Quality Chemistry, Physiological Functions, and Health Benefits of Organic Acids from Tea (Camellia sinensis)
Abstract
:1. Introduction
2. Detection Method of Organic Acids
3. Secretion and Function of Organic Acids in Tea Roots
3.1. Types and Contents of Organic Acids in Tea Roots
3.2. Organic Acids in Tea Roots and Nutrient Absorption
4. Organic Acids in Tea
5. Organic Acids and Sensory Quality of Tea
5.1. Organic Acids and Tea Aroma
5.2. Organic Acids and Tea Flavor
6. Health Benefits of Organic Acids
7. Summary and Prospect
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Du, J.; Bai, L.; Bai, B.Z. The major chemical constituents of tea. Agric. Technol. 2003, 23, 53–55. [Google Scholar]
- Oburger, E.; Kirk, G.J.D.; Wenzel, W.W.; Puschenreiter, M.; Jones, D.L. Interactive effects of organic acids in the rhizosphere. Soil Biol. Biochem. 2009, 41, 449–457. [Google Scholar] [CrossRef]
- Wang, L.; Tang, J.; Xiao, B.; Yang, Y.; Yu, Y. Enhanced release of fluoride from rhizosphere soil of tea plants by organic acids and reduced secretion of organic acids by fluoride supply. Acta Agric. Scand. Sect. B Soil Plant Sci. 2013, 63, 426–432. [Google Scholar] [CrossRef]
- Tan, H.P.; Ye, S.R.; Chen, L.; Zou, Y. Determination overview of organic acids in tea. China Measuerment Test. Technol. 2008, 6, 77–80. [Google Scholar]
- He, S.P.; Guo, C.F.; Sun, Y. Research progress of organic acids in tea. Subtrop. Agric. Res. 2015, 11, 63–67. [Google Scholar]
- He, S.P.; Guo, C.F.; Sun, Y.; Zheng, D.Y. Determination of organic acids in White Tea by HPLC method. China Tea Process. 2015, 37–42. Available online: http://a.xueshu.baidu.com/usercenter/paper/show?paperid=ac1fdbc515484cb496d4475eb1732302 (accessed on 25 February 2023).
- Lu, M.; Zhang, S.Y.; Yu, H.W.; Song, S.N. Analysis of organic acids in Maojian green tea by high performance liquid chromatography. Guang Dong Agric. Sci. 2012, 39, 86–87. [Google Scholar]
- Qu, Y.Q.; Marat, T.; Zheng, D.Y.; Zhang, Q.; Yang, J.F.; Ye, N.X. HPLC determination of phenolic acids in teas. Acta Tea Sin. 2019, 60, 69–74. [Google Scholar]
- Wang, L.L.; Yang, J.G.; Lin, Q.X.; Xiang, L.H.; Song, Z.S.; Zhang, Y.G.; Chen, L. Determination of 10 organic acid contents in tea using high performance liquid chromatography-diode array detector. J. Zhejiang Univ. (Agric. Life Sci.) 2019, 45, 47–53. [Google Scholar]
- Zhang, J.; Jiang, H.J.; Liu, Z.H.; Chen, J.H.; Lin, Y.; Zou, W.M. Simultaneous separation and determination of organic acids in black tea by high performance liquid chromatography using polar-enhance C18 column. J. Food Saf. Qual. 2014, 5, 2476–2481. [Google Scholar]
- Moldoveanu, S.C.; Poole, T.; Scott, W.A. An LC-MS Method for the Analysis of Some Organic Acids in Tobacco Leaf, Snus, and Wet Snuff. Contrib. Tob. Nicotine Res. 2018, 28, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Song, W.-S.; Park, H.-G.; Kim, S.-M.; Jo, S.-H.; Kim, B.-G.; Theberge, A.B.; Kim, Y.-G. Chemical derivatization-based LC–MS/MS method for quantitation of gut microbial short-chain fatty acids. J. Ind. Eng. Chem. 2020, 83, 297–302. [Google Scholar] [CrossRef]
- Awad, H.; Allen, K.J.H.; Adamko, D.J.; El-Aneed, A. Development of a new quantification method for organic acids in urine as potential biomarkers for respiratory illness. J. Chromatogr. B 2019, 1122–1123, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Hu, F.-L.; Wang, W.; Wan, X.-C.; Bao, G.-H. Investigation on biochemical compositional changes during the microbial fermentation process of Fu brick tea by LC–MS based metabolomics. Food Chem. 2015, 186, 176–184. [Google Scholar] [CrossRef]
