Photoactivatable BODIPYs for Live-Cell PALM
Abstract
:1. Introduction
2. Photoactivated Localization Microscopy
3. Photoactivatable Fluorophores
4. Borondipyrromethenes
5. Live-Cell Imaging
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murphy, D.B. Fundamentals of Light Microscopy and Electronic Imaging; Wiley-Liss: New York, NY, USA, 2001. [Google Scholar]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: New York, NY, USA, 2006. [Google Scholar]
- Johnson, I.D. The Molecular Probes Handbook—A Guide to Fluorescent Probes and Labeling Technologies; Life Technologies Corporation: Carlsbad, CA, USA, 2010. [Google Scholar]
- Pawley, J.B. (Ed.) Handbook of Biological Confocal Microscopy; Springer: New York, NY, USA, 2006. [Google Scholar]
- Born, M.; Wolf, E. Principles of Optics; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Betzig, E. Single molecules, cells and super-resolution optics. Angew. Chem. Int. Ed. 2015, 54, 8034–8053. [Google Scholar] [CrossRef]
- Hell, S.W. Nanoscopy with focused light. Angew. Chem. Int. Ed. 2015, 54, 8054–8066. [Google Scholar] [CrossRef] [PubMed]
- Moerner, W.E. Single-molecule spectroscopy, imaging and photocontrol: Foundations for super-resolution microscopy. Angew. Chem. Int. Ed. 2015, 54, 8067–8093. [Google Scholar] [CrossRef] [PubMed]
- Sauer, M.; Heilemann, M. Single-molecule localization microscopy in eukaryotes. Chem. Rev. 2017, 117, 7478–7509. [Google Scholar] [CrossRef]
- Betzig, E.; Patterson, G.H.; Sougrat, R.; Lindwasser, O.W.; Olenych, S.; Bonifacino, J.S.; Davidson, M.W.; Lippincott-Schwartz, J.; Hess, H.F. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313, 1642–1645. [Google Scholar] [CrossRef]
- Sengupta, P.; van Engelenburg, S.B.; Lippincott-Schwartz, J. Superresolution imaging of biological systems using photoactivated localization microscopy. Chem. Rev. 2014, 114, 3189–3202. [Google Scholar] [CrossRef]
- Loudet, A.; Burgess, K. BODIPY dyes and their derivatives: Syntheses and spectroscopic properties. Chem. Rev. 2007, 107, 4891–4932. [Google Scholar] [CrossRef]
- Ziessel, R.; Ulrich, G.; Harriman, A. The chemistry of BODIPY: A new El Dorado for fluorescence tools. New J. Chem. 2007, 31, 496–501. [Google Scholar] [CrossRef]
- Ulrich, G.; Ziessel, R.; Harriman, A. The chemistry of fluorescent BODIPY dyes: Versatility unsurpassed. Angew. Chem. Int. Ed. 2008, 47, 1184–1201. [Google Scholar] [CrossRef]
- Benstead, M.; Mehl, G.H.; Boyle, R.W. 4,4′-Difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPYs) as components of novel light active materials. Tetrahedron 2011, 67, 3573–3601. [Google Scholar] [CrossRef]
- Boens, N.; Leen, V.; Dehaen, W. Fluorescent indicators based on BODIPY. Chem. Soc. Rev. 2012, 41, 1130–1172. [Google Scholar] [CrossRef] [PubMed]
- Kamkaew, A.; Lim, S.H.; Lee, H.B.; Kiew, L.V.; Chung, L.Y.; Burgess, K. BODIPY dyes in photodynamic therapy. Chem. Soc. Rev. 2013, 42, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Mack, J.; Yang, Y.; Shen, Z. Structural modification strategies for the rational design of red/NIR region BODIPYs. Chem. Soc. Rev. 2014, 43, 4778–4823. [Google Scholar] [PubMed]
