Possible Interaction between ZnS Nanoparticles and Phosphonates on Mediterranean Clams Ruditapes decussatus
Abstract
:1. Introduction
2. Results
2.1. ZnS NPs Characterization
2.2. Metal Content in the Clams
2.3. Hydrogen Peroxide Levels
2.4. Catalase Activity
2.5. AChE Activity
3. Discussion
3.1. Metal Content in Clams
3.2. Oxidative Stress and Modulating Effects
3.3. Neurotoxic Effects of ZnS NPs and P
4. Materials and Methods
4.1. ZnS NPs and Diethyl (3-cyano-1-hydroxy-2-methyl-1-phenyl propyl) phosphonate Synthesis
4.2. In Vivo Exposure
4.3. Metal Analysis
4.4. Biochemical Analysis
4.5. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Moreno-González, R.; Rodríguez-Mozaz, S.; Huerta, B.; Barceló, D.; León, M.V. Do pharmaceuticals bioaccumulate in marine molluscs and fish from a coastal lagoon? Environ. Res. 2016, 146, 282–298. [Google Scholar] [CrossRef] [PubMed]
- Alygizakis, N.A.; Gago-ferrero, P.; Borova, V.L.; Pavlidou, A.; Hatzianestis, I.; Thomaidis, N.S. Occurrence and spatial distribution of pharmaceuticals, drugs of abuse and related metabolites in offshore seawater. Sci. Total. Environ. 2016, 541, 1097–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, L.; Araujo, A.N.; Fachini, A.; Pena, A.; Delerue-Matos, C.; Montenegro, M. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J. Hazard. Mater. 2010, 175, 45–95. [Google Scholar] [CrossRef] [Green Version]
- Melvin, S.D. 2015. Chemosphere Oxidative stress, energy storage, and swimming performance of Limnodyna stesperonii tadpoles exposed to a sub-lethal pharmaceutical mixture throughout development. Chemosphere 2015, 1, 8. [Google Scholar]
- Tauxe-Wuersch, A.; De Alencastro, L.F.; Grandjean, D.; Tarradellas, J. Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment. Water Res. 2005, 39, 1761–1772. [Google Scholar] [CrossRef]
- Kishimoto, S.; Kato, A.; Naito, A.; Sakamoto, Y.; Iida, S. Attempts of homo p–n junction formation in ZnS by impurity co-doping with vapor phase epitaxy. Phys. Stat. Sol. 2002, 1, 391. [Google Scholar] [CrossRef]
- Bedia, J.; Muelas-Ramos, V.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodríguez, J.J.; Belver, C. A review on the synthesis and characterization of metal organic frameworks for photocatalytic water purification. Catalysts 2019, 9, 52. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, N.; Bhattacharjee, B. An analytic contemplation of the conspicuous vicissitudes in the histomorphology of corpuscles of Stannius of a freshwater catfish Mystustengara (Hamilton, 1822) due to the Exposure of ZnS Nanoparticles. Scientifica 2015, 2015, 697053. [Google Scholar] [CrossRef] [Green Version]
- Aye, M.; Di Giorgio, C.; Mekaouche, M.; Steinberg, J.G.; Brerro-Saby, C.; Barthélémy, P.; De Méo, M.; Jammes, Y. Genotoxicity of intraperitoneal injection of lipoamphiphile CdSe/ZnS quantum dots in rats. Mut. Res. Genet. Toxicol. Environ. Mutagen. 2013, 758, 48–55. [Google Scholar] [CrossRef]
- Sonar, S.S.; Kategaonkar, A.H.; Ware, M.N.; Gill, C.H.; Shingate, B.B.; Shingare, M.S. Ammonium metavanadate: An effective catalyst for synthesis of α-hydroxyphosphonates. Arkivoc 2009, 2, 138–148. [Google Scholar] [CrossRef] [Green Version]
- Patel, D.V.; Rielly-Gauvin, K.; Ryono, D.E. Preparation of peptidic α-hydroxy phosphonates a new class of transition state analog renin inhibitors. Tetrahedron Lett. 1990, 31, 55. [Google Scholar] [CrossRef]
