A Review on Tetrabromobisphenol A: Human Biomonitoring, Toxicity, Detection and Treatment in the Environment
Abstract
:1. Introduction
2. Human Exposure Pathways and Bioaccumulation
2.1. Exposure by Diet Ingestion
2.2. Exposure by Dust Ingestion and Inhalation
2.3. Exposure by Dermal Contact
2.4. Bioaccumulation and Excretion of TBBPA
3. Human Biomonitoring
4. Toxicity Studies and Assessment of TBBPA on Humans
4.1. Toxicity of TBBPA on the Reproductive System
4.2. Induced Toxicity of Developmental Systems
4.3. TBBPA Induced Metabolic Disorders
4.4. Other Health Conditions Related to TBBPA
5. Mechanism of Action of TBBPA
5.1. Effects of TBBPA on Immunosuppression and Inflammation
5.2. Oxidative Stress
5.3. TBBPA Induced Genotoxicity
5.4. TBBPA Induced Neurotoxicity Dysfunction
6. Environmental Impact of TBBPA
7. Emerging Methods for Tetrabromobisphenol A Detection and Treatment in the Environment
7.1. Sample Pretreatment
7.1.1. Liquid-Liquid Extraction (LLE) Method
7.1.2. Microwave-Assisted Extraction (MAE)
7.1.3. Solid Phase Extraction (SPE)
7.1.4. Molecularly Imprinted Solid-Phase Extraction (MIP-SPE)
7.2. Analytical Techniques for Detecting TBBPA Environmental Samples
Detection Methods for TBBPA in Environmental Samples
7.3. Treatment Methods/Processes
8. Concluding Remarks and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ng/g ww | nanogram/gram |
ng/g dw | nanogram/gram dry weight |
ng/g lw | nanogram/gram lipid weight |
ng/kg/bw | nanogram/kilogram/body weight |
mg/kg | milligram/kilogram |
mg/kg/bw | milligram/kilogram/body weight |
pg/g | petagram/gram |
µg/g lw | microgram/gram |
References
- Godswill, A.C.; Godspel, A.C. Physiological effects of plastic wastes on the endocrine system (Bisphenol A, Phthalates, Bisphenol S, PBDEs, TBBPA). Int. J. Bioinform. Comput. Biol. 2019, 4, 11–29. [Google Scholar]
- Guerra, P.; Alaee, M.; Eljarrat, E.; Barcelo, D. Introduction to brominated flame retardants: Commercially products, applications, and physicochemical properties. In Brominated Flame Retardants; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–17. [Google Scholar]
- Li, Y.; Chang, Q.; Duan, H.; Liu, Y.; Zhang, J.; Li, J. Occurrence, levels and profiles of brominated flame retardants in daily-use consumer products on the Chinese market. Environ. Sci. Process. Impacts 2019, 21, 446–455. [Google Scholar] [CrossRef]
- Han, Q.; Dong, W.; Wang, H.; Yu, B.; Liu, P.; Xie, L.; Dai, Z. Efficacy of the Toxicity Control during the Degradation of TBBPA by Ozonation. Water 2022, 14, 2543. [Google Scholar] [CrossRef]
- Wan, R.; Wang, L.; Chen, Y.; Zheng, X.; Chew, J.; Huang, H. Tetrabromobisphenol A (TBBPA) inhibits denitrification via regulating carbon metabolism to decrease electron donation and bacterial population. Water Res. 2019, 162, 190–199. [Google Scholar] [CrossRef]
- Szychowski, K.A.; Wójtowicz, A.K. TBBPA causes neurotoxic and the apoptotic responses in cultured mouse hippocampal neurons in vitro. Pharmacol. Rep. 2016, 68, 20–26. [Google Scholar] [CrossRef]
- Yang, R.; Liu, S.; Liang, X.; Yin, N.; Jiang, L.; Zhang, Y.; Faiola, F. TBBPA, TBBPS, and TCBPA disrupt hESC hepatic differentiation and promote the proliferation of differentiated cells partly via up-regulation of the FGF10 signaling pathway. J. Hazard. Mater. 2021, 401, 123341. [Google Scholar] [CrossRef]
- Lai, D.Y.; Kacew, S.; Dekant, W. Tetrabromobisphenol A (TBBPA): Possible modes of action of toxicity and carcinogenicity in rodents. Food Chem. Toxicol. 2015, 80, 206–214. [Google Scholar] [CrossRef]
- Knudsen, G.A.; Hughes, M.F.; Birnbaum, L.S. Dermal disposition of Tetrabromobisphenol A Bis (2, 3-dibromopropyl) ether (TBBPA-BDBPE) using rat and human skin. Toxicol. Lett. 2019, 301, 108–113. [Google Scholar] [CrossRef]
- Hu, F.; Pan, L.; Xiu, M.; Jin, Q. Exposure of Chlamys farreri to tetrabromobisphenol A: Accumulation and multibiomarker responses. Environ. Sci. Pollut. Res. 2015, 22, 12224–12234. [Google Scholar] [CrossRef]
- Knudsen, G.A.; Sanders, J.M.; Sadik, A.M.; Birnbaum, L.S. Disposition and kinetics of tetrabromobisphenol A in female Wistar Han rats. Toxicol. Rep. 2014, 1, 214–223. [Google Scholar] [CrossRef] [Green Version]
- Colnot, T.; Kacew, S.; Dekant, W. Mammalian toxicology and human exposures to the flame retardant 2, 2′, 6, 6′-tetrabromo-4, 4′-isopropylidenediphenol (TBBPA): Implications for risk assessment. Arch. Toxicol. 2014, 88, 553–573. [Google Scholar] [CrossRef]
