Exploring pta Alternatives in the Development of Ruthenium–Arene Anticancer Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Cytotoxicity Studies
2.3. GST Inhibition
3. Materials and Methods
3.1. Synthesis and Characterization
3.1.1. [(η6-p-cym)Ru(κ2-O,S-C5H4NOS)(cap)]PF6 (3)
3.1.2. [(η6-p-cym)Ru(κ2-O,S-C5H4NOS)(P(OEt)3)]PF6 (4)
3.1.3. [(η6-p-cym)Ru(κ2-O,S-C5H4NOS)(epb)]PF6 (5)
3.1.4. [(η6-p-cym)Ru(κ2-O,S-C5H4NOS)(PPh3)]PF6 (6)
3.1.5. [(η6-p-cym)Ru(κ2-O,S-C5H4NOS)(P(OPh)3)]PF6 (7)
3.1.6. [(η6-p-cym)Ru(κ2-O,S-C5H4NOS)(AsPh3)]PF6 (8)
3.2. Crystallography
3.3. Cell Line and Growth Conditions
3.4. Cell Viability: 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide Assay
3.5. GST Inhibition Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Romero-Canelón, I.; Sadler, P.J. Next-Generation Metal Anticancer Complexes: Multitargeting via Redox Modulation. Inorg. Chem. 2013, 52, 12276–12291. [Google Scholar] [CrossRef] [PubMed]
- Alessio, E. Thirty Years of the Drug Candidate NAMI-A and the Myths in the Field of Ruthenium Anticancer Compounds: A Personal Perspective. Eur. J. Inorg. Chem. 2017, 2017, 1549–1560. [Google Scholar] [CrossRef]
- Leijen, S.; Burgers, S.A.; Baas, P.; Pluim, D.; Tibben, M.; van Werkhoven, E.; Alessio, E.; Sava, G.; Beijnen, J.H.; Schellens, J.H.M. Phase I/II study with ruthenium compound NAMI-A and gemcitabine in patients with non-small cell lung cancer after first line therapy. Investig. New Drugs 2015, 33, 201–214. [Google Scholar] [CrossRef] [Green Version]
- Depenbrock, H.; Schmelsher, S.; Peter, R.; Keppler, B.K.; Weirich, G.; Block, T.; Rastetter, J.; Hanauske, A.R. Preclinical activity of trans-indazolium [tetrachlorobisindazoleruthenate(III)] (NSC 666158; IndCR.; KP 1019) against tumour colony-forming units and haematopoietic progenitor cells. Eur. J. Cancer 1997, 33, 2404–2410. [Google Scholar] [CrossRef]
- Murray, S.B.; Babak, V.M.; Hartinger, G.C.; Dyson, J.P. The development of RAPTA compounds for the treatment of tumors. Coord. Chem. Rev. 2016, 306, 86–114. [Google Scholar] [CrossRef]
- Alessio, E.; Messori, L. NAMI-A and KP1019/1339, Two Iconic Ruthenium Anticancer Drug Candidates Face-to-Face: A Case Story in Medicinal Inorganic Chemistry. Molecules 2019, 24, 1995. [Google Scholar] [CrossRef] [Green Version]
- McFarland, S.A.; Mandel, A.; Dumoulin-White, R.; Gasser, G. Metal-based photosensitizers for photodynamic therapy: The future of multimodal oncology? Curr. Opin. Chem. Biol. 2020, 56, 23–27. [Google Scholar] [CrossRef]
- Chen, H.M.; Parkinson, J.A.; Morris, R.E.; Sadler, P.J. Highly selective binding of organometallic ruthenium ethylenediamine complexes to nucleic acids: Novel recognition mechanisms. J. Am. Chem. Soc. 2003, 125, 173–186. [Google Scholar] [CrossRef]
- Habtemariam, A.; Melchart, M.; Fernandez, R.; Parsons, S.; Oswald, I.D.H.; Parkin, A.; Fabbiani, F.P.A.; Davidson, J.E.; Dawson, A.; Aird, R.E.; et al. Structure-activity relationships for cytotoxic ruthenium(II) arene complexes containing N,N-, N,O-, and O,O-chelating ligands. J. Med. Chem. 2006, 49, 6858–6868. [Google Scholar] [CrossRef]
- Mitrović, A.; Kljun, J.; Sosič, I.; Uršič, M.; Meden, A.; Gobec, S.; Kos, J.; Turel, I. Organoruthenated Nitroxoline Derivatives Impair Tumor Cell Invasion through Inhibition of Cathepsin B Activity. Inorg. Chem. 2019, 58, 12334–12347. [Google Scholar] [CrossRef] [Green Version]