- Sandín-España, P.; Mateo-Miranda, M.; López-Goti, C.; De Cal, A.; Alonso-Prados, J.L. Development of a rapid and direct method for the determination of organic acids in peach fruit using LC–ESI-MS. Food Chem. 2016, 192, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Fraser, K.; Lane, G.A.; Otter, D.E.; Harrison, S.J.; Quek, S.-Y.; Hemar, Y.; Rasmussen, S. Non-targeted analysis by LC–MS of major metabolite changes during the oolong tea manufacturing in New Zealand. Food Chem. 2014, 151, 394–403. [Google Scholar] [CrossRef]
- Han, W.Q.; Wang, B.; Wang, L.; Xian, Y.P. Quantitative analysis of organic acid and flavonoid in Herbal Tea by UPLC-MS/MS. Food Res. Dev. 2017, 38, 130–134. [Google Scholar]
- Lu, C.G.; Yang, J.; Kang, C.Z.; Yang, W.Z.; Zhou, L.; Li, Z.H.; Guo, L.P. Determination of nine organic acids in dendrobium officinale by UPLC-MS/MS. J. Chin. Med. Mater. 2017, 40, 1360–1363. [Google Scholar]
- Wang, S.W.; Liu, Y.P.; Wang, X.N.; Sun, H.B. Determination of ten organic acids content in fresh litchi based on high performance liquid chromatography with triple quadrupole mass spectrometry technique. Chin. J. Pestic. Sci. 2019, 21, 359–365. [Google Scholar]
- Morita, A.; Yanagisawa, O.; Maeda, S.; Takatsu, S.; Ikka, T. Tea plant (Camellia sinensis L.) roots secrete oxalic acid and caffeine into medium containing aluminum. Soil Sci. Plant Nutr. 2011, 57, 796–802. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.P. Study on the organic acids excreted by tea roots. J. Tea Sci. 1994, 14, 17–22. [Google Scholar]
- Pang, X.; Wang, Y.H.; Wang, W.D.; Yin, Y.; Shu, Z.; Chen, X.; Li, X.H. Effects of tea pruning materials and tea polyphenols on organic acids secretion and mineral uptake in tea plant. J. Tea Sci. 2014, 34, 591–600. [Google Scholar]
- Tang, D.D.; Liu, M.Y.; Zhang, Q.F.; Shi, Y.Z.; Ma, L.F.; Ruan, J.Y. Effects of nitrogen form and root-zone pH on nutrient uptake and concentrations of organic anions in tea plants (Camellia sinensis). J. Tea Sci. 2019, 39, 159–170. [Google Scholar]
- Ruan, J.Y.; Yang, Y.J.; Ma, L.F. Recent progress in the research on fluoride in tea:accumulation characteristics by plants and concentrations in products with regarding to the impact on human health. J. Tea Sci. 2007, 27, 1–7. [Google Scholar]
- Luo, X.P.; Li, L.X.; He, C.L. Advanced study on fluoride and measures for reduction of fluoride content in tea (Camellia sinensis). Tea Sci. Technol. 2006, 2, 6–9. [Google Scholar]
- Liu, T.T.; Zhao, Q.; Gao, H.J.; Wan, X.C.; Zhang, Z.Z. Effects of organic acids and iron plaque outside roots on absorption and accumulation of fluoride in tea plants. J. Nanjing Agric. Univ. 2013, 36, 72–78. [Google Scholar]
- Liu, T.T.; Gao, H.J.; Wan, X.C.; Zhang, Z.Z. Impacts of aluminum on root cell membrane permeability and organic acids in root exudates of tea plant. J. Tea Sci. 2011, 31, 458–462. [Google Scholar]
- Morita, A.; Fujii, Y.; Yokota, H. Effect of aluminium on exudation of organic acid anions in tea plants. In Plant Nutrition: Food Security and Sustainability of Agro-Ecosystems through Basic and Applied Research; Horst, W.J., Schenk, M.K., Bürkert, A., Claassen, N., Flessa, H., Frommer, W.B., Goldbach, H., Olfs, H.W., Römheld, V., Sattelmacher, B., et al., Eds.; Springer: Amsterdam, The Netherlands, 2001; pp. 508–509. [Google Scholar]