- Ni, Y.; Wu, J. Far-red and near infrared BODIPY dyes: Synthesis and applications for fluorescent pH probes and bio-imaging. Org. Biomol. Chem. 2014, 12, 3774–3791. [Google Scholar] [CrossRef]
- Mitchison, T.J.; Sawin, K.E.; Theriot, J.A.; Gee, K.; Mallavarapu, A. Caged fluorescent probes. Methods Enzymol. 1998, 291, 63–78. [Google Scholar]
- Wysocki, L.M.; Lavis, L.D. Advances in the chemistry of small molecule fluorescent probes. Curr. Opin. Chem. Biol. 2011, 15, 752–759. [Google Scholar] [CrossRef]
- Puliti, D.; Warther, D.; Orange, C.; Specht, A.; Goeldner, M. Small photoactivatable molecules for controlled fluorescence activation. Bioorg. Med. Chem. 2011, 19, 1023–1029. [Google Scholar] [CrossRef]
- Raymo, F.M. Photoactivatable synthetic dyes for fluorescence imaging at the nanoscale. J. Phys. Chem. Lett. 2012, 3, 2379–2385. [Google Scholar] [CrossRef]
- Raymo, F.M. Photoactivatable fluorophores. ISRN Phys. Chem. 2012, 2012, 619251. [Google Scholar] [CrossRef]
- Li, W.-H.; Zheng, G. Photoactivatable fluorophores and techniques for biological imaging applications. Photochem. Photobiol. Sci. 2012, 11, 460–471. [Google Scholar] [CrossRef]
- Klán, P.; Šolomek, T.; Bochet, C.G.; Blanc, A.; Givens, R.; Rubina, M.; Popik, V.; Kostikov, A.; Wirz, J. Photoremovable protecting groups in chemistry and biology: Reaction mechanisms and efficacy. Chem. Rev. 2013, 113, 119–191. [Google Scholar] [CrossRef]
- Raymo, F.M. Photoactivatable synthetic fluorophores. Phys. Chem. Chem. Phys. 2013, 15, 14840–14850. [Google Scholar] [CrossRef]
- Gorka, A.P.; Nani, R.R.; Schnermann, M.J. Cyanine polyene reactivity: Scope and biomedical applications. Org. Biomol. Chem. 2015, 13, 7584–7598. [Google Scholar] [CrossRef]
- Lavis, L.D. Teaching old dyes new tricks: Biological probes built from fluoresceins and rhodamines. Annu. Rev. Biochem. 2017, 86, 825–843. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, A.; Renard, P.Y.; Romieu, A. Azo-based fluorogenic probes for biosensing and bioimaging: Recent advances and upcoming challenges. Chem. Asian J. 2017, 12, 2008–2028. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Raymo, F.M. Live-cell imaging at the nanoscale with bioconjugatable and photoactivatable fluorophores. Bioconjugate Chem. 2020, 31, 1052–1062. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Raymo, F.M. Photoactivatable fluorophores for single-molecule localization microscopy of live cells. Methods Appl. Fluoresc. 2020, 8, 032002. [Google Scholar] [CrossRef]
- Zou, Z.; Luo, Z.L.; Xu, X.; Yang, S.; Qing, Z.H.; Liu, J.W.; Yang, R. Photoactivatable fluorescent probes for spatiotemporal-controlled biosensing and imaging. Trends Anal. Chem. 2020, 125, 115811. [Google Scholar] [CrossRef]
- Shaban Ragab, S. Using organic compounds for fluorescence photoactivation. Egypt. J. Chem. 2021, 64, 2113–2126. [Google Scholar]