- Mitrović, A.; Kljun, J.; Sosič, I.; Gobec, S.; Turel, I.; Kos, J. Clioquinol-ruthenium complex impairs tumour cell invasion by inhibiting cathepsin B activity. Dalton Trans. 2016, 45, 16913–16921. [Google Scholar] [CrossRef] [Green Version]
- Gobec, M.; Kljun, J.; Sosič, I.; Mlinarič-Raščan, I.; Uršič, M.; Gobec, S.; Turel, I. Structural characterization and biological evaluation of a clioquinol-ruthenium complex with copper-independent antileukaemic activity. Dalton Trans. 2014, 43, 9045–9051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Movassaghi, S.; Hanif, M.; Holtkamp, H.U.; Söhnel, T.; Jamieson, S.M.F.; Hartinger, C.G. Making organoruthenium complexes of 8-hydroxyquinolines more hydrophilic: Impact of a novel L-phenylalanine-derived arene ligand on the biological activity. Dalton Trans. 2018, 47, 2192–2201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubanik, M.; Holtkamp, H.; Söhnel, T.; Jamieson, S.M.F.; Hartinger, C.G. Impact of the Halogen Substitution Pattern on the Biological Activity of Organoruthenium 8-Hydroxyquinoline Anticancer Agents. Organometallics 2015, 34, 5658–5668. [Google Scholar] [CrossRef]
- Anuja, P.K.; Roy, N.; Das, U.; Varddhan, S.; Sahoo, S.K.; Paira, P. [Ru(η6-p-cymene)(N^O 8-hydroxyquinoline)(PTA)] complexes as rising stars in medicinal chemistry: Synthesis, properties, biomolecular interactions, in vitro anti-tumor activity toward human brain carcinomas, and in vivo biodistribution and toxicity in a zebrafish model. Dalton Trans. 2022, 51, 8497–8509. [Google Scholar]
- Ruiz, M.C.; Kljun, J.; Turel, I.; Di Virgilio, A.L.; León, I.E. Comparative antitumor studies of organoruthenium complexes with 8-hydroxyquinolines on 2D and 3D cell models of bone, lung and breast cancer. Metallomics 2019, 11, 666–675. [Google Scholar] [CrossRef]
- Kljun, J.; Pavlič, R.; Hafner, E.; Lipec, T.; Moreno-Da Silva, S.; Tič, P.; Turel, I.; Budefeld, T.; Stojan, J.; Lanisnik Rizner, T. Ruthenium complexes show potent inhibition of AKR1C1, AKR1C2, and AKR1C3 enzymes and anti-proliferative action against chemoresistant ovarian cancer cell line. Front. Pharmacol. 2022, 13, 920379. [Google Scholar] [CrossRef]
- Legina, M.S.; Nogueira, J.J.; Kandioller, W.; Jakupec, M.A.; González, L.; Keppler, B.K. Biological evaluation of novel thiomaltol-based organometallic complexes as topoisomerase IIα inhibitors. J. Biol. Inorg. Chem. 2020, 25, 451–465. [Google Scholar] [CrossRef] [Green Version]
- Kandioller, W.; Kurzwernhart, A.; Hanif, M.; Meier, S.M.; Henke, H.; Keppler, B.K.; Hartinger, C.G. Pyrone derivatives and metals: From natural products to metal-based drugs. J. Organomet. Chem. 2011, 696, 999–1010. [Google Scholar] [CrossRef]
- Kandioller, W.; Hartinger, C.G.; Nazarov, A.A.; Bartel, C.; Skocic, M.; Jakupec, M.A.; Arion, V.B.; Keppler, B.K. Maltol-Derived Ruthenium-Cymene Complexes with Tumor Inhibiting Properties: The Impact of Ligand-Metal Bond Stability on Anticancer Activity In Vitro. Chem. Eur. J. 2009, 15, 12283–12291. [Google Scholar] [CrossRef]
- Kandioller, W.; Hartinger, C.G.; Nazarov, A.A.; Kuznetsov, M.L.; John, R.O.; Bartel, C.; Jakupec, M.A.; Arion, V.B.; Keppler, B.K. From Pyrone to Thiopyrone Ligands-Rendering Maltol-Derived Ruthenium(II)-Arene Complexes That Are Anticancer Active in Vitro. Organometallics 2009, 28, 4249–4251. [Google Scholar] [CrossRef]