- Rao, K.U.M.; Sundar, C.S.; Prasad, S.S.; Rani, C.R.; Reddy, C.S. Neat Synthesis and Anti-oxidant Activity of α-Hydroxyphosphonates. Bull. Korean Chem. Soc. 2011, 32, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Dellali, M.; Gnassia Barelli, M.; Roméo, M.; Aϊssa, P. The use of acetylcholinesterase activity in Ruditapes decussatus and Mytilusgalloprovincialis in the biomonitoring of Bizerta lagoon. Comp. Biochem. Physiol. C 2001, 130, 227–235. [Google Scholar]
- Canesi, L.; Ciacci, C.; Fabbri, R.; Marcomini, A.; Pojana, G.; Gallo, G. 2012. Bivalve molluscs as a unique target group for nanoparticle toxicity. Mar. Environ. Res. 2012, 76, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.F.; Buffet, P.E.; Poirier, L.; Amiard-Triquet, C.; Gilliland, D.; Joubert, Y.; Pilet, P.; Guibbolini, M.; Risso de Faverney, C.; Romeo, M.; et al. Size dependent bioaccumulation and ecotoxicity of gold nanoparticles in an endobenthic invertebrate: The Tellinid clam Scrobicularia plana. Environ. Pollut. 2012, 168, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, J.; Li, F.; Gao, D.; Xing, B. Adsorption and inhibition of acetylcholinesterase by different nanoparticles. Chemosphere 2009, 77, 67–73. [Google Scholar] [CrossRef]
- Chen, Z.; Meng, H.; Xing, G.; Chen, C.; Zhao, Y.; Jia, G.; Wang, T.; Yuan, H.; Ye, C.; Zhao, F.; et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicol. Lett. 2006, 163, 109–120. [Google Scholar] [CrossRef]
- Barmo, C.; Ciacci, C.; Canonico, B.; Fabbri, R.; Cortese, K.; Balbi, T.; Marcomini, A.; Pojana, G.; Gallo, G.; Canesi, L. In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis. Aqua. Toxicol. 2013, 132–133, 9–18. [Google Scholar] [CrossRef]
- Trevisan, R.; Delapedra, G.; Mello, D.F.; Arl, M.; Schmidt, E.C.; Meder, F.; Monopoli, M.; Cargnin-Ferreira, E.; Bouzon, Z.L.; Fisher, A.S.; et al. Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas, leading to mitochondrial disruption and oxidative stress. Aqua. Toxicol. 2014, 153, 27–38. [Google Scholar] [CrossRef]
- Buffet, P.E.; Amiard-Triquet, C.; Dybowska, A.; Risso-de Faverney, C.; Guibbolini, M.; Valsami-Jones, E.; Mouneyrac, C. Fate of isotopically labeled zinc oxide nanoparticles in sediment and effects on two endobenthic species, the clam Scrobicularia plana and the ragworm Hedistediversicolor. Ecotoxicol. Environ. Saf. 2012, 84, 191–198. [Google Scholar] [CrossRef]
- Vale, G.; Mehennaoui, K.; Cambier, S.; Libralato, G.; Jomini, S.; Domingos, R.F. Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: A critical overview. Aqua. Toxicol. 2016, 170, 162–174. [Google Scholar] [CrossRef]
- Aouani, I.; Lahbib, K.; Touil, S. Green Synthesis and Antioxidant Activity of Novel γ-cyano-α-hydroxyphosphonate Derivatives. Med. Chem. 2015, 11, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Gagné, F.; Turcotte, P.; Auclair, J.; Gagnon, C. The effects of zinc oxide nanoparticles on the metallome in freshwater mussels. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2013, 158, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Alsop, D.; Wood, C.M. Metal and pharmaceutical mixtures: Is ion loss the mechanism underlying acute toxicity and widespread additive toxicity in zebrafish? Aquat. Toxicol. 2013, 140–141, 257–267. [Google Scholar] [CrossRef]
- Fouqueray, M.; Dufils, B.; Vollat, B.; Chaurand, P.; Botta, C.; Abacci, K.; Labille, J.; Rose, J.; Garric, J. Effects of aged TiO2 nanomaterial from sunscreen on Daphnia magna exposed by dietary route. Environ. Pollut. 2012, 163, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Buffet, P.E.; Pan, J.F.; Poirier, L.; Amiard-Triquet, C.; Amiard, J.C.; Gaudin, P. Biochemical and behavioural responses of the endobenthic bivalve Scrobicularia plana to silver nanoparticles in seawater and microalgal food. Ecotoxicol. Environ. Saf. 2013, 89, 117–124. [Google Scholar] [CrossRef]
