Solid–Liquid Equilibrium in Co-Amorphous Systems: Experiment and Prediction
Abstract
:1. Introduction
2. Results and Discussions
2.1. Thermodynamic Fusion Properties and Glass Transition Temperatures of Pure APIs
2.2. Binary Solid–Liquid Phase Diagrams
2.3. Kinetic Stabilization of CAMs and Glass Transition of Binary Mixtures
3. Materials and Methods
3.1. Samples Description
3.2. Experimental Methods
3.2.1. Differential Scanning Calorimetry
3.2.2. X-ray Powder Diffraction
3.3. Computational Methods
3.3.1. Modeling of Solid–Liquid Equilibria
3.3.2. PC-SAFT Equation of State
3.3.3. COSMO-RS-AMS
3.3.4. Modelling of the Glass Transition Temperature Curve
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hancock, B.C.; Parks, M. What is the True Solubility Advantage for Amorphous Pharmaceuticals? Pharm. Res. 2000, 17, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Löbmann, K.; Laitinen, R.; Grohganz, H.; Gordon, K.C.; Strachan, C.; Rades, T. Coamorphous Drug Systems: Enhanced Physical Stability and Dissolution Rate of Indomethacin and Naproxen. Mol. Pharm. 2011, 8, 1919–1928. [Google Scholar] [CrossRef] [PubMed]
- Iemtsev, A.; Zemánková, A.; Hassouna, F.; Mathers, A.; Klajmon, M.; Slámová, M.; Malinová, L.; Fulem, M. Ball milling and hot-melt extrusion of indomethacin-L-arginine-vinylpyrrolidone-vinyl acetate copolymer: Solid-state properties and dissolution performance. Int. J. Pharm. 2022, 613, 121424. [Google Scholar] [CrossRef] [PubMed]
- Bhujbal, S.V.; Mitra, B.; Jain, U.; Gong, Y.; Agrawal, A.; Karki, S.; Taylor, L.S.; Kumar, S.; Zhou, Q. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm. Sin. B 2021, 11, 2505–2536. [Google Scholar] [CrossRef]
- Dengale, S.; Grohganz, H.; Rades, T.; Löbmann, K. Recent advances in co-amorphous drug formulations. Adv. Drug Deliv. Rev. 2016, 100, 116–125. [Google Scholar] [CrossRef]
- Chavan, R.B.; Thipparaboina, R.; Kumar, D.; Shastri, N.R. Co amorphous systems: A product development perspective. Int. J. Pharm. 2016, 515, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, H.; Hirakura, Y.; Yuda, M.; Teramura, T.; Terada, K. Detection of Cocrystal Formation Based on Binary Phase Diagrams Using Thermal Analysis. Pharm. Res. 2012, 30, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, H.; Hirakura, Y.; Yuda, M.; Terada, K. Coformer screening using thermal analysis based on binary phase diagrams. Pharm. Res. 2014, 31, 1946–1957. [Google Scholar] [CrossRef]
- Höhne, G.W.H.; Hemminger, W.F.; Flammersheim, H.-J. Differential Scanning Calorimetry; Springer Verlag: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Kissi, E.O.; Khorami, K.; Rades, T. Determination of Stable Co-Amorphous Drug–Drug Ratios from the Eutectic Behavior of Crystalline Physical Mixtures. Pharmaceutics 2019, 11, 628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beyer, A.; Grohganz, H.; Löbmann, K.; Rades, T.; Leopold, C.S. Influence of the cooling rate and the blend ratio on the physical stability of co-amorphous naproxen/indomethacin. Eur. J. Pharm. Biopharm. 2016, 109, 140–148. [Google Scholar] [CrossRef]
- Jensen, K.T.; Larsen, F.H.; Löbmann, K.; Rades, T.; Grohganz, H. Influence of variation in molar ratio on co-amorphous drug-amino acid systems. Eur. J. Pharm. Biopharm. 2016, 107, 32–39. [Google Scholar] [CrossRef]