- Kladnik, J.; Coverdale, J.P.C.; Kljun, J.; Burmeister, H.; Lippman, P.; Ellis, F.G.; Jones, A.M.; Ott, I.; Romero-Canelón, I.; Turel, I. Organoruthenium Complexes with Benzo-Fused Pyrithiones Overcome Platinum Resistance in Ovarian Cancer Cells. Cancers 2021, 13, 2493. [Google Scholar] [CrossRef]
- Pivarcsik, T.; Tóth, G.; Szemerédi, N.; Bogdanov, A.; Spengler, G.; Kljun, J.; Kladnik, J.; Turel, I.; Enyedy, É.A. Comparison of solution chemical properties and biological activity of ruthenium complexes of selected β-diketone, 8-hydroxyquinoline and pyrithione ligands. Pharmaceuticals 2021, 14, 518. [Google Scholar] [CrossRef]
- Kladnik, J.; Kljun, J.; Burmeister, H.; Ott, I.; Romero-Canelón, I.; Turel, I. Towards Identification of Essential Structural Elements of Organoruthenium(II)-Pyrithionato Complexes for Anticancer Activity. Chem. Eur. J. 2019, 25, 14169–14182. [Google Scholar] [CrossRef]
- Uzelac, M.; Ristovski, S.; Sepčić, K.; Kljun, J.; Lipec, T.; Uršič, M.; Turel, I.; Zemljič Jokhadar, Š.; Žužek, M.; Trobec, T.; et al. Organoruthenium prodrugs as a new class of cholinesterase and glutathione-S-transferase inhibitors. ChemMedChem 2018, 13, 2166–2176. [Google Scholar]
- Kljun, J.; Anko, M.; Traven, K.; Sinreih, M.; Ude, Ž.; Codina, E.E.; Stojan, J.; Lanišnik Rižner, T.; Turel, I. Pyrithione-based ruthenium complexes as inhibitors of aldo-keto reductase 1C enzymes and anticancer agents. Dalton Trans. 2016, 45, 11791–11800. [Google Scholar] [CrossRef] [Green Version]
- Guerriero, A.; Oberhauser, W.; Riedel, T.; Peruzzini, M.; Dyson, P.J.; Gonsalvi, L. New Class of Half-Sandwich Ruthenium(II) Arene Complexes Bearing the Water-Soluble CAP Ligand as an In Vitro Anticancer Agent. Inorg. Chem. 2017, 56, 5514–5518. [Google Scholar] [CrossRef]
- Joslin, E.E.; McMullin, C.L.; Gunnoe, R.B.; Cundari, T.R.; Sabat, M.; Myers, W.H. Coordination Chemistry of 4-Methyl-2,6,7-trioxa-1-phosphabicyclo [2,2,1]heptane: Preparation and Characterization of Ru(II) Complexes. Inorg. Chem. 2012, 51, 4791–4801. [Google Scholar] [CrossRef] [PubMed]
- Küster, T.; Lense, N.; Barna, F.; Hemphill, A.; Kindermann, M.K.; Heinicke, J.W.; Vock, C.A. A New Promising Application for Highly Cytotoxic Metal Compounds: η6-Areneruthenium(II) Phosphite Complexes for the Treatment of Alveolar echinococcosis. J. Med. Chem. 2012, 55, 4178–4188. [Google Scholar] [CrossRef]
- Parveen, S.; Hanif, M.; Movassaghi, S.; Sullivan, M.P.; Kubanik, M.; Shaheen, M.A.; Söhnel, T.; Jamieson, S.M.F.; Hartinger, C.G. Cationic Ru(η6-p-cymene) Complexes of 3-Hydroxy-4-pyr(id)ones—Lipophilic Triphenylphosphine as Co-Ligand Is Key to Highly Stable and Cytotoxic Anticancer Agents. Eur. J. Inorg. Chem. 2017, 2017, 1721–1727. [Google Scholar] [CrossRef] [Green Version]
- Habig, W.H.; Jakoby, W.B. Glutathione S-transferases (rat and human). Methods Enzymol. 1981, 77, 218–231. [Google Scholar]
- Hayes, J.D.; Pulford, D.J. The glutathione S-transferase supergene family: Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 445–600. [Google Scholar] [CrossRef] [PubMed]
- Tsuchida, S.; Sato, K. Glutathione transferases and cancer. Crit. Rev. Biochem. Mol. Biol. 1992, 1992, 337–384. [Google Scholar] [CrossRef] [PubMed]
- Ang, W.H.; Parker, L.J.; De Luca, A.; Juillerat-Jeanneret, L.; Morton, C.J.; Lo Bello, M.; Parker, M.W.; Dyson, P.J. Rational Design of an Organometallic Glutathione Transferase Inhibitor. Angew. Chem. Int. Ed. 2009, 48, 3854–3857. [Google Scholar] [CrossRef] [Green Version]