- Alexander, J.; Benford, D.; Boobis, A.; Bergman, Å. Scientific Opinion on Tetrabromobisphenol A (TBBPA) and its derivatives in food. EFSA J. 2011, 9, 2477. [Google Scholar] [CrossRef]
- Hu, L.; Zhou, T.; Luo, D.; Feng, J.; Tao, Y.; Zhou, Y.; Mei, S. Bioaccumulation of tetrabromobisphenol A in a laboratory-based fish–water system based on selective magnetic molecularly imprinted solid-phase extraction. Sci. Total Env. 2019, 650, 1356–1362. [Google Scholar] [CrossRef]
- Pittinger, C.A.; Pecquet, A.M. Review of historical aquatic toxicity and bioconcentration data for the brominated flame retardant tetrabromobisphenol A (TBBPA): Effects to fish, invertebrates, algae, and microbial communities. Environ. Sci. Pollut. Res. 2018, 25, 14361–14372. [Google Scholar] [CrossRef]
- Wojtowicz, A.K.; Szychowski, K.A.; Kajta, M. PPAR-γ agonist GW1929 but not antagonist GW9662 reduces TBBPA-induced neurotoxicity in primary neocortical cells. Neurotox. Res. 2014, 25, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Saegusa, Y.; Fujimoto, H.; Woo, G.-H.; Inoue, K.; Takahashi, M.; Mitsumori, K.; Hirose, M.; Nishikawa, A.; Shibutani, M. Developmental toxicity of brominated flame retardants, tetrabromobisphenol A and 1, 2, 5, 6, 9, 10-hexabromocyclododecane, in rat offspring after maternal exposure from mid-gestation through lactation. Reprod. Toxicol. 2009, 28, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-G.; Jeong, Y.; Kim, D.; Kang, G.-J.; Kang, Y. Assessment of tetrabromobisphenol and hexabromocyclododecanes exposure and risk characterization using occurrence data in foods. Food Chem. Toxicol. 2020, 137, 111121. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, L.; Zhao, Y.; Sun, Z.; Zhou, X.; Li, J.; Wu, Y. Dietary exposure assessment of Chinese population to tetrabromobisphenol-A, hexabromocyclododecane and decabrominated diphenyl ether: Results of the 5th Chinese Total Diet Study. Environ. Pollut. 2017, 229, 539–547. [Google Scholar] [CrossRef]
- Fujii, Y.; Kato, Y.; Masuda, N.; Harada, K.H.; Koizumi, A.; Haraguchi, K. Contamination trends and factors affecting the transfer of hexabromocyclododecane diastereomers, tetrabromobisphenol A, and 2, 4, 6-tribromophenol to breast milk in Japan. Environ. Pollut. 2018, 237, 936–943. [Google Scholar] [CrossRef]
- Gong, W.; Wang, J.; Cui, W.; Zhu, L. Distribution characteristics and risk assessment of TBBPA in seawater and zooplankton in northern sea areas, China. Environ. Geochem. Health 2021, 43, 4759–4769. [Google Scholar] [CrossRef]
- Sun, F.; Kolvenbach, B.A.; Nastold, P.; Jiang, B.; Ji, R.; Corvini, P.F.-X. Degradation and metabolism of tetrabromobisphenol A (TBBPA) in submerged soil and soil–plant systems. Environ. Sci. Technol. 2014, 48, 14291–14299. [Google Scholar] [CrossRef]
- Zhou, X.; Guo, J.; Zhang, W.; Zhou, P.; Deng, J.; Lin, K. Tetrabromobisphenol A contamination and emission in printed circuit board production and implications for human exposure. J. Hazard. Mater. 2014, 273, 27–35. [Google Scholar] [CrossRef]
- Ni, H.-G.; Zeng, H. HBCD and TBBPA in particulate phase of indoor air in Shenzhen, China. Sci. Total. Environ. 2013, 458, 15–19. [Google Scholar] [CrossRef]
- Barghi, M.; Shin, E.-S.; Kim, J.-C.; Choi, S.-D.; Chang, Y.-S. Human exposure to HBCD and TBBPA via indoor dust in Korea: Estimation of external exposure and body burden. Sci. Total. Environ. 2017, 593, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Y.; Shi, Z.; Zhou, X.; Sun, Z. Legacy and novel brominated flame retardants in indoor dust from Beijing, China: Occurrence, human exposure assessment and evidence for PBDEs replacement. Sci. Total. Environ. 2018, 618, 48–59. [Google Scholar] [CrossRef]
- Wang, W.; Abualnaja, K.O.; Asimakopoulos, A.G.; Covaci, A.; Gevao, B.; Johnson-Restrepo, B.; Kumosani, T.A.; Malarvannan, G.; Minh, T.B.; Moon, H.-B. A comparative assessment of human exposure to tetrabromobisphenol A and eight bisphenols including bisphenol A via indoor dust ingestion in twelve countries. Environ. Int. 2015, 83, 183–191. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Kang, D.; Wang, J.; Zhang, Y.; Du, D.; Pan, B.; Lin, Z.; Huang, C.; Dong, Q. Tetrabromobisphenol A and heavy metal exposure via dust ingestion in an e-waste recycling region in Southeast China. Sci. Total. Environ. 2016, 541, 356–364. [Google Scholar] [CrossRef]