- Zhang, Y.; Zheng, Y.; Meana, Y.; Raymo, F.M. BODIPYs with photoactivatable fluorescence. Chem. Eur. J. 2021, 27, 11257–11267. [Google Scholar] [CrossRef]
- Kikuchi, K.; Adair, L.D.; Lin, J.R.; New, E.J.; Kaur, A. Photochemical mechanisms of fluorophores employed in single-molecule localization microscopy. Angew. Chem. Int. Ed. 2023, 62, e202204745. [Google Scholar] [CrossRef] [PubMed]
- Krafft, G.A.; Cummings, R.T.; Dizio, J.P.; Furukawa, R.H.; Brvenik, L.J.; Sutton, W.R.; War, B.R. Fluorescence photoactivation and dissipation (FPD). In Nucleocytoplasmic Transport; Peters, R., Trendelenburg, M., Eds.; Springer: Berlin, Germany, 1986; pp. 35–52. [Google Scholar]
- Lempert, W.R.; Magee, K.; Ronney, P.; Gee, K.R.; Haugland, R.P. Flow tagging velocimetry in incompressible flow using photo-activated nonintrusive tracking of molecular motion (PHANTOMM). Exp. Fluids 1995, 18, 249–257. [Google Scholar] [CrossRef]
- Tang, S.; Zhang, Y.; Dhakal, P.; Ravelo, L.; Anderson, C.L.; Collins, K.M.; Raymo, F.M. Photochemical barcodes. J. Am. Chem. Soc. 2018, 140, 4485–4488. [Google Scholar] [CrossRef]
- Kim, D.; Chang, Y.; Park, S.; Jeong, M.G.; Kwon, Y.; Zhou, K.; Noh, J.; Choi, Y.K.; Hong, T.M.; Chang, Y.T.; et al. Blue-conversion of organic dyes produces artifacts in multicolor fluorescence imaging. Chem. Sci. 2021, 12, 8660–8667. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; An, H.J.; Kim, T.; Lee, C.; Lee, N.K. Mechanism of cyanine5 to cyanine3 photoconversion and its application for high-density single-particle tracking in a living cell. J. Am. Chem. Soc. 2021, 143, 14125–14135. [Google Scholar] [CrossRef]
- Lee, H.D.; Lord, S.J.; Iwanaga, S.; Zhan, K.; Xie, H.; Williams, J.C.; Wang, H.; Bowman, G.R.; Goley, E.D.; Shapiro, L.; et al. Superresolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores. J. Am. Chem. Soc. 2010, 132, 15099–15101. [Google Scholar] [CrossRef]
- Wang, L.S.; Wang, S.C.; Tang, J.; Espinoza, V.B.; Loredo, A.; Tian, Z.R.; Weisman, R.B.; Xiao, H. Oxime as a general photocage for the design of visible light photo-activatable fluorophores. Chem. Sci. 2021, 12, 15572–15580. [Google Scholar] [CrossRef]
- Lee, M.K.; Rai, P.; Williams, J.; Twieg, R.J.; Moerner, W.E. Small-molecule labeling of live cell surfaces for three-dimensional super-resolution microscopy. J. Am. Chem. Soc. 2014, 136, 14003–14006. [Google Scholar] [CrossRef]
- Grimm, J.B.; English, B.P.; Choi, H.; Muthusamy, A.K.; Mehl, B.P.; Dong, P.; Brown, T.A.; Lippincott-Schwartz, J.; Liu, Z.; Lionnet, T.; et al. Bright photoactivatable fluorophores for single-molecule imaging. Nat. Methods 2016, 13, 985–988. [Google Scholar] [CrossRef]
- Hauke, S.; von Appen, A.; Quidwai, T.; Ries, J.; Wombacher, R. Specific protein labeling with caged fluorophores for dual-color imaging and super-resolution microscopy in living cells. Chem. Sci. 2017, 8, 559–566. [Google Scholar] [CrossRef]