- Karlsson, H.L.; Cronholm, P.; Gustafsson, J.; Moller, L. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol. 2008, 21, 1726–1732. [Google Scholar] [CrossRef] [PubMed]
- Asharani, P.V.; Mun, G.L.K.; Hande, M.P.; Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009, 3, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.M.; Hess, K.L.; Gearhart, J.M.; Geiss, K.T.; Schlager, J.J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. Vitr. 2005, 19, 975–983. [Google Scholar] [CrossRef]
- Navarro, E.; Baun, A.; Behra, R.; Hartmann, N.B.; Filser, J.; Miao, A.; Quigg, A.; Santschi, P.H.; Sigg, L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants and fungi. Ecotoxicology 2008, 17, 372–386. [Google Scholar] [CrossRef] [Green Version]
- Suresh, P.; Vijaya, J.J.; Kennedy, L.J. Synergy effect in the photocatalytic degradation of textile dyeing waste water by using microwave combustion synthesized zinc oxide supported activated carbon. React. Kinet. Mech. Catal. 2015, 114, 767–780. [Google Scholar] [CrossRef]
- Zhang, H.; Ji, Z.; Xia, T.; Meng, H.; Low-Kam, C.; Liu, R.; Pokhrel, S.; Lin, S.; Wang, X.; Liao, Y.P. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 2012, 6, 4349–4368. [Google Scholar] [CrossRef] [PubMed]
- Liendro, N.; Ferrari, A.; Mardirosian, M.; Lascano, C.I.; Venturino, A. Toxicity of the insecticide chlorpyrifos to the South American toad Rhinella arenarum at larval developmental stage. Environ. Toxicol. Pharmacol. 2015, 39, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Bebianno, M.J.; Geret, F.; Hoarau, P.; Serafim, M.A.; Coelho, M.R.; Gnassia-Barelli, M.; Romeo, M. Biomarkers in Ruditapes decussatus: A potential bioindicator species. Biomarkers 2004, 9, 305–330. [Google Scholar] [CrossRef]
- Maranho, L.A.; André, C.; Del Valls, T.A.; Gagné, F.; Martín-Díaz, M.L. In situ evaluation of wastewater discharges and the bioavailability of contaminants to marine biota. Sci. Tot. Environ. 2015, 538, 876–887. [Google Scholar] [CrossRef] [PubMed]
- González, P.M.; Puntarulo, S. Fe, oxidative and nitrosative metabolism in the Antarctic limpet Nacellaconcinna. Comp. Biochem. Physio. Part A 2016, 200, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Cruz, D.; Almeida, A.; Calisto, A.; Esteves, V.I.; Schneider, R.J.; Wrona, F.J.; Soares, A.M.V.M.; Figueira, A.; Freitas, R. Caffeine impacts in the clam Ruditapes philippinarum: Alterations on energy reserves, metabolic activity and oxidative stress biomarkers. Chemosphere 2016, 160, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Naidu, K.R.; Kumar, K.S.; Arulselvan, P.; Reddy, C.B.; Lasekan, O. Synthesis of α Hydroxyphosphonates and Their Antioxidant Properties. Arch. Pharm. Chem. Life Sci. 2012, 345, 957–963. [Google Scholar] [CrossRef]
- Fenton, H.J.H. Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans. 1894, 65, 899. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, D.; Samanta, L. Multivariate analysis of potential biomarkers of oxidative stress in Notopterusnotopterus tissues from Mahanadi River as a function of concentration of heavy metals. Chemosphere 2016, 155, 28–38. [Google Scholar] [CrossRef]
- Hermes-Lima, M. Oxygen in biology and biochemistry: Role of free radicals. In Functional Metabolism: Regulation and Adaptation; Storey, K.B., Ed.; Wiley-Liss: Hoboken, NJ, USA, 2005; pp. 319–368. [Google Scholar]