- Waiyarat, S.; Boontanon, S.K.; Boontanon, N.; Fujii, S.; Harrad, S.; Drage, D.S.; Abdallah, M.A.-E. Exposure, risk and predictors of hexabromocyclododecane and Tetrabromobisphenol-A in house dust from urban, rural and E-waste dismantling sites in Thailand. Chemosphere 2022, 302, 134730. [Google Scholar] [CrossRef]
- Larsson, K. Characterizing Chemical Exposure: Focus on Children’s Environment; Karolinska Institutet: Solna, Sweden, 2018. [Google Scholar]
- Abdallah, M.A.-E. Environmental occurrence, analysis and human exposure to the flame retardant tetrabromobisphenol-A (TBBP-A)—A review. Environ. Int. 2016, 94, 235–250. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, Z.; Chen, H.; Han, Y.; Xiang, M.; Chen, X.; Ma, R.; Wang, Z. Tetrabromobisphenol A: Disposition, kinetics and toxicity in animals and humans. Environ. Pollut. 2019, 253, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, G.A.; Hughes, M.F.; McIntosh, K.L.; Sanders, J.M.; Birnbaum, L.S. Estimation of tetrabromobisphenol A (TBBPA) percutaneous uptake in humans using the parallelogram method. Toxicol. Appl. Pharmacol. 2015, 289, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhang, M.; Gao, Y.; Chen, H.; Cui, J.; Yu, Y.; Ma, S.J. Identification and occurrence of TBBPA and its debromination and O-methylation transformation products in sediment, fish and whelks from a typical e-waste dismantling site. Sci. Total. Environ. 2022, 833, 155249. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.; Jiang, S.; Miao, J.J.E.S.; Research, P. Effects of BαP and TBBPA on multixenobiotic resistance (MXR) related efflux transporter activity and gene expressions in gill cells of scallop Chlamys farreri. Environ. Sci. Pollut. Res. 2021, 28, 21110–21118. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Li, M.; Huang, Z.; Shao, Y.; Bai, L.; Zhou, L. Well-defined nanostructured core–shell magnetic surface imprinted polymers (Fe3O4@ SiO2@ MIPs) for effective extraction of trace tetrabromobisphenol A from water. J. Ind. Eng. Chem. 2018, 60, 268–278. [Google Scholar] [CrossRef]
- Liu, H.; Ma, Z.; Zhang, T.; Yu, N.; Su, G.; Giesy, J.P.; Yu, H. Pharmacokinetics and effects of tetrabromobisphenol a (TBBPA) to early life stages of zebrafish (Danio rerio). Chemosphere 2018, 190, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Borghoff, S.; Wikoff, D.; Harvey, S.; Haws, L. Dose-and time-dependent changes in tissue levels of tetrabromobisphenol A (TBBPA) and its sulfate and glucuronide conjugates following repeated administration to female Wistar Han Rats. Toxicol. Rep. 2016, 3, 190–201. [Google Scholar] [CrossRef] [Green Version]
- Knudsen, G.A.; Hall, S.M.; Richards, A.C.; Birnbaum, L.S. TBBPA disposition and kinetics in pregnant and nursing Wistar Han IGS rats. Chemosphere 2018, 192, 5–13. [Google Scholar] [CrossRef]
- Hakk, H.; Larsen, G.; Bergman, Å.; Örn, U. Metabolism, excretion and distribution of the flame retardant tetrabromobisphenol-A in conventional and bile-duct cannulated rats. Xenobiotica 2000, 30, 881–890. [Google Scholar] [CrossRef]
- Kuiper, J.R.; O’Brien, K.M.; Ferguson, K.K.; Buckley, J.P. Urinary specific gravity measures in the US population: Implications for the adjustment of non-persistent chemical urinary biomarker data. Environ. Int. 2021, 156, 106656. [Google Scholar] [CrossRef]
- Ho, K.-L.; Yuen, K.-K.; Yau, M.-S.; Murphy, M.B.; Wan, Y.; Fong, B.M.-W.; Tam, S.; Giesy, J.P.; Leung, K.S.-Y.; Lam, M.H.-W. Glucuronide and sulfate conjugates of tetrabromobisphenol A (TBBPA): Chemical synthesis and correlation between their urinary levels and plasma TBBPA content in voluntary human donors. Environ. Int. 2017, 98, 46–53. [Google Scholar] [CrossRef]
- Xu, L.; Hu, Y.; Zhu, Q.; Liao, C.; Jiang, G. Several typical endocrine-disrupting chemicals in human urine from general population in China: Regional and demographic-related differences in exposure risk. J. Hazard. Mater. 2022, 424, 127489. [Google Scholar] [CrossRef] [PubMed]
- Hays, S.M.; Kirman, C.R. Biomonitoring equivalents (BEs) for tetrabromobisphenol A. Regul. Toxicol. Pharmacol. 2019, 102, 108–114. [Google Scholar] [CrossRef] [PubMed]
- EPA. Supplemental File 4 Report of the Cancer Assessment Review Committee; Health Effects Division, Office of Chemical Safety and Pollution Prevention: Washington, DC, USA, 2014.