- Baird, J.A.; Van Eerdenbrugh, B.; Taylor, L.S. A Classification System to Assess the Crystallization Tendency of Organic Molecules from Undercooled Melts. J. Pharm. Sci. 2010, 99, 3787–3806. [Google Scholar] [CrossRef]
- Paudel, A.; Van Humbeeck, J.; Van den Mooter, G. Theoretical and Experimental Investigation on the Solid Solubility and Miscibility of Naproxen in Poly(vinylpyrrolidone). Mol. Pharm. 2010, 7, 1133–1148. [Google Scholar] [CrossRef] [PubMed]
- Blaabjerg, L.I.; Lindenberg, E.; Löbmann, K.; Grohganz, H.; Rades, T. Glass Forming Ability of Amorphous Drugs Investigated by Continuous Cooling and Isothermal Transformation. Mol. Pharm. 2016, 13, 3318–3325. [Google Scholar] [CrossRef]
- Kawakami, K. Crystallization Tendency of Pharmaceutical Glasses: Relevance to Compound Properties, Impact of Formulation Process, and Implications for Design of Amorphous Solid Dispersions. Pharmaceutics 2019, 11, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seideman, P.; Melander, A. Equianalgesic effects of paracetamol and indomethacin in rheumatoid arthritis. Br. J. Rheumatol. 1988, 27, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Fael, H.; Demirel, A.L. Indomethacin co-amorphous drug-drug systems with improved solubility, supersaturation, dissolution rate and physical stability. Int. J. Pharm. 2021, 600, 120448. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.; Sadowski, G. Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules. Ind. Eng. Chem. Res. 2001, 40, 1244–1260. [Google Scholar] [CrossRef]
- Gross, J.; Sadowski, G. Application of the Perturbed-Chain SAFT Equation of State to Associating Systems. Ind. Eng. Chem. Res. 2002, 41, 5510–5515. [Google Scholar] [CrossRef]
- Klamt, A. Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys. Chem. 1995, 99, 2224–2235. [Google Scholar] [CrossRef]
- Pye, C.C.; Ziegler, T.; van Lenthe, E.; Louwen, J.N. An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package—Part II. COSMO for real solvents. Can. J. Chem. 2009, 87, 790–797. [Google Scholar] [CrossRef]
- Chapman, W.G.; Gubbins, K.E.; Jackson, G.; Radosz, M. SAFT: Equation-of-state solution model for associating fluids. Fluid Phase Equilib. 1989, 52, 31–38. [Google Scholar] [CrossRef]
- Iemtsev, A.; Hassouna, F.; Mathers, A.; Klajmon, M.; Dendisová, M.; Malinová, L.; Školáková, T.; Fulem, M. Physical stability of hydroxypropyl methylcellulose-based amorphous solid dispersions: Experimental and computational study. Int. J. Pharm. 2020, 589, 119845. [Google Scholar] [CrossRef] [PubMed]
- Iemtsev, A.; Hassouna, F.; Klajmon, M.; Mathers, A.; Fulem, M. Compatibility of selected active pharmaceutical ingredients with poly(D, L-lactide-co-glycolide): Computational and experimental study. Eur. J. Pharm. Biopharm. 2022, 179, 232–245. [Google Scholar] [CrossRef]
- Groom, C.; Bruno, I.; Lightfoot, M.; Ward, S. The Cambridge Structural Database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Štejfa, V.; Pokorný, V.; Mathers, A.; Růžička, K.; Fulem, M. Heat capacities of selected active pharmaceutical ingredients. J. Chem. Thermodyn. 2021, 163, 106585. [Google Scholar] [CrossRef]
- Acree, W.; Chickos, J. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2015. Part 1. C1–C10. J. Phys. Chem. Ref. Data 2016, 45, 033101. [Google Scholar] [CrossRef]