- Canesi, L.; Ciacci, C.; Vallotto, D.; Gallo, G.; Marcomini, A.; Pojana, G. In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes. Aquat. Toxicol. 2010, 96, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Ali, D.; Alarifi, S.; Kumar, S.; Ahamed, M.; Siddiqui, M.A. Oxidative stress and genotoxic effect of zinc oxide nanoparticles in freshwater snail Lymnaealuteola L. Aqua. Toxicol. 2012, 124–125, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Gomes, T.; Pereira, C.G.; Cardoso, C.; Sousa, V.S.; Teixeira, M.R.; Pinheiro, J.P.; Bebianno, M.J. Effects of silver nanoparticles exposure in the mussel Mytilus galloprovincialis. Mar. Environ. Res. 2014, 101, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Atli, G.; Alptekin, O.; Tukel, S.; Canli, M. Response of catalase activity to Ag2þ, Cd2þ, Cr2þ, Cu2þ and Zn2þ in five tissues of freshwater fish Oreochromis niloticus. Comp. Biochem. Physiol. C 2006, 143, 218–224. [Google Scholar]
- Martin-Diaz, L.; Franzellitti, S.; Buratti, S.; Valbonesi, P.; Capuzzo, A.; Fabbri, E. Effects of environmental concentrations of the antiepilectic drug carbamazepine on biomarkers and cAMP-mediated cell signaling in the mussel Mytilus galloprovincialis. Aquat. Toxicol. 2009, 94, 177–185. [Google Scholar] [CrossRef]
- Parolini, M.; Magni, S.; Castiglioni, S.; Binelli, A. Amphetamine exposure imbalanced antioxidant activity in the bivalve Dreissena polymorpha causing oxidative and genetic damage. Chemosphere 2016, 144, 207–213. [Google Scholar] [CrossRef]
- Kamel, N.; Jebali, J.; Banni, M.; Ben Khedher, S.; Chouba, L.; Boussetta, H. Biochemical responses and metals levels in Ruditapes decussatus after exposure to treated municipal effluents. Ecotoxicol. Environ. Saf. 2012, 82, 40–46. [Google Scholar] [CrossRef]
- Matozzo, V.; Tomei, A.; Marin, M.G. Acetylcholinesterase as a biomarker of exposure to neurotoxic compounds in the clam Tapes philippinarum from the Lagoon of Venice. Mar. Pollut. Bull. 2005, 50, 1686–1693. [Google Scholar] [CrossRef]
- Hamza-Chaffai, A.; Roméo, M.; Gnassia-Barelli, M.; El Abed, A. Effect of copper and lindane on some biomarkers measured in the clam Ruditapes decussates. Bull. Environ. Conta. Toxicol. 1998, 61, 397–404. [Google Scholar] [CrossRef]
- Gaitonde, D.; Sarkar, A.; Kaisary, S.; Silva, C.D.; Dias, C.; Rao, D.P.; Ray, D.; Nagarajan, R.; Sousa, S.N.D.; Sarker, S.; et al. Acetylcholinesterase activities in marine snail (Cronia contracta) as a biomarker of neurotoxic contaminants along the Goa coast, west coast of India. Ecotoxicology 2006, 15, 353–358. [Google Scholar] [CrossRef]
- Radic, Z.; Kirchhoff, P.D.; Quinn, D.M.; McCammon, J.A.; Taylor, P. Electrostatic influence on the kinetics of ligand binding to acetylcholinesterase: Distinctions between active center ligands and fasciculin. J. Bio. Chem. 1997, 272, 23265–23277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schallreuter, K.U.; Elwary, S.M.; Gibbons, N.C. Activation/deactivation of acetylcholinesterase by H2O2: More evidence for oxidative stress in vitiligo. Biochem. Biophys. Res. Commun. 2004, 315, 502–508. [Google Scholar] [CrossRef]
- Antonio, M.T.; Corredor, L.; Leret, M.L. Study of the activity of several brain enzymes like markers of the neurotoxicity induced by perinatal exposure to lead and/orcadmium. Toxicol. Lett. 2003, 143, 331–340. [Google Scholar] [CrossRef] [PubMed]
- US Environmental Protection Agency. SCE Policy Issues Related to the Food Quality Protection Act. Office of Pesticide Programs Science Policy on the Use of Cholinesterase Inhibition for Risk Assessment of Organophosphate and Carbamate Pesticides; OOP Docket # 00560; Federal register; US Environmental Protection Agency: Washington, DC, USA, 1998; Volume 63, p. 214.