- Li, J.; Chen, T.; Wang, Y.; Shi, Z.; Zhou, X.; Sun, Z.; Wang, D.; Wu, Y. Simple and fast analysis of tetrabromobisphenol A, hexabromocyclododecane isomers, and polybrominated diphenyl ethers in serum using solid-phase extraction or QuEChERS extraction followed by tandem mass spectrometry coupled to HPLC and GC. J. Sep. Sci. 2017, 40, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Tay, J.H.; Sellström, U.; Papadopoulou, E.; Padilla-Sánchez, J.A.; Haug, L.S.; de Wit, C.A. Serum concentrations of legacy and emerging halogenated flame retardants in a Norwegian cohort: Relationship to external exposure. Environ. Res. 2019, 178, 108731. [Google Scholar] [CrossRef]
- Kim, U.-J.; Oh, J.-E. Tetrabromobisphenol A and hexabromocyclododecane flame retardants in infant–mother paired serum samples, and their relationships with thyroid hormones and environmental factors. Environ. Pollut. 2014, 184, 193–200. [Google Scholar] [CrossRef]
- Dallaire, R.; Ayotte, P.; Pereg, D.; Déry, S.; Dumas, P.; Langlois, E.; Dewailly, E. Determinants of plasma concentrations of perfluorooctanesulfonate and brominated organic compounds in Nunavik Inuit adults (Canada). Environ. Sci. Technol. 2009, 43, 5130–5136. [Google Scholar] [CrossRef] [PubMed]
- Crocoli, L.C.; Menck, R.A.; Moura, S. Pesticides analysis in alternative biological matrices. Drug Chem. Toxicol. 2022, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kucharska, A.; Covaci, A.; Vanermen, G.; Voorspoels, S. Non-invasive biomonitoring for PFRs and PBDEs: New insights in analysis of human hair externally exposed to selected flame retardants. Sci. Total. Environ. 2015, 505, 1062–1071. [Google Scholar] [CrossRef]
- Alves, A.; Covaci, A.; Voorspoels, S. Method development for assessing the human exposure to organophosphate flame retardants in hair and nails. Chemosphere 2017, 168, 692–698. [Google Scholar] [CrossRef]
- Barghi, M.; Shin, E.-S.; Choi, S.-D.; Behrooz, R.D.; Chang, Y.-S. HBCD and TBBPA in human scalp hair: Evidence of internal exposure. Chemosphere 2018, 207, 70–77. [Google Scholar] [CrossRef]
- Yang, C.; Song, G.; Lim, W. A mechanism for the effect of endocrine disrupting chemicals on placentation. Chemosphere 2019, 231, 326–336. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Chen, C.; An, J.; Shang, Y.; Li, H.; Xia, H.; Yu, J.; Wang, C.; Liu, Y. Regulation of TBBPA-induced oxidative stress on mitochondrial apoptosis in L02 cells through the Nrf2 signaling pathway. Chemosphere 2019, 226, 463–471. [Google Scholar] [CrossRef]
- Qie, Y.; Qin, W.; Zhao, K.; Liu, C.; Zhao, L.; Guo, L.-H.J.E.P. Environmental estrogens and their biological effects through GPER mediated signal pathways. Environ. Pollut. 2021, 278, 116826. [Google Scholar] [CrossRef]
- Huang, M.; Li, J.; Xiao, Z.; Shi, Z. Tetrabromobisphenol A and hexabromocyclododecane isomers in breast milk from the general population in Beijing, China: Contamination levels, temporal trends, nursing infant’s daily intake, and risk assessment. Chemosphere 2020, 244, 125524. [Google Scholar] [CrossRef] [PubMed]
- Rovira, J.; Martínez, M.Á.; Mari, M.; Cunha, S.C.; Fernandes, J.O.; Marmelo, I.; Marques, A.; Haug, L.S.; Thomsen, C.; Nadal, M. Mixture of environmental pollutants in breast milk from a Spanish cohort of nursing mothers. Environ. Int. 2022, 166, 107375. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.-X.; Wu, Y.-N.; Li, J.-G.; Zhao, Y.-F.; Feng, J.-F. Dietary exposure assessment of Chinese adults and nursing infants to tetrabromobisphenol-A and hexabromocyclododecanes: Occurrence measurements in foods and human milk. Environ. Sci. Technol. 2009, 43, 4314–4319. [Google Scholar] [CrossRef]