- Zheng, Y.; Ye, Z.W.; Liu, Z.J.; Yang, W.; Zhang, X.F.; Yang, Y.J.; Xiao, Y. Nitroso-caged rhodamine: A superior green light-activatable fluorophore for single-molecule localization super-resolution imaging. Anal. Chem. 2021, 93, 7833–7842. [Google Scholar] [CrossRef]
- Zhang, X.D.; Zhang, M.M.; Yan, Y.; Wang, M.K.; Li, J.; Yu, Y.; Xiao, Y.; Luo, X.; Qian, X.H.; Yang, Y.J. Dihydro-Si-rhodamine for live-cell localization microscopy. Chem. Commun. 2021, 57, 7553–7556. [Google Scholar] [CrossRef]
- Tang, J.; Robichaux, M.A.; Wu, K.-L.; Pei, J.; Nguyen, N.T.; Zhou, Y.; Wensel, T.G.; Xiao, H. Single-atom fluorescence switch: A general approach toward visible-light-activated dyes for biological imaging. J. Am. Chem. Soc. 2019, 141, 14699–14706. [Google Scholar] [CrossRef] [PubMed]
- Wijesooriya, C.S.; Peterson, J.A.; Shrestha, P.; Gehrmann, E.J.; Winter, A.H.; Smith, E.A. A photoactivatable BODIPY probe for localization-based super-resolution cellular imaging. Angew. Chem. Int. Ed. 2018, 57, 12685–12689. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Song, K.H.; Tang, S.C.; Ravelo, L.; Cusido, J.; Sun, C.; Zhang, H.F.; Raymo, F.M. Far-red photoactivatable BODIPYs for the super-resolution imaging of live cells. J. Am. Chem. Soc. 2018, 140, 12741–12745. [Google Scholar] [CrossRef] [PubMed]
- Loredo, A.; Tang, J.; Wang, L.S.; Wu, K.L.; Peng, Z.; Xiao, H. Tetrazine as a general phototrigger to turn on fluorophores. Chem. Sci. 2020, 11, 4410–4415. [Google Scholar] [CrossRef]
- Gong, Q.; Zhang, X.; Li, W.; Guo, X.; Wu, Q.; Yu, C.; Jiao, L.; Xiao, Y.; Hao, E. Long-wavelength photoconvertible dimeric BODIPYs for super-resolution single-molecule localization imaging in near-infrared emission. J. Am. Chem. Soc. 2022, 144, 21992–21999. [Google Scholar] [CrossRef]
- Kobayashi, T.; Komatsu, T.; Kamiya, M.; Campos, C.; González-Gaitán, M.; Terai, T.; Hanaoka, K.; Nagano, T.; Urano, Y. Highly activatable and environment-insensitive optical highlighters for selective spatiotemporal imaging of target proteins. J. Am. Chem. Soc. 2012, 134, 11153–11160. [Google Scholar] [CrossRef]
- Shaban Ragab, S.; Swaminathan, S.; Baker, J.D.; Raymo, F.M. Activation of BODIPY fluorescence by the photoinduced dealkylation of a pyridinium quencher. Phys. Chem. Chem. Phys. 2013, 15, 14851–14855. [Google Scholar] [CrossRef]
- Goswami, P.P.; Syed, A.; Beck, C.L.; Albright, T.R.; Mahoney, K.M.; Unash, R.; Smith, E.A.; Winter, A.H. BODIPY-derived photoremovable protecting groups unmasked with green light. J. Am. Chem. Soc. 2015, 137, 3783–3786. [Google Scholar] [CrossRef]
- Zhang, Y.; Swaminathan, S.; Tang, S.; Garcia-Amorós, J.; Boulina, M.; Captain, B.; Baker, J.D.; Raymo, F.M. Photoactivatable BODIPYs designed to monitor the dynamics of supramolecular nanocarriers. J. Am. Chem. Soc. 2015, 137, 4709–4719. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, S.C.; Sansalone, L.; Baker, J.D.; Raymo, F.M. A photoswitchable fluorophore for the real-time monitoring of dynamic events in living organisms. Chem. Eur. J. 2016, 22, 15027–15034. [Google Scholar] [CrossRef]