- Acree, W.; Chickos, J. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds and Ionic Liquids. Sublimation, Vaporization, and Fusion Enthalpies from 1880 to 2015. Part 2. C 11–C 192. J. Phys. Chem. Ref. Data 2017, 46, 013104. [Google Scholar] [CrossRef]
- Fukuoka, E.; Makita, M.; Nakamura, Y. Glassy State of Pharmaceuticals. V. Relaxation during Cooling and Heating of Glass by Differential Scanning Calorimetry. Chem. Pharm. Bull. 1991, 39, 2087–2090. [Google Scholar] [CrossRef] [Green Version]
- Sahra, M.; Thayyil, M.S.; Bansal, A.K.; Ngai, K.L.; Sulaiman, M.K.; Shete, G.; Safna Hussan, K.P. Dielectric spectroscopic studies of three important active pharmaceutical ingredients—Clofoctol, droperidol and probucol. J. Non-Cryst. Solids 2019, 505, 28–36. [Google Scholar] [CrossRef]
- Neau, S.H.; Bhandarkar Sv Fau—Hellmuth, E.W.; Hellmuth, E.W. Differential molar heat capacities to test ideal solubility estimations. Pharm. Res. 1997, 14, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Tammann, G. Über die Ermittelung der Zusammensetzung chemischer Verbindungen ohne Hilfe der Analyse. Z. Anorg. Chem. 1903, 37, 303–313. [Google Scholar] [CrossRef]
- Klajmon, M. Investigating Various Parametrization Strategies for Pharmaceuticals within the PC-SAFT Equation of State. J. Chem. Eng. Data 2020, 65, 5753–5767. [Google Scholar] [CrossRef]
- Kontogeorgis, G.M.; Folas, G.K. Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories; Wiley: Chichester, UK, 2010. [Google Scholar]
- Haslam, A.J.; González-Pérez, A.; Di Lecce, S.; Khalit, S.H.; Perdomo, F.A.; Kournopoulos, S.; Kohns, M.; Lindeboom, T.; Wehbe, M.; Febra, S.; et al. Expanding the Applications of the SAFT-γ Mie Group-Contribution Equation of State: Prediction of Thermodynamic Properties and Phase Behavior of Mixtures. J. Chem. Eng. Data 2020, 65, 5862–5890. [Google Scholar] [CrossRef]
- Peters, F.T.; Laube, F.S.; Sadowski, G. Development of a group contribution method for polymers within the PC-SAFT model. Fluid Phase Equilib. 2012, 324, 70–79. [Google Scholar] [CrossRef]
- Peters, F.T.; Herhut, M.; Sadowski, G. Extension of the PC-SAFT based group contribution method for polymers to aromatic, oxygen- and silicon-based polymers. Fluid Phase Equilib. 2013, 339, 89–104. [Google Scholar] [CrossRef]
- Yagi, N.; Terashima, Y.; Kenmotsu, H.; Sekikawa, H.; Takada, M. Dissolution Behavior of Probucol from Solid Dispersion Systems of Probucol-Polyvinylpyrrolidone. Chem. Pharm. Bull. 1996, 44, 241–244. [Google Scholar] [CrossRef] [Green Version]
- Klamt, A.; Eckert, F.; Hornig, M.; Beck, M.E.; Bürger, T. Prediction of aqueous solubility of drugs and pesticides with COSMO-RS. J. Comput. Chem. 2002, 23, 275–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klajmon, M. Purely Predicting the Pharmaceutical Solubility: What to Expect from PC-SAFT and COSMO-RS? Mol. Pharm. 2022, 19, 4212–4232. [Google Scholar] [CrossRef]
- Klamt, A. The COSMO and COSMO-RS solvation models. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 699–709. [Google Scholar] [CrossRef]
- Bell, I.H.; Mickoleit, E.; Hsieh, C.-M.; Lin, S.-T.; Vrabec, J.; Breitkopf, C.; Jäger, A. A Benchmark Open-Source Implementation of COSMO-SAC. J. Chem. Theory Comput. 2020, 16, 2635–2646. [Google Scholar] [CrossRef] [PubMed]
- Amsterdam Modeling Suite (AMS) 2022.101, Software for Chemistry and Materials (SCM), Theoretical Chemistry; Vrije Universiteit: Amsterdam, The Netherlands, 2022.