- Shi, Z.; Jiao, Y.; Hu, Y.; Sun, Z.; Zhou, X.; Feng, J.; Li, J.; Wu, Y. Levels of tetrabromobisphenol A, hexabromocyclododecanes and polybrominated diphenyl ethers in human milk from the general population in Beijing, China. Sci. Total Environ. 2013, 452, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Inthavong, C.; Hommet, F.; Bordet, F.; Rigourd, V.; Guérin, T.; Dragacci, S. Simultaneous liquid chromatography–tandem mass spectrometry analysis of brominated flame retardants (tetrabromobisphenol A and hexabromocyclododecane diastereoisomers) in French breast milk. Chemosphere 2017, 186, 762–769. [Google Scholar] [CrossRef]
- Carignan, C.C.; Abdallah, M.A.-E.; Wu, N.; Heiger-Bernays, W.; McClean, M.D.; Harrad, S.; Webster, T.F. Predictors of tetrabromobisphenol-A (TBBP-A) and hexabromocyclododecanes (HBCD) in milk from Boston mothers. Environ. Sci. Technol. 2012, 46, 12146–12153. [Google Scholar] [CrossRef] [Green Version]
- Martínez, M.Á.; Castro, I.; Rovira, J.; Ares, S.; Rodríguez, J.M.; Cunha, S.C.; Casal, S.; Fernandes, J.O.; Schuhmacher, M.; Nadal, M. Early-life intake of major trace elements, bisphenol A, tetrabromobisphenol A and fatty acids: Comparing human milk and commercial infant formulas. Environ. Res. 2019, 169, 246–255. [Google Scholar] [CrossRef]
- Harrad, S.; Abdallah, M.A.-E. Concentrations of polybrominated diphenyl ethers, hexabromocyclododecanes and tetrabromobisphenol-A in breast milk from United Kingdom women do not decrease over twelve months of lactation. Environ. Sci. Technol. 2015, 49, 13899–13903. [Google Scholar] [CrossRef] [PubMed]
- Pratt, I.; Anderson, W.; Crowley, D.; Daly, S.; Evans, R.; Fernandes, A.; Fitzgerald, M.; Geary, M.; Keane, D.; Morrison, J. Brominated and fluorinated organic pollutants in the breast milk of first-time Irish mothers: Is there a relationship to levels in food? Food Addit. Contam. Part A 2013, 30, 1788–1798. [Google Scholar] [CrossRef]
- Hu, L.; Luo, D.; Wang, L.; Yu, M.; Zhao, S.; Wang, Y.; Mei, S.; Zhang, G. Levels and profiles of persistent organic pollutants in breast milk in China and their potential health risks to breastfed infants: A review. Sci. Total Environ. 2021, 753, 142028. [Google Scholar] [CrossRef] [PubMed]
- Lankova, D.; Lacina, O.; Pulkrabova, J.; Hajslova, J. The determination of perfluoroalkyl substances, brominated flame retardants and their metabolites in human breast milk and infant formula. Talanta 2013, 117, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.A.-E.; Harrad, S. Tetrabromobisphenol-A, hexabromocyclododecane and its degradation products in UK human milk: Relationship to external exposure. Environ. Int. 2011, 37, 443–448. [Google Scholar] [CrossRef]
- Antignac, J.-P.; Main, K.; Virtanen, H.; Boquien, C.; Marchand, P.; Venisseau, A.; Guiffard, I.; Bichon, E.; Wohlfahrt-Veje, C.; Legrand, A. Country-specific chemical signatures of persistent organic pollutants (POPs) in breast milk of French, Danish and Finnish women. Environ. Pollut. 2016, 218, 728–738. [Google Scholar] [CrossRef]
- Nakao, T.; Akiyama, E.; Kakutani, H.; Mizuno, A.; Aozasa, O.; Akai, Y.; Ohta, S. Levels of tetrabromobisphenol A, tribromobisphenol A, dibromobisphenol A, monobromobisphenol A, and bisphenol A in Japanese breast milk. Chem. Res. Toxicol. 2015, 28, 722–728. [Google Scholar] [CrossRef]
- Zhang, S.-H.; Zhang, Y.-X.; Gui-Xiang, J.; Huai-Zhou, X.; Ji-Ning, L.; Li-Li, S. Determination of bisphenol A, tetrabromobisphenol A and 4-tert-octylphenol in children and adults urine using high performance liquid chromatography-tandem mass spectrometry. Chin. J. Anal. Chem. 2016, 44, 19–24. [Google Scholar] [CrossRef]
- Wu, S.; Wu, M.; Qi, M.; Zhong, L.; Qiu, L. Effects of novel brominated flame retardant TBBPA on human airway epithelial cell (A549) in vitro and proteome profiling. Environ. Toxicol. 2018, 33, 1245–1253. [Google Scholar] [CrossRef]