- Lin, H.T.; Shi, Y.X. Effects of Pb and Cd stress on organic acids secreted by tea roots. Shandong Agric. Sci. 2005, 2, 32–34. [Google Scholar]
- Zeng, Q.R.; Zhou, X.H.; Liao, B.H.; Yang, R.B.; Tie, B.Q. Activation effects of low-molecular-weight organic acids on Al, F, P, Cu, Zn, Fe and Mn in soils of tea garden. J. Tea Sci. 2001, 21, 48–52. [Google Scholar]
- Marat, T.; Zhang, Q.; Qu, Y.Q.; Zheng, D.Y.; Yang, J.F.; Ye, N.X. Analysis of organic acid components in white tea processing. Tea Fujian 2019, 41, 11–12. [Google Scholar]
- Liu, P.P.; Zheng, P.C.; Guo, G.Y.; Jin, X.F.; Yin, P.; Gao, S.W.; Wang, S.P.; Ye, F.; Zheng, L.; Gong, Z.M. Effects of tea varieties and growing period on organic acid content in tea leaves. Jiangsu Agric. Sci. 2018, 46, 225–228. [Google Scholar]
- Xie, J.M.; Luo, M.Y.; Liu, Y.F.; Zhu, Q. Quality analysis for aged Keemun Black Tea. Hunan Agric. Sci. 2012, 21, 100–102, 105. [Google Scholar]
- Yuan, L.; Huang, J.A.; Gong, Z.H.; Chen, J.H.; Li, Y.H.; Yuan, Y.; Xiao, W.J. Study on development and application technology of analysis method for organic acid in Fu-brick Tea by RP-HPLC. Chin. Agric. Sci. Bull. 2011, 27, 246–252. [Google Scholar]
- Zhao, H.T. Metabolism of organic acids in black tea processing and its effect on tea aroma formation. J. Tea Commun. 1993, 1, 25–27. [Google Scholar]
- Liu, P.P.; Zhong, X.Y.; Xu, Y.Q.; Chen, G.S.; Yin, J.F.; Liu, P. Study on organic acids contents in tea leaves and its extracting characteristics. J. Tea Sci. 2013, 33, 405–410. [Google Scholar]
- Yu, F.; Chen, C.; Chen, S.; Wang, K.; Huang, H.; Wu, Y.; He, P.; Tu, Y.; Li, B. Dynamic changes and mechanisms of organic acids during black tea manufacturing process. Food Control 2022, 132, 108535. [Google Scholar] [CrossRef]
- Mao, S.H. Quality Analysis and Control of Congou Black Tea Based on Sensomics. Ph.D. Thesis, Southwest University, Georgetown, TX, USA, 2018. [Google Scholar]
- Li, S.; Gong, X.; Liu, Z.H.; Huang, H.; Huang, J.A. The qualitative component conversion in dark tea after colonization of Eurotium cristatum strains. Mycosystema 2014, 33, 713–718. [Google Scholar]
- Ding, L. Studies on the Changes of Main Chemical Components and it’s Activation to the Pancreatin in the Processing of Fuzhuan Brick Tea. Master’s Thesis, Zhejiang University, Hangzhou, China, 2006. [Google Scholar]
- Zhang, Q.; Liu, M.; Mumm, R.; Vos, R.C.H.; Ruan, J. Metabolomics reveals the within-plant spatial effects of shading on tea plants. Tree Physiol. 2021, 41, 317–330. [Google Scholar] [CrossRef]
- Shirai, N. Organic acid analysis in green tea leaves using high-performance liquid chromatography. J. Oleo Sci. 2022, 71, 1413–1419. [Google Scholar] [CrossRef]
- Liao, S.J.; Tong, H.R. Studies on the fatty acid and glycoside aroma precursors of different tea varieties. J. Southwest Univ. 2008, 30, 62–66. [Google Scholar]
- Zhang, Z.Z.; Shi, Z.P.; Wan, X.C. Changes of fatty acids during storage of green tea and their effects on aroma. China Tea Process. 1999, 2, 39–41. [Google Scholar]
- Cui, F. Study on the Change of Main Quality Components and Its Influence Factors during Green Tea Storage. Master’s Thesis, Zhejiang University, Hangzhou, China, 2008. [Google Scholar]
- Wu, X.C. Free fatty acid composition in green tea storage. J. Tea Commun. 1990, 23–24. [Google Scholar]