- Gerber, J.J.; Caira, M.R.; Lötter, A.P. Structures of two conformational polymorphs of the cholesterol-lowering drug probucol. J. Crystallogr. Spectrosc. Res. 1993, 23, 863–869. [Google Scholar] [CrossRef]
- Baghel, S.; Fox, H.; O’Reilly, N. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs. J. Pharm. Sci. 2016, 105, 2527–2544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwei, T.K. The effect of hydrogen bonding on the glass transition temperatures of polymer mixtures. J. Polym. Sci. Polym. Lett. Ed. 1984, 22, 307–313. [Google Scholar] [CrossRef]
Compound | Polymorph a | Tm/°C b | Tg/°C b | ||
---|---|---|---|---|---|
indomethacin | form γ (INDMET) | 160.2 | 38.1 | 117.5 c | 42.3 |
(RS)-ibuprofen | form I (IBPRAC) | 75.8 | 26.4 | 55.8 c | −43.8 |
(S)-naproxen | form I (COYRUD11) | 156.0 | 32.4 | 99.3 c | 6.4 d |
paracetamol | form I (HXACAN34) | 168.2 | 27.1 | 99.8 e | 25.7 |
probucol | form I (HAXHET01) | 126.0 | 35.3 | 124.7 f | 22.0 |
System | TE (xE)/°C c | xE b | |||
---|---|---|---|---|---|
Experiment a | Ideal Solubility | PC-SAFT (kij = 0) | COSMO-RS-AMS | Tammann Plot | |
NAP (1)–IND (2) | 128.4 | 128.1 (x1 = 0.55) | 124.9 (x1 = 0.55) | 127.8 (x1 = 0.55) | x1 = 0.58 |
NAP (1)–IBU (2) | 72.1 | 71.4 (x1 = 0.11) | 74.2 (x1 = 0.04) | 70.5 (x1 = 0.13) | - |
NAP (1)–PRO (2) | 120.5 | 110.8 (x1 = 0.34) | 104.9 (x1 = 0.41) (!) d | 117.7 (x1 = 0.23) | x1 = 0.33 |
IND (1)–PAR (2) | 138.7 | 132.2 (x1 = 0.48) | 136.7 (x1 = 0.50) | 137.0 (x1 = 0.50) | x1 = 0.40 |
NAP (1)–IND (2) | NAP (1)–IBU (2) | |||||||
---|---|---|---|---|---|---|---|---|
x1 | Experiment TL/°C a | ΔT/°C b | Experiment TL/°C a | ΔT/°C b | ||||
PC-SAFT | COSMO-RS-AMS | Ideal Solubility | PC-SAFT | COSMO-RS-AMS | Ideal Solubility | |||
0.1 | 156.2 | −0.4 | −0.2 | −0.3 | - | - | - | - |
0.2 | 151.6 | −0.8 | 0.1 | −0.5 | - | - | - | - |
0.3 | - | - | - | - | 104.1 | 24.2 | −0.1 | 1.7 |
0.4 | - | - | - | - | 114.6 | 19.4 | 1.3 | 2.1 |
0.5 | - | - | - | - | 125.9 | 12.1 | −0.6 | −0.3 |
0.6 | 129.8 | −0.4 | 2.3 | 2.7 | 135.1 | 6.2 | −1.9 | −2.0 |
0.7 | 136.8 | 0.8 | 2.4 | 2.7 | 140.5 | 4.0 | −0.6 | −0.7 |
0.8 | 146.3 | −1.5 | −0.7 | −0.6 | 145.0 | 2.9 | 0.9 | 0.7 |
0.9 | 150.9 | 0.0 | 0.3 | 0.3 | 151.4 | 0.3 | −0.2 | −0.3 |
σ c | - | 0.6 | 1.0 | 1.2 | - | 9.9 | 0.8 | 1.1 |
NAP (1)–PRO (2) | IND (1)–PAR (2) | |||||||
x1 | Experiment TL/°C a | ΔT/°C b | Experiment TL/°C a | ΔT/°C b | ||||
PC-SAFT (!) d | COSMO-RS-AMS | Ideal Solubility | PC-SAFT | COSMO-RS-AMS | Ideal Solubility | |||