- Kakutani, H.; Yuzuriha, T.; Akiyama, E.; Nakao, T.; Ohta, S. Complex toxicity as disruption of adipocyte or osteoblast differentiation in human mesenchymal stem cells under the mixed condition of TBBPA and TCDD. Toxicol. Rep. 2018, 5, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Fiedor, E.; Ptak, A. Bisphenol A and its derivatives tetrabromobisphenol A and tetrachlorobisphenol A induce apelin expression and secretion in ovarian cancer cells through a peroxisome proliferator-activated receptor gamma-dependent mechanism. Toxicol. Lett. 2017, 269, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Jarosiewicz, M.; Krokosz, A.; Marczak, A.; Bukowska, B. Changes in the activities of antioxidant enzymes and reduced glutathione level in human erythrocytes exposed to selected brominated flame retardants. Chemosphere 2019, 227, 93–99. [Google Scholar] [CrossRef]
- Jarosiewicz, M.; Miłowska, K.; Krokosz, A.; Bukowska, B. Evaluation of the effect of selected brominated flame retardants on human serum albumin and human erythrocyte membrane proteins. Int. J. Mol. Sci. 2020, 21, 3926. [Google Scholar] [CrossRef] [PubMed]
- Almughamsi, H.; Whalen, M.M. Hexabromocyclododecane and tetrabromobisphenol A alter secretion of interferon gamma (IFN-γ) from human immune cells. Arch. Toxicol. 2016, 90, 1695–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasmin, S.; Whalen, M. Flame retardants, hexabromocyclododecane (HCBD) and tetrabromobisphenol a (TBBPA), alter secretion of tumor necrosis factor alpha (TNFα) from human immune cells. Arch. Toxicol. 2018, 92, 1483–1494. [Google Scholar] [CrossRef]
- Park, H.-R.; Kamau, P.W.; Korte, C.; Loch-Caruso, R. Tetrabromobisphenol A activates inflammatory pathways in human first trimester extravillous trophoblasts in vitro. Reprod. Toxicol. 2014, 50, 154–162. [Google Scholar] [CrossRef] [Green Version]
- Koike, E.; Yanagisawa, R.; Takano, H.J.T.I.V. Brominated flame retardants, hexabromocyclododecane and tetrabromobisphenol A, affect proinflammatory protein expression in human bronchial epithelial cells via disruption of intracellular signaling. Toxicol. In Vitro 2016, 32, 212–219. [Google Scholar] [CrossRef]
- Feiteiro, J.; Rocha, S.M.; Mariana, M.; Maia, C.J.; Cairrão, E.J.T. Pathways involved in the human vascular Tetrabromobisphenol A response: Calcium and potassium channels and nitric oxide donors. Toxicology 2022, 470, 153158. [Google Scholar] [CrossRef]
- Lyu, L.; Jin, X.; Li, Z.; Liu, S.; Li, Y.; Su, R.; Su, H. TBBPA regulates calcium-mediated lysosomal exocytosis and thereby promotes invasion and migration in hepatocellular carcinoma. Ecotoxicol. Environ. Saf. 2020, 192, 110255. [Google Scholar] [CrossRef]
- Hales, B.F.; Robaire, B. Effects of brominated and organophosphate ester flame retardants on male reproduction. Andrology 2020, 8, 915–923. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Ji, C.; Li, F.; Zhan, J.; Sun, T.; Tang, J.; Wu, H. Tetrabromobisphenol A induced reproductive endocrine-disrupting effects in mussel Mytilus galloprovincialis. J. Hazard. Mater. 2021, 416, 126228. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Yin, L.; Shengyang Yu, K.; Hofmann, M.-C.; Yu, X. High-content analysis provides mechanistic insights into the testicular toxicity of bisphenol A and selected analogues in mouse spermatogonial cells. Toxicol. Sci. 2017, 155, 43–60. [Google Scholar] [CrossRef]
- Steves, A.N.; Bradner, J.M.; Fowler, K.L.; Clarkson-Townsend, D.; Gill, B.J.; Turry, A.C.; Caudle, W.M.; Miller, G.W.; Chan, A.W.; Easley, C.A., IV. Ubiquitous flame-retardant toxicants impair spermatogenesis in a human stem cell model. iScience 2018, 3, 161–176. [Google Scholar] [CrossRef]
- Liang, J.; Yang, C.; Liu, T.; Tan, H.J.J.; Sheng, Y.; Wei, L.; Tang, P.; Huang, H.; Zeng, X.; Liu, S. Prenatal exposure to bisphenols and risk of preterm birth: Findings from Guangxi Zhuang birth cohort in China. Ecotoxicol. Environ. Saf. 2021, 228, 112960. [Google Scholar] [CrossRef] [PubMed]
