des. 2020, 34, 463–470. [Google Scholar] [CrossRef]
- Jia, Q.Z.; Shi, Q.Y.; Wang, Q. Norm index-based QSPR model for describing the n-octanol/water partition coefficients of organics. Environ. Sci. Pollut. R. 2020, 27, 15454–15462. [Google Scholar] [CrossRef]
- Disdier, Z.; Savoye, S.; Dagnelie, R.V.H. Effect of solutes structure and pH on the n-octanol/water partition coefficient of ionizable organic compounds. Chemosphere 2022, 304, 135155. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.; Fu, W.; Trapp, S. Influence of soil pH on the sorption of ionizable chemicals: Modeling advances. Environ. Toxicol. Chem. 2009, 28, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Sigmund, G.; Arp, H.P.H.; Aumeier, B.M.; Bucheli, T.D.; Chefetz, B.; Chen, W.; Drodge, S.T.J.; Endo, S.; Escher, B.I.; Hale, S.E.; et al. Sorption and mobility of charged organic compounds: How to confront and overcome limitations in their assessment. Environ. Sci. Technol. 2022, 56, 4702–4710. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.L.; Gao, W.; Liang, C.; Qiao, J.Q.; Wang, K.; Lian, H.Z. Prediction of n-octanol/water partition coefficient of strongly ionized compounds by ion-pair revered-phase liquid chromatography with silica-based stationary phase. Chin. J. Chromatogr. 2021, 39, 1230–1238. [Google Scholar] [CrossRef]
- OECD iLibrary. OECD Guidelines for the Testing of Chemicals, Section 1, Physical-Chemical Properties. Test No. 117: Partition Coefficient (n-octanol/water), HPLC Method. Available online: https://www.oecd-ilibrary.org/environment/test-no-117-partition-coefficient-noctanol-water-hplc-method_9789264069824-en (accessed on 27 February 2023).
- Poole, C.F.; Atapattu, S.N. Determination of physicochemical properties of small molecules by reversed-phase liquid chromatography. J. Chromatogr. A 2020, 1626, 461427. [Google Scholar] [CrossRef]
- Donovan, S.F.; Pescatore, M.C. Method for measuring the logarithm of the octanol-water partition coefficient by using short octadecyl-poly (vinyl alcohol) high-performance liquid chromatography columns. J. Chromatogr. A 2002, 952, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Qiao, J.Q.; Lian, H.Z. Determination of reversed-phase high performance liquid chromatography based octanol-water partition coefficients for neutral and ionizable compounds: Methodology evaluation. J. Chromatogr. A 2017, 1528, 25–34. [Google Scholar] [CrossRef]
- Liang, C.; Lian, H.Z. Recent advances in lipophilicity measurement by reversed-phase high performance liquid chromatography. TrAC-Trend Anal. Chem. 2015, 68, 28–36. [Google Scholar] [CrossRef]
- Qi, Z.C.; Han, S.Y.; Wu, Z.Y.; Chen, F.Y.; Cao, X.W.; Lian, H.Z.; Mao, L. Retention prediction and hydrophobicity measurement of weakly basic compounds in reversed-phase liquid chromatography using ammonia and triethylamine as ion-suppressors. Curr. Anal. Chem. 2014, 10, 172–181. [Google Scholar] [CrossRef]