0.1 | 123.8 | −1.9 | −1.5 | −1.7 | 168.2 | −1.1 | −1.0 | −1.5 |
0.2 | - | - | - | - | 163.5 | 0.3 | 0.3 | −1.4 |
0.3 | 126.7 | −14.9 | −1.7 | −13.7 | 156.7 | 0.8 | 1.0 | −2.4 |
0.4 | 133.9 | −28.6 | −1.3 | −17.1 | 150.2 | −2.0 | −0.8 | −6.0 |
0.5 | 140.8 | −24.7 | −2.8 | −15.1 | 145.6 | −2.6 | −2.2 | −5.6 |
0.6 | 144.7 | −18.3 | −2.5 | −11.4 | 139.1 | −1.6 | −2.0 | −4.0 |
0.7 | - | - | - | - | 144.2 | 2.3 | 2.0 | 0.9 |
0.8 | - | - | - | - | 145.1 | 0.4 | 0.2 | −0.2 |
0.9 | - | - | - | - | 151.5 | 0.8 | 0.8 | 0.6 |
σ c | - | 14.7 | 1.6 | 9.8 | - | 1.3 | 1.1 | 2.5 |
System | Gordon–Taylor Equation | Kwei Equation | |||
---|---|---|---|---|---|
k | Tg, NAP/°C | k | q | Tg, NAP/°C | |
NAP-IND | 0.90 | 7.9 | 1.00 | 3.80 | 7.8 |
NAP-IBU | 0.79 | 9.8 | 1.00 | −10.95 | 9.0 |
NAP-PRO | 0.42 | 1.7 | 2.14 | 36.47 | 2.2 |
IND-PAR | 1.80 | - | 3.08 | 8.54 | - |
Compound | CAS RN | Abbreviation | Supplier | Mole Fraction Purity a |
---|---|---|---|---|
indomethacin | 53-86-1 | IND | Merck | 0.998 |
(RS)-ibuprofen | 15687-27-1 | IBU | Zentiva | 0.998 |
(S)-naproxen | 22204-53-1 | NAP | Merck | 0.999 |
paracetamol | 103-90-2 | PAR | Merck | 0.999 |
probucol | 23288-49-5 | PRO | Merck | 0.997 |
Compound | mi | σi/Å | εi/k/K | |||
---|---|---|---|---|---|---|
IND a | 7.8970 | 3.8225 | 374.51 | 1295.43 | 0.01135 | 6 (3/3) |
IBU a | 5.4386 | 4.0179 | 309.40 | 516.469 | 0.08946 | 4 (2/2) |
NAP a | 4.4122 | 4.1142 | 470.92 | 1202.65 | 0.00952 | 4 (2/2) |
PAR a | 3.2357 | 3.9819 | 432.09 | 1635.92 | 0.05432 | 4 (2/2) |
PRO b | 11.8500 | 3.8500 | 175.62 | 1650.00 | 0.01000 | 4 (2/2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zemánková, A.; Hassouna, F.; Klajmon, M.; Fulem, M. Solid–Liquid Equilibrium in Co-Amorphous Systems: Experiment and Prediction. Molecules 2023, 28, 2492. https://doi.org/10.3390/molecules28062492
Zemánková A, Hassouna F, Klajmon M, Fulem M. Solid–Liquid Equilibrium in Co-Amorphous Systems: Experiment and Prediction. Molecules. 2023; 28(6):2492. https://doi.org/10.3390/molecules28062492
Chicago/Turabian StyleZemánková, Alžběta, Fatima Hassouna, Martin Klajmon, and Michal Fulem. 2023. "Solid–Liquid Equilibrium in Co-Amorphous Systems: Experiment and Prediction" Molecules 28, no. 6: 2492. https://doi.org/10.3390/molecules28062492
APA StyleZemánková, A., Hassouna, F., Klajmon, M., & Fulem, M. (2023). Solid–Liquid Equilibrium in Co-Amorphous Systems: Experiment and Prediction. Molecules, 28(6), 2492. https://doi.org/10.3390/molecules28062492