- Plante, I.; Winn, L.M.; Vaillancourt, C.; Grigorova, P.; Parent, L. Killing two birds with one stone: Pregnancy is a sensitive window for endocrine effects on both the mother and the fetus. Environ. Res. 2022, 205, 112435. [Google Scholar] [CrossRef]
- Varshavsky, J.; Smith, A.; Wang, A.; Hom, E.; Izano, M.; Huang, H.; Padula, A.; Woodruff, T. Heightened susceptibility: A review of how pregnancy and chemical exposures influence maternal health. Reprod. Toxicol. 2020, 92, 14–56. [Google Scholar] [CrossRef]
- Liang, J.; Yang, C.; Liu, T.; Tang, P.; Huang, H.; Wei, H.; Liao, Q.; Long, J.; Zeng, X.; Liu, S. Single and mixed effects of prenatal exposure to multiple bisphenols on hemoglobin levels and the risk of anemia in pregnant women. Environ. Res. 2022, 207, 112625. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, S.; Li, L.; Tao, L.; Zhu, X.; Ma, R.; Sun, B.; Zhang, Y.; Yu, Y. Interaction of tetrabromobisphenol A (TBBPA) with microplastics-sediment (MPs-S) complexes: A comparison between binary and simple systems. Environ. Pollut. 2022, 301, 118991. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, W.; Chen, B.; He, J.; Chen, F.; Shan, X.; Du, Q.; Li, N.; Jia, X.; Tang, J. Differences in reproductive toxicity of TBBPA and TCBPA exposure in male Rana nigromaculata. Environ. Pollut. 2018, 243, 394–403. [Google Scholar] [CrossRef]
- von Krogh, K.; Ropstad, E.; Nourizadeh-Lillabadi, R.; Haug, T.M.; Weltzien, F.-A. In vitro effects of bisphenol a and tetrabromobisphenol a on cell viability and reproduction-related gene expression in pituitaries from sexually maturing Atlantic cod (Gadus morhua L.). Fishes 2019, 4, 48. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Jia, Y.; Sun, Z.; Su, J.; Liu, Q.S.; Zhou, Q.; Jiang, G. Environmental Pollution, A Hidden Culprit for Health Issues. Eco-Environ. Health 2022, 1, 31–45. [Google Scholar] [CrossRef]
- Zhao, M.; Yin, N.; Yang, R.; Li, S.; Zhang, S.; Faiola, F. Environmentally relevant exposure to TBBPA and its analogues may not drastically affect human early cardiac development. Environ. Pollut. 2022, 306, 119467. [Google Scholar] [CrossRef]
- Liang, S.; Zhou, H.; Yin, N.; Lu, Y.; Faiola, F. Embryoid body-based RNA-seq analyses reveal a potential TBBPA multifaceted developmental toxicity. J. Hazard. Mater. 2019, 376, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.-J.; Yang, F.; Wu, B.-B.; Liang, Y.; Qin, Y.-Y.; Guo, Y. A pilot study of several environmental endocrine disrupting chemicals in children with autism spectrum disorder in South China. Res. Sq. 2022, Preprint. [Google Scholar]
- Yu, Y.; Hao, C.; Xiang, M.; Tian, J.; Kuang, H.; Li, Z. Potential obesogenic effects of TBBPA and its alternatives TBBPS and TCBPA revealed by metabolic perturbations in human hepatoma cells. Sci. Total. Environ. 2022, 832, 154847. [Google Scholar] [CrossRef]
- He, H.; Pan, T.; Shi, X.; Yang, S.; Jasbi, P.; Jin, Y.; Cui, J.Y.; Gu, H. An integrative cellular metabolomic study reveals downregulated tricarboxylic acid cycle and potential biomarkers induced by tetrabromobisphenol A in human lung A549 cells. Env. Toxicol. 2023, 38, 7–16. [Google Scholar] [CrossRef]
- Choi, E.M.; Suh, K.S.; Rhee, S.Y.; Oh, S.; Kim, S.W.; Pak, Y.K.; Choe, W.; Ha, J.; Chon, S. Exposure to tetrabromobisphenol A induces cellular dysfunction in osteoblastic MC3T3-E1 cells. J. Environ. Sci. Health Part A 2017, 52, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Mughal, B.B.; Fini, J.-B.; Demeneix, B.A. Thyroid-disrupting chemicals and brain development: An update. Endocr. Connect. 2018, 7, R160–R186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurd, T.; Whalen, M.M. Tetrabromobisphenol A decreases cell-surface proteins involved in human natural killer (NK) cell–dependent target cell lysis. J. Immunotoxicol. 