- Wang, M.L. Discusses the reason and the control method of the acidness of the black tea. Tea Fujian 2014, 36, 32–33. [Google Scholar]
- Yue, C.N.; Qin, D.D.; Cai, H.L.; Wang, Z.H.; Li, C.; Li, Y.S.; Yang, P.X. Taste characteristics and key compounds analysis of Congou black tea in northern Jiangxi Province. Food Ferment. Ind. 2021, 47, 260–267. [Google Scholar]
- Zhang, X.; Du, X.; Li, Y.Z.; Nie, C.N.; Wang, C.M.; Bian, J.J.; Luo, F. Are organic acids really related to the sour taste difference between Chinese black tea and green tea? Food Sci. Nutr. 2022, 10, 2071–2081. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Gu, S.Q.; Tao, N.P.; Wang, X.C. Research progress in interaction between umami substances. Food Ind. Technol. 2014, 35, 389–392, 400. [Google Scholar]
- Zhang, L.; Cao, Q.-Q.; Granato, D.; Xu, Y.-Q.; Ho, C.-T. Association between chemistry and taste of tea: A review. Trends Food Sci. Technol. 2020, 101, 139–149. [Google Scholar] [CrossRef]
- Aoshima, H.; Ayabe, S. Prevention of the deterioration of polyphenol-rich beverages. Food Chem. 2007, 100, 350–355. [Google Scholar] [CrossRef]
- Xu, Y.-Q.; Zhong, X.-Y.; Yin, J.-F.; Yuan, H.-B.; Tang, P.; Du, Q.-Z. The impact of Ca2+ combination with organic acids on green tea infusions. Food Chem. 2013, 139, 944–948. [Google Scholar] [CrossRef]
- Kaneko, S.; Kumazawa, K.; Masuda, H.; Henze, A.; Hofmann, T.F. Molecular and sensory studies on the umami taste of Japanese green tea. J. Agric. Food Chem. 2006, 54, 2688–2694. [Google Scholar] [CrossRef]
- Liu, S.; Yang, T.; Tan, J.F.; Lu, H.P.; Guo, L.; Lin, Z.; Lu, C.Y. Quantitative descriptive analysis and its correlation between chemical compoments of taste in green tea. Chin. Agric. Sci. Bull. 2014, 30, 40–46. [Google Scholar]
- Lu, H.P.; Zhang, Y.; Yang, T.; Shi, J.; Lin, Z. Analysis on chemical constituents of taste quality of Pu ‘er tea. Food Ferment. Ind. 2016, 42, 178–183. [Google Scholar]
- Song, C.J.; Fan, F.Y.; Gong, S.Y.; Guo, H.W.; Li, C.L.; Zong, B.Z. Taste characteristic and main contributing compounds of different origin black tea. Sci. Agric. Sin. 2020, 53, 383–394. [Google Scholar]
- Dufresne, C.; Farnworth, E. Tea, Kombucha, and health: A review. Food Res. Int. 2000, 33, 409–421. [Google Scholar] [CrossRef]
- Wang, Y. The anti-oxidation and anti-microbial activities of tea polyphenols and its increased reagents. J. Biol. 2007, 24, 54–56. [Google Scholar]
- Chen, W.F.; Tu, Y.Y.; Wu, Y.Y.; Liang, H.L.; Wang, Y. Effect of compacted tea extract of dark tea on trypsin activity. China Tea 2002, 3, 16–17. [Google Scholar]
- Wu, X.L. Experimental Study of Dark Tea Improving Gastrointestional Function in Mice. Master’s Thesis, Hunan Agricultural University, Changsha, China, 2013. [Google Scholar]
- Tu, Y.Y.; Xu, H.R.; Liang, H.L.; Chen, X.; Wu, Y.Y.; Chen, W.F.; Tan, Q.F. Effects of compacted tea on trypsin activity and beneficial bacteria in intestinal tract. Food Sci. 2002, 10, 113–116. [Google Scholar]
- Gong, Z.P.; Ouyang, J.; Wu, X.L.; Zhou, F.; Lu, D.M.; Zhao, C.J.; Liu, C.F.; Zhu, W.; Zhang, J.C.; Li, N.X.; et al. Dark tea extracts: Chemical constituents and modulatory effect on gastrointestinal function. Biomed. Pharmacother. 2020, 130, 110514. [Google Scholar] [CrossRef]
- He, S.P. Study on Organic Acids of White Tea and Their Antibacterial Effects In Vitro. Master’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2016. [Google Scholar]
Methods | Principle | Characteristics |
---|---|---|