- Han, S.Y.; Qiao, J.Q.; Zhang, Y.Y.; Yang, L.L.; Lian, H.Z.; Ge, X.; Chen, H.Y. Determination of n-octanol/water partition coefficient for DDT-related compounds by RP-HPLC with a novel dual-point retention time correction. Chemosphere 2011, 83, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.L.; Gao, W.; Liang, C.; Qiao, J.Q.; Wang, K.; Lian, H.Z. Effects of buffer salt types and non-counter ions of ion-pair reagents on the retention behavior of strongly ionized acid compounds in ion-pair reversed-phase liquid chromatography. Chin. J. Chromatogr. 2021, 39, 1021–1029. [Google Scholar] [CrossRef]
- Dolan J., W.; Gant J., R.; Snyder L., R. Gradient elution in high-performance liquid chromatography: II. Practical application to reversed-phase systems. J. Chromatogr. A 1979, 165, 31–58. [Google Scholar] [CrossRef]
- Braumann, T. Determination of hydrophobic parameters by reversed-phase liquid chromatography: Theory, experimental techniques, and application in studies on quantitative structure-activity relationships. J. Chromatogr. A 1986, 373, 191–225. [Google Scholar] [CrossRef] [PubMed]
- Han, S.Y.; Liang, C.; Zou, K.; Qiao, J.Q.; Lian, H.Z.; Ge, X. Influence of variation in mobile phase pH and solute pKa with the change of organic modifier fraction on QSRRs of hydrophobicity and RP-HPLC retention of weakly acidic compounds. Talanta 2012, 101, 64–70. [Google Scholar] [CrossRef] [PubMed]
No. | Model Compound | logP | pKa1 | pKa2 | logDpH | logkw-pH | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
7.0 | 8.0 | 9.0 | 10.0 | 7.0 | 8.0 | 9.0 | 10.0 | |||||
1 | 2-Methylaniline | 1.40 | 4.45 | 1.40 | 1.40 | 1.40 | 1.40 | 1.47 | 1.44 | 1.45 | 1.49 | |
2 | 4-Methylaniline | 1.41 | 5.08 | 1.40 | 1.41 | 1.41 | 1.41 | 1.50 | 1.53 | 1.54 | 1.58 | |
3 | N, N-Diethylaniline | 3.31 | 6.57 | 3.17 | 3.29 | 3.31 | 3.31 | 3.20 | 3.44 | 3.47 | 3.54 | |
4 | 4-Methylpyridine | 1.33 | 5.99 | 1.29 | 1.33 | 1.33 | 1.33 | 1.40 | 1.41 | 1.44 | 1.46 | |
5 | 4-Fluoroaniline | 1.15 | 4.65 | 1.15 | 1.15 | 1.15 | 1.15 | 1.13 | 1.12 | 1.14 | 1.18 | |
6 | 2,6-Dimethylpyridine | 1.68 | 6.65 | 1.52 | 1.66 | 1.68 | 1.68 | 1.68 | 1.76 | 1.78 | 1.81 | |
7 | 2,4,6-Trimethylpyridine | 2.01 | 7.43 | 1.44 | 1.91 | 2.00 | 2.01 | 2.06 | 2.23 | 2.30 | 2.34 | |
8 | N, N-Dimethylaniline | 2.31 | 5.07 | 2.30 | 2.31 | 2.31 | 2.31 | 2.18 | 2.37 | 2.39 | 2.44 | |
9 | Benzylamine | 1.09 | 9.35 | −1.26 | −0.28 | 0.58 | 1.00 | 0.36 | 0.49 | 1.05 | 1.42 | |
10 | 4-Ethoxyaniline | 1.24 | 5.25 | 1.23 | 1.24 | 1.24 | 1.24 | 1.45 | 1.49 | 1.50 | 1.60 | |
11 | 2-Methoxyaniline | 0.95 | 4.53 | 0.95 | 0.95 | 0.95 | 0.95 | 1.38 | 1.41 | 1.42 | 1.49 | |
12 | 4-Methoxyaniline | 0.80 | 5.36 | 0.79 | 0.80 | 0.80 | 0.80 | 1.05 | 0.99 | 1.07 | 1.11 | |
13 | 1,4-Benzenediamine | −0.30 | 6.31 | 2.97 | −0.38 | −0.31 | −0.30 | −0.30 | −0.39 | −0.35 | −0.17 | −0.04 |
14 | Pyridine | 0.78 | 6.62 | 0.63 | 0.76 | 0.78 | 0.78 | 0.70 | 0.92 | 1.01 | 1.05 | |
15 | N, N-Dimethylbenzylamine | 1.98 | 8.80 | 0.17 | 1.12 | 1.77 | 1.95 | 0.97 | 1.61 | 2.13 | 2.44 | |
16 | 2-Amino-4-methylpyridine | 0.89 | 7.38 | 0.36 | 0.80 | 0.88 | 0.89 | 1.00 | 1.16 | 1.28 | 1.32 | |