- Liu, X.M.; Zhang, Y.; Baker, J.D.; Raymo, F.M. A photoactivatable light tracer. J. Mater. Chem. C 2017, 5, 12714–12719. [Google Scholar] [CrossRef]
- Sansalone, L.; Tang, S.C.; Garcia-Amorós, J.; Zhang, Y.; Nonell, S.; Baker, J.D.; Captain, B.; Raymo, F.M. A photoactivatable far-red/near-infrared BODIPY to monitor cellular dynamics in vivo. ACS Sens. 2018, 3, 1347–1353. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tang, S.C.; Thapaliya, E.R.; Sansalone, L.; Raymo, F.M. Fluorescence activation with switchable oxazines. Chem. Commun. 2018, 54, 8799–8809. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.A.; Wijesooriya, C.; Gehrmann, E.J.; Mahoney, K.M.; Goswami, P.P.; Albright, T.R.; Syed, A.; Dutton, A.S.; Smith, E.A.; Winter, A.H. Family of BODIPY photocages cleaved by single photons of visible/near-infrared light. J. Am. Chem. Soc. 2018, 140, 7343–7346. [Google Scholar] [CrossRef]
- Thapaliya, E.R.; Mazza, M.M.A.; Cusido, J.; Baker, J.D.; Raymo, F.M. A synthetic strategy for the structural modification of photoactivatable BODIPY-oxazine dyads. ChemPhotoChem 2020, 4, 332–337. [Google Scholar] [CrossRef]
- Xu, Y.; Lin, S.; He, R.; Zhang, Y.; Gao, Q.; Ng, D.K.P.; Geng, J. C=C bond oxidative cleavage of BODIPY photocages by visible light. Chem. Eur. J. 2021, 27, 11268–11272. [Google Scholar] [CrossRef] [PubMed]
- Goeldner, M.; Givens, R. (Eds.) Dynamic Studies in Biology: Phototriggers, Photoswitches and Caged Biomolecules; Wiley-VCH: New York, NY, USA, 2005. [Google Scholar]
- Wäldchen, S.; Lehmann, J.; Klein, T.; van de Linde, S.; Sauer, M. Light-induced cell damage in live-cell super-resolution microscopy. Sci. Rep. 2015, 5, 15348. [Google Scholar] [CrossRef] [PubMed]
InλAb | FiλAb | InϕFl | InλEm m | FiλEm | FiϕFl | Reference | |
---|---|---|---|---|---|---|---|
1 | 534 | 546 | 0.005 | 526 | 545 | 0.50 | [55] |
4 | 548 | 562 | 0.07 | 588 | 602 | 0.50 | [57] |
7 | 526 | 541 | 0.001 | 522 | 539 | 0.66 | [54] |
11 | 498 | 517 | 0.002 | 495 | 510 | 0.96 | [50] |
14 | 491 | 509 | 0.002 | 491 | 509 | 0.28 | [52] |
17 | 608 | 623 | 0.89 | 656 | 669 | 0.40 | [51] |
20 | 654 | 673 | 0.90 | 590 | 630 | — 2 | [64] |
24 | 514 | 561 | 0.20 | 630 | 701 | 0.23 | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zheng, Y.; Tomassini, A.; Singh, A.K.; Raymo, F.M. Photoactivatable BODIPYs for Live-Cell PALM. Molecules 2023, 28, 2447. https://doi.org/10.3390/molecules28062447
Zhang Y, Zheng Y, Tomassini A, Singh AK, Raymo FM. Photoactivatable BODIPYs for Live-Cell PALM. Molecules. 2023; 28(6):2447. https://doi.org/10.3390/molecules28062447
Chicago/Turabian StyleZhang, Yang, Yeting Zheng, Andrea Tomassini, Ambarish Kumar Singh, and Françisco M. Raymo. 2023. "Photoactivatable BODIPYs for Live-Cell PALM" Molecules 28, no. 6: 2447. https://doi.org/10.3390/molecules28062447
APA StyleZhang, Y., Zheng, Y., Tomassini, A., Singh, A. K., & Raymo, F. M. (2023). Photoactivatable BODIPYs for Live-Cell PALM. Molecules, 28(6), 2447. https://doi.org/10.3390/molecules28062447