Titration | Titration end points are determined by indicators or potential changes. | Determination of total, not individual organic acid. Convenient with low sensitivity. |
Atomic-absorption spectrophotometry | Oxalate is precipitated into calcium oxalate. | Determination of oxalic acid. |
GC-MS | The samples are separated according to the difference in boiling point, polarity, and adsorbability. | Qualitative and quantitative analysis of small organic acid molecules, but not applicable for large molecules. |
Ion exchange chromatography | Separation is achieved according to the difference in the ability of the separated components to undergo ion exchange with the stationary phase. | Not suitable for samples with complex composition. |
High-performance capillary electrophoresis | Separation is based on the electrophoretic differences between components in a sample. | High-separation efficiency. Less sample loading and relatively poor repeatability. |
HPLC-UV | Each component has different partition coefficients in the two phases. | High-separation efficiency. Less sample loading and the use of phosphates, which is easy to form crystals to block the pipeline. |
Organic Acids | Formula | Precursor Ions (m·z−1) | Daughter Ion (m·z−1) | Cone (V) | Collision (V) |
---|---|---|---|---|---|
Quinic acid | 191 | 85.0 * 93 | 35 | 20 | |
Malic acid | 133 | 114.9 * 45 | 49 | 16 | |
Citric acid | 191.2 | 110.0 * 87 | 50 | 18 | |
Succinic acid | 116.9 | 73.1 * 99.2 | 60 | 19 | |
Fumaric Acid | 114.9 | 70.9 * 97.8 | 68 | 11.5 | |
Tartaric acid | 149 | 102.9 * 73 | 56.9 | 15.3 | |
Lactic acid | 89 | 43.2 * 70.9 | 63 | 21 | |
Gallic acid | 168.9 | 78.8 * | 77 | 29 | |
Pyruvic acid | 87 | 43.1 * 68.7 | 50 | 12.1 | |
Ascorbic acid | 175 | 87 114.9 * | 56 | 19.1 | |
Shikimic acid | 173 | 93.0 * 136.8 | 65.4 | 19.4 | |
Chlorogenic acid | 353.1 | 191.1 * | 17 | 22 | |
Cinnamic acid | 146.9 | 103.0 * | 48 | 14 | |
Benzoic acid | 120.9 | 77.0 * | 40 | 17 | |
Salicylic acid | 137 | 92.9 * | 48 | 21 |
Organic Acid Name | Flavor Characteristics | Threshold Value (mg·L−1) |
---|---|---|
Gallic acid | Sour, astringent | 34.02 |
Oxalic acid | Sour | 45 |
Pyruvic acid | Sour | 130 |
L-malic acid | Sour | 87 |
L-ascorbic acid | Sour | 123.28 |
Lactic acid | Sour | 133.2 |
Acetic acid | Sour | 50 |
Citric acid | Sour | 770 |
Butanedioic acid | Sour | 106.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Yu, F.; Kang, J.; Li, Q.; Warusawitharana, H.K.; Li, B. Quality Chemistry, Physiological Functions, and Health Benefits of Organic Acids from Tea (Camellia sinensis). Molecules 2023, 28, 2339. https://doi.org/10.3390/molecules28052339
Chen H, Yu F, Kang J, Li Q, Warusawitharana HK, Li B. Quality Chemistry, Physiological Functions, and Health Benefits of Organic Acids from Tea (Camellia sinensis). Molecules. 2023; 28(5):2339. https://doi.org/10.3390/molecules28052339
Chicago/Turabian StyleChen, Hongbo, Fei Yu, Jiaxin Kang, Qiao Li, Hasitha Kalhari Warusawitharana, and Bo Li. 2023. "Quality Chemistry, Physiological Functions, and Health Benefits of Organic Acids from Tea (Camellia sinensis)" Molecules 28, no. 5: 2339. https://doi.org/10.3390/molecules28052339
APA StyleChen, H., Yu, F., Kang, J., Li, Q., Warusawitharana, H. K., & Li, B. (2023). Quality Chemistry, Physiological Functions, and Health Benefits of Organic Acids from Tea (Camellia sinensis). Molecules, 28(5), 2339. https://doi.org/10.3390/molecules28052339