17 | 4-Isopropylaniline | 2.23 | 4.85 | 2.23 | 2.23 | 2.23 | 2.23 | 2.42 | 2.57 | 2.59 | 2.65 | |
18 | 2,4-Dimethylpyridine | 1.65 | 6.58 | 1.51 | 1.63 | 1.65 | 1.65 | 1.76 | 1.85 | 1.88 | 1.96 | |
19 | 2,4-Dimethylaniline | 1.68 | 4.70 | 1.68 | 1.68 | 1.68 | 1.68 | 1.92 | 1.98 | 2.00 | 2.04 | |
20 | 2-Amino-6-methylpyridine | 1.08 | 6.95 | 0.53 | 0.98 | 1.07 | 1.08 | 0.99 | 1.13 | 1.19 | 1.27 | |
21 | Aniline | 0.90 | 4.60 | 0.90 | 0.90 | 0.90 | 0.90 | 0.96 | 0.95 | 0.97 | 1.02 | |
22 | 4-Phenylpyridine | 2.59 | 5.45 | 2.58 | 2.59 | 2.59 | 2.59 | 2.66 | 2.81 | 2.84 | 2.80 | |
23 | 2-Picoline | 1.09 | 5.94 | 1.05 | 1.09 | 1.09 | 1.09 | 1.31 | 1.32 | 1.34 | 1.36 | |
No. | Verification Compounds | |||||||||||
24 | 4-Bromoaniline | 2.05 | 3.89 | 1.74 | 1.74 | 1.74 | 1.74 | 1.91 | 1.98 | 1.99 | 1.99 | |
25 | 2-Ethylaniline | 1.74 | 4.37 | 1.63 | 1.67 | 1.67 | 1.67 | 1.87 | 1.94 | 1.95 | 1.95 | |
26 | 2-Ethylpyridine | 1.67 | 5.97 | 2.05 | 2.05 | 2.05 | 2.05 | 1.74 | 1.79 | 1.80 | 1.90 | |
27 | Dibenzylamine | 3.03 | 8.76 | 1.26 | 2.20 | 2.83 | 3.01 | 2.42 | 2.99 | 3.28 | 4.54 | |
No. | Sample Compounds | |||||||||||
28 | 1,2-diaminobenzene | NA | 0.50 | 0.49 | 0.29 | 0.60 | ||||||
29 | 1,3-diaminobenzene | NA | 0.17 | 0.07 | −0.16 | 0.21 | ||||||
30 | 2-Methyl-4-nitroaniline | NA | 1.76 | 1.79 | 1.46 | 1.84 | ||||||
31 | 2,4-Dinitroaniline | NA | 1.80 | 1.86 | 1.78 | 1.92 | ||||||
32 | 2-Chloro-4-nitroaniline | NA | 2.07 | 2.13 | 2.14 | 2.18 | ||||||
33 | 2-Chloro-4,6-dinitroaniline | NA | 2.19 | 2.25 | 2.26 | 2.30 | ||||||
34 | 1,1’-Carbonyldiimidazole | NA | −0.39 | −0.38 | −0.27 | −0.15 | ||||||
35 | Etiracetam | NA | 0.80 | 0.66 | 0.82 | 0.88 | ||||||
36 | 2-Amino-4-methyl-6-methoxy-s-triazine | NA | 1.36 | 1.36 | 1.38 | 1.43 | ||||||
37 | Citrazinic acid | NA | 1.18 | 1.18 | 1.20 | 1.30 | ||||||
38 | 2-Amino-1,3,5-triazine | NA | 1.36 | 1.36 | 1.38 | 1.43 | ||||||
39 | 4-Iodoaniline | NA | 2.22 | 2.28 | 2.29 | 2.28 | ||||||
40 | Imidazole | NA | −0.53 | −0.39 | −0.34 | −0.16 | ||||||
41 | 4-Methylimidazole | NA | −0.08 | 0.19 | 0.32 | 0.39 | ||||||
42 | 3,3’-Sulfonyldianiline | NA | 1.78 | 1.83 | 1.83 | 1.47 |
Buffer | pH | logD–logkw | R2 | |
---|---|---|---|---|
This work | Phosphate buffer | 7.0 | logD = (1.13 ± 0.14) logkw − (0.44 ± 0.23) | 0.825 |
8.0 | logD = (1.02 ± 0.07) logkw − (0.21 ± 0.12) | 0.943 | ||
9.0 | logD = (1.01 ± 0.05) logkw − (0.22 ± 0.09) | 0.968 | ||
10.0 | logD = (1.01 ± 0.05) logkw − (0.26 ± 0.09) | 0.969 | ||
Qi et al. [21] | Ammonia solution | 9.0 | logD = (1.07 ± 0.07) logkw − (0.28 ± 0.12) | 0.944 |
10.0 | logD = (1.01 ± 0.08) logkw − (0.19 ± 0.13) | 0.928 | ||
TEA solution | 9.0 | logD = (1.00 ± 0.07) logkw − (0.14 ± 0.12) | 0.935 | |
10.0 | logD = (1.05 ± 0.07) logkw − (0.15 ± 0.12) | 0.941 |
pH | logD–logkw | N | R2 |
---|---|---|---|
7.0 | logD = (1.02 ± 0.06) logkw − (0.85 ± 0.14) ne − (0.12 ± 0.12) | 23 | 0.946 |
8.0 | logD = (0.96 ± 0.04) logkw − (0.54 ± 0.10) ne − (0.09 ± 0.06) | 23 | 0.976 |
9.0 | logD = (0.93 ± 0.04) logkw − (0.29 ± 0.17) ne + (0.21 ± 0.24) A − (0.49 ± 0.26) B + (0.21 ± 0.20) | 23 | 0.976 |