- Ang, W.H.; De Luca, A.; Chapuis-Bernasconi, C.; Juillerat-Jeanneret, L.; Lo Bello, M.; Dyson, P.J. Organometallic ruthenium inhibitors of glutathione-S-transferase P1-1 as anticancer drugs. ChemMedChem 2007, 2, 1799–1806. [Google Scholar] [CrossRef]
- Kljun, J.; León, I.E.; Peršič, Š.; Cadavid-Vargas, J.F.; Etcheverry, S.; He, W.; Bai, Y.; Turel, T. Synthesis and characterization of organoruthenium complexes with 8-hydroxyquinolines. J. Inorg. Biochem. 2018, 186, 187–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louie, S.M.; Grossman, E.A.; Crawford, L.A.; Ding, L.; Camarda, R.; Huffman, T.R.; Miyamoto, D.K.; Goga, A.; Weerapana, E.; Nomura, D.K. GSTP1 Is a Driver of Triple-Negative Breast Cancer Cell Metabolism and Pathogenicity. Cell Chem. Biol. 2016, 23, 567–578. [Google Scholar] [CrossRef] [Green Version]
- Eaton, D.L.; Bammler, T.K. Concise review of the glutathione S-transferases and their significance to toxicology. Toxicol. Sci. 1999, 49, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.R.; Reindl, K.M. Glutathione S-transferases in cancer. Antioxidants 2021, 10, 701. [Google Scholar] [CrossRef]
- Britvin, S.N.; Lotnyk, A. Water-Soluble Phosphine Capable of Dissolving Elemental Gold: The Missing Link between 1,3,5-Triaza-7-phosphaadamantane (PTA) and Verkade’s Ephemeral Ligand. J. Am. Chem. Soc. 2015, 137, 5526–5535. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef] [PubMed]
Compound | Ru-O | Ru-S | Ru-Cl/P/As |
---|---|---|---|
1 [26] | 2.081(2) | 2.3555(7) | 2.4488(7) |
2 [24] | 2.075(2) | 2.3490(7) | 2.2806(6) |
6 | 2.096(2) | 2.3488(9) | 2.352(1) |
8 | 2.093(2) | 2.3575(9) | 2.4634(5) |
MCF7 | MDA-MB-231 | MG-63 | HT-29 | |
---|---|---|---|---|
1 | >100 | >100 | >100 | >100 |
2 | >100 | >100 | >100 | >100 |
3 | >100 | >100 | >100 | >100 |
4 | 45.5 ± 2.4 | >100 | >100 | >100 |
5 | >100 | >100 | >100 | >100 |
6 | 21.2 ± 3.2 | 10.8 ± 1.0 | 21.2 ± 1.7 | 30.2 ± 1.4 |
7 | 33.7 ± 6.3 | 18.0 ± 1.7 | 28.2 ± 2.5 | >100 |
8 | 35.3 ± 12.1 | 35.8 ± 11.4 | 50.3 ± 2.5 | 40.8 ± 8.5 |
Cisplatin | 42 ± 3.2 | 131 ± 18 | 39 ± 1.8 | 180 ± 6.0 |
Compound | GST | |
---|---|---|
No. | IC50 (µM) | Ki (µM) |
1 | 3.15 ± 2.5 | 0.75 |
2 | / | n. d. |
3 | / | n. d. |
4 | 59.49 ± 0.9 | n. d. |
5 | / | n. d. |
6 | 11.84 ± 1.1 | 1.30 |
7 | 2.88 ± 0.9 | 3.67 |
8 | 2.15 ± 0.4 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kljun, J.; Rebernik, M.; Balsa, L.M.; Kladnik, J.; Rapuš, U.; Trobec, T.; Sepčić, K.; Frangež, R.; León, I.E.; Turel, I. Exploring pta Alternatives in the Development of Ruthenium–Arene Anticancer Compounds. Molecules 2023, 28, 2499. https://doi.org/10.3390/molecules28062499
Kljun J, Rebernik M, Balsa LM, Kladnik J, Rapuš U, Trobec T, Sepčić K, Frangež R, León IE, Turel I. Exploring pta Alternatives in the Development of Ruthenium–Arene Anticancer Compounds. Molecules. 2023; 28(6):2499. https://doi.org/10.3390/molecules28062499
Chicago/Turabian StyleKljun, Jakob, Mihaela Rebernik, Lucía M. Balsa, Jerneja Kladnik, Uroš Rapuš, Tomaž Trobec, Kristina Sepčić, Robert Frangež, Ignacio E. León, and Iztok Turel. 2023. "Exploring pta Alternatives in the Development of Ruthenium–Arene Anticancer Compounds" Molecules 28, no. 6: 2499. https://doi.org/10.3390/molecules28062499
APA StyleKljun, J., Rebernik, M., Balsa, L. M., Kladnik, J., Rapuš, U., Trobec, T., Sepčić, K., Frangež, R., León, I. E., & Turel, I. (2023). Exploring pta Alternatives in the Development of Ruthenium–Arene Anticancer Compounds. Molecules, 28(6), 2499. https://doi.org/10.3390/molecules28062499