- Sellami, B.; Aouani, I.; Maalaoui, A.; Dellali, M.; Aïssa, P.; Touil, S.; Sheehan, D.; Mahmoudi, E.; Hamouda, B. Ecotoxicology and Environmental Safety 2- oxathiaphosphorine-2-sul fi de on biomarkers of Mediterranean clams Ruditapesdecussatus. Ecotox. Environ. Saf. 2015, 120, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Mattson, N.S.; Egidius, E.; Solbakken, J.E. Uptake and elimination of (methyl-14C) trichlorfon in blue mussel (Mytilus edulis) and European oyster (Ostrea edulis)—Impact of Neguvon disposal on mollusc farming. Aquaculture 1988, 71, 9–14. [Google Scholar] [CrossRef]
- Brewer, S.K.; Little, E.E.; DeLonay, A.J.; Beauvais, S.L.; Jones, S.B.; Ellersieck, M.R. Behavioral dysfunctions correlate to altered physiology in Rainbow Trout (Oncorynchus mykiss) exposed to cholinesterase-inhibiting chemicals. Arch. Environ. Con. Tox. 2001, 40, 70–76. [Google Scholar]
- Sandahl, J.F.; Baldwin, D.H.; Jenkins, J.J.; Scholz, N.L. Comparative thresholds for acetylcholinesterase inhibition and behavioral impairment in coho salmon exposed to chlorpyrifos. Environ. Toxicol. Chem. 2005, 24, 136–145. [Google Scholar] [CrossRef]
- Sturve, J.; Scarlet, P.; Halling, M.; Kreuger, J.; Macia, A. Environmental monitoring of pesticide exposure and effects on mangrove aquatic organisms of Mozambique. Mar. Environ. Res. 2016, 121, 9–19. [Google Scholar] [CrossRef]
- Nunes, B.; Carvalho, F.; Guilhermino, L. Effects of widely used pharmaceuticals and a detergent on oxidative stress biomarkers of the crustacean Artemia parthenogenetica. Chemosphere 2000, 62, 581–594. [Google Scholar] [CrossRef]
- Milan, M.; Pauletto, M.; Patarnello, T.; Bargelloni, L.; Marin, M.G.; Matozzo, V. Gene transcription and biomarker responses in the clam Ruditapes philippinarum after exposure to ibuprofen. Aquat. Toxicol. 2013, 126, 17–29. [Google Scholar] [CrossRef]
- Oliveira, H.H.P.; Liebel, S.; Rossi, S.C.; Azevedo, A.C.B.; Barrera, E.A.L.; Garcia, J.R.E.; Grötzner, S.R.; Neto, F.F.; Randi, M.A.F.; Ribeiro, C.A.O. Mixtures of benzo(a)pyrene, dichlorodiphenyltrichloroethane and tributyltin are more toxic to Neotropical fish Rhamdiaquelen than isolated exposures. Ecotoxicol. Environ. Saf. 2015, 122, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Pohanka, M.; Dobes, P. Caffeine inhibits acetylcholinesterase, but not butyrylcholinesterase. Int. J. Mol. Sci. 2013, 14, 9873–9882. [Google Scholar] [CrossRef] [PubMed]
- Pokalwar, R.U.; Hangarge, R.V.; Maske, P.V.; Shingare, M.S. Synthesis and antibacterial activities of α -hydroxyphosphonates and α -acetyloxyphosphonates derived from 2-chloroquinoline-3-carbaldehyde. Arkivoc 2006, 6, 196–204. [Google Scholar] [CrossRef] [Green Version]
- Reddy, G.S.; Syamasundar, C.; Prasad, S.S.; Dadapeer, E.; Raju, C.N.; Reddy, C.S. Synthesis, Spectral characterization and antimicrobial activity of α hydroxyphosphonates. Der. Pharma. Chemica. 2012, 4, 2208–2213. [Google Scholar]
- Kaufer, D.; Friedman, A.; Seidman, S. Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 1998, 393, 373–377. [Google Scholar] [CrossRef]
- Meshorer, E.; Soreq, H. Virtues and woes of AChE alternative splicing in stress related neuropathologies. Trends Neurosci. 2006, 29, 216–224. [Google Scholar] [CrossRef]
- Aguirre-Martinez, G.V.; DelValls, T.A.; Martín-Díaz, M.L. General stress, detoxification pathways, neurotoxicity and genotoxicity evaluated in Ruditapes philippinarum exposed to human pharmaceuticals. Ecotoxicol. Environ. Saf. 2016, 124, 18–31. [Google Scholar] [CrossRef]