10.0 | logD = (0.92 ± 0.04) logkw − (0.67 ± 0.78) ne − (0.30 ± 0.24) A − (0.62 ± 0.26) B + (0.26 ± 0.20) | 23 | 0.978 |
Compound | pKa | logP | pH | Literature logD | Determined logD | Error (%) |
---|---|---|---|---|---|---|
4-Bromoaniline | 3.89 | 2.05 | 7.0 | 2.05 | 1.83 | −10.73 |
8.0 | 2.05 | 1.81 | −11.71 | |||
9.0 | 2.05 | 1.85 | −9.76 | |||
10.0 | 2.05 | 1.81 | −11.71 | |||
2-Ethylaniline | 4.37 | 1.74 | 7.0 | 1.74 | 1.79 | 2.87 |
8.0 | 1.74 | 1.77 | 1.72 | |||
9.0 | 1.74 | 1.75 | 0.57 | |||
10.0 | 1.74 | 1.71 | −1.72 | |||
2-Ethylpyridine | 5.97 | 1.67 | 7.0 | 1.63 | 1.62 | −0.61 |
8.0 | 1.67 | 1.62 | −2.99 | |||
9.0 | 1.67 | 1.60 | −4.19 | |||
10.0 | 1.67 | 1.65 | −1.20 | |||
Dibenzylamine | 8.76 | 3.03 | 7.0 | 1.26 | 1.52 | 20.63 |
8.0 | 2.20 | 2.36 | 7.27 | |||
9.0 | 2.83 | 2.81 | −0.71 | |||
10.0 | 3.00 | 3.00 | 0 |
Sample Compound | logD7.0 | logD8.0 | logD9.0 | logD10.0 |
---|---|---|---|---|
o-Phenylenediamine | 0.38 | 0.38 | 0.07 | 0.28 |
m-Phenylenediamine | 0.03 | −0.02 | −0.41 | −0.15 |
2-Methyl-4-nitroaniline | 1.67 | 1.63 | 1.31 | 1.60 |
2,4-Dinitroaniline | 1.71 | 1.69 | 1.58 | 1.64 |
2-Chloro-4-nitroaniline | 1.99 | 1.96 | 1.93 | 1.92 |
2-Chloro-4,6-dinitroaniline | 2.11 | 2.07 | 1.99 | 1.97 |
1,1’-Carbonyldiimidazole | −0.52 | −0.46 | −0.84 | −0.89 |
Etiracetam | 0.70 | 0.54 | 0.17 | 0.04 |
2-Amino-4-methyl-6-methoxy-s-triazine | 1.28 | 1.22 | 0.94 | 0.86 |
Citrazinic acid | 2.29 | 2.05 | 1.2 | 1.87 |
2-Amino-1,3,5-triazine | 1.27 | 1.22 | 0.95 | 0.88 |
4-Iodoaniline | 2.14 | 2.10 | 2.13 | 2.08 |
Imidazole | −1.07 | −0.5 | −0.58 | −0.50 |
4-Methylimidazole | −0.54 | 0.06 | 0.08 | 0.07 |
3,3’-Sulfonyldianiline | 1.70 | 1.67 | 1.20 | 0.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, J.-Q.; Liu, X.-L.; Liang, C.; Wang, J.; Lian, H.-Z.; Mao, L. Prediction of the n-Octanol/Water Partition Coefficients of Basic Compounds Using Multi-Parameter QSRR Models Based on IS-RPLC Retention Behavior in a Wide pH Range. Molecules 2023, 28, 2270. https://doi.org/10.3390/molecules28052270
Qiao J-Q, Liu X-L, Liang C, Wang J, Lian H-Z, Mao L. Prediction of the n-Octanol/Water Partition Coefficients of Basic Compounds Using Multi-Parameter QSRR Models Based on IS-RPLC Retention Behavior in a Wide pH Range. Molecules. 2023; 28(5):2270. https://doi.org/10.3390/molecules28052270
Chicago/Turabian StyleQiao, Jun-Qin, Xiao-Lan Liu, Chao Liang, Ju Wang, Hong-Zhen Lian, and Li Mao. 2023. "Prediction of the n-Octanol/Water Partition Coefficients of Basic Compounds Using Multi-Parameter QSRR Models Based on IS-RPLC Retention Behavior in a Wide pH Range" Molecules 28, no. 5: 2270. https://doi.org/10.3390/molecules28052270
APA StyleQiao, J. -Q., Liu, X. -L., Liang, C., Wang, J., Lian, H. -Z., & Mao, L. (2023). Prediction of the n-Octanol/Water Partition Coefficients of Basic Compounds Using Multi-Parameter QSRR Models Based on IS-RPLC Retention Behavior in a Wide pH Range. Molecules, 28(5), 2270. https://doi.org/10.3390/molecules28052270