- Zhang, X.J.; Greenberg, D.S. Acetylcholinesterase involvement in apoptosis. Front. Mol. Neurosci. 2012, 5, 40. [Google Scholar] [CrossRef] [Green Version]
- Williamson, S.M.; Moffat, C.; Gomersall, M.A.E.; Saranzewa, N.; Connolly, C.N.; Wright, G.A. Exposure to acetylcholinesterase inhibitors alters the physiology and motor function of honeybees. Front. Physiol. 2013, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Jobansson, C.G. Digestion methods for the determination of the total content of heavy metals, in: Manual of methods in aquatic environment research. Part 1: Methods for detection, measurement and monitoring of water pollution. FAO Fish. Tech. Pap. 1975, 137, 200. [Google Scholar]
- Lavilla, I.; Costas, M.; Gil, S.; Corderí, S.; Sánchez, G.; Bendicho, C. Simplified and miniaturized procedure based on ultrasound-assisted cytosol preparation for the determination of Cd and Cu bound to metallothioneins in mussel tissue by ICP-MS. Talanta 2012, 93, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantification of microgram of protein utilizing the principal of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Wolff, S.P. Ferrous ion oxidation in presence of ferric iron indicator xylenol orange for measurement of hydroperoxide. Methods Enzymol. 1994, 233, 182–189. [Google Scholar]
- Aebi, H. Catalase. In Methods of Enzymatic Analysis; Bergmayer, H.U., Ed.; Academic Press: London, UK, 1974; pp. 671–684. [Google Scholar]
- Ni, W.; Trelease, R.N.; Eising, R. Two temporally synthesized charge subunits interact to form the five isoformes of cottonseed (Gossypium hirsutum) catalase. Biochemistry 1990, 269, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
Cd | Cu | Fe | Pb | Zn | |
---|---|---|---|---|---|
Control | 0.069 | 0.025 | 0.750 | 0.28 | 2.098 |
ZnS50 | 0.001 | 0.2 | 0.22 | 0.02 | 0.690 |
ZnS100 | 0.130 | 0.098 | 1.25 | 0.155 | 3.968 |
P50 | 0.001 | 0.290 | 0.320 | 0.090 | 0.710 |
P100 | 0.001 | 0.250 | 0.470 | 0.090 | 1.090 |
M100 | 0.224 | 0.545 | 2.750 | 0 | 13.112 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saidani, W.; Bouzidi, I.; Khazri, A.; Ghannem, S.; Aouani, I.; Fkiri, A.; Touil, S.; Alghonaim, M.I.; Alsalamah, S.A.; Qurtam, A.A.; et al. Possible Interaction between ZnS Nanoparticles and Phosphonates on Mediterranean Clams Ruditapes decussatus. Molecules 2023, 28, 2460. https://doi.org/10.3390/molecules28062460
Saidani W, Bouzidi I, Khazri A, Ghannem S, Aouani I, Fkiri A, Touil S, Alghonaim MI, Alsalamah SA, Qurtam AA, et al. Possible Interaction between ZnS Nanoparticles and Phosphonates on Mediterranean Clams Ruditapes decussatus. Molecules. 2023; 28(6):2460. https://doi.org/10.3390/molecules28062460
Chicago/Turabian StyleSaidani, Wiem, Imen Bouzidi, Abdelhafidh Khazri, Samir Ghannem, Iyadh Aouani, Anis Fkiri, Soufiane Touil, Mohammed I. Alghonaim, Sulaiman A. Alsalamah, Ashraf A. Qurtam, and et al. 2023. "Possible Interaction between ZnS Nanoparticles and Phosphonates on Mediterranean Clams Ruditapes decussatus" Molecules 28, no. 6: 2460. https://doi.org/10.3390/molecules28062460
APA StyleSaidani, W., Bouzidi, I., Khazri, A., Ghannem, S., Aouani, I., Fkiri, A., Touil, S., Alghonaim, M. I., Alsalamah, S. A., Qurtam, A. A., Beyrem, H., Boufahja, F., & Sellami, B. (2023). Possible Interaction between ZnS Nanoparticles and Phosphonates on Mediterranean Clams Ruditapes decussatus. Molecules, 28(6), 2460. https://doi.org/10.3390/molecules28062460