2011, 8, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.H.; Jin, S.W.; Kim, S.J.; Pham, T.H.; Choi, J.H.; Jeong, H.G. Tetrabromobisphenol A induces MMP-9 expression via NADPH oxidase and the activation of ROS, MAPK, and Akt pathways in human breast cancer MCF-7 cells. Toxicol. Res. 2019, 35, 93–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barańska, A.; Woźniak, A.; Mokra, K.; Michałowicz, J. Genotoxic Mechanism of Action of TBBPA, TBBPS and Selected Bromophenols in Human Peripheral Blood Mononuclear Cells. Front. Immunol. 2022, 13, 869741. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yu, L.; Castro, L.; Yan, Y.; Clayton, N.P.; Bushel, P.; Flagler, N.D.; Scappini, E.; Dixon, D. Short-term tetrabromobisphenol A exposure promotes fibrosis of human uterine fibroid cells in a 3D culture system through TGF-beta signaling. FASEB J. 2022, 36, e22101. [Google Scholar] [CrossRef] [PubMed]
- Cannon, R.E.; Trexler, A.W.; Knudsen, G.A.; Evans, R.A.; Birnbaum, L.S. Tetrabromobisphenol A (TBBPA) alters ABC transport at the blood-brain barrier. Toxicol. Sci. 2019, 169, 475–484. [Google Scholar] [CrossRef]
- Yakubu, S.; Jia, B.; Guo, Y.; Zou, Y.; Song, N.; Xiao, J.; Liang, K.; Bu, Y.; Zhang, Z. Indirect competitive-structured electrochemical immunosensor for tetrabromobisphenol A sensing using CTAB-MnO2 nanosheet hybrid as a label for signal amplification. Anal. Bioanal. Chem. 2021, 413, 4217–4226. [Google Scholar] [CrossRef]
- Zieminska, E.; Lenart, J.; Lazarewicz, J.W. Select putative neurodevelopmental toxins modify SNAP-25 expression in primary cultures of rat cerebellar granule cells. Toxicology 2016, 370, 86–93. [Google Scholar] [CrossRef]
- Ballesteros-Gómez, A.; Ballesteros, J.; Ortiz, X.; Jonker, W.; Helmus, R.; Jobst, K.J.; Parsons, J.R.; Reiner, E. Identification of novel brominated compounds in flame retarded plastics containing TBBPA by combining isotope pattern and mass defect cluster analysis. Environ. Sci. Technol. 2017, 51, 1518–1526. [Google Scholar] [CrossRef]
- Shin, E.-s.; Jeong, Y.; Barghi, M.; Seo, S.-H.; Kwon, S.Y.; Chang, Y.-S. Internal distribution and fate of persistent organic contaminants (PCDD/Fs, DL-PCBs, HBCDs, TBBPA, and PFASs) in a Bos Taurus. Environ. Pollut. 2020, 267, 115306. [Google Scholar] [CrossRef] [PubMed]
- Choo, G.; Lee, I.-S.; Oh, J.-E. Species and habitat-dependent accumulation and biomagnification of brominated flame retardants and PBDE metabolites. J. Hazard. Mater. 2019, 371, 175–182. [Google Scholar] [CrossRef]
- Gu, S.-Y.; Ekpeghere, K.I.; Kim, H.-Y.; Lee, I.-S.; Kim, D.-H.; Choo, G.; Oh, J.-E. Brominated flame retardants in marine environment focused on aquaculture area: Occurrence, source and bioaccumulation. Sci. Total. Environ. 2017, 601, 1182–1191. [Google Scholar] [CrossRef]
- Abafe, O.A.; Martincigh, B.S.J.E.S.; Research, P. Determination and human exposure assessment of polybrominated diphenyl ethers and tetrabromobisphenol A in indoor dust in South Africa. Environ. Sci. Pollut. Res. 2016, 23, 7038–7049. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, G.; Saini, A.; Goosey, E.; Diamond, M.L. Product screening for sources of halogenated flame retardants in Canadian house and office dust. Sci. Total. Environ. 2016, 545, 299–307. [Google Scholar] [CrossRef]
- Daso, A.P.; Rohwer, E.R.; Koot, D.J.; Okonkwo, J.O. Preliminary screening of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCDD) and tetrabromobisphenol A (TBBPA) flame retardants in landfill leachate. Environ. Monit. Assess. 2017, 189, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Duan, H.; Song, Q.; Liu, Y.; Li, Y.; Li, J.; Shen, W.; Luo, J.; Wang, J. Characterization of brominated flame retardants from e-waste components in China. Waste Manag. 2017, 68, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, L.; Wang, J.; Pan, B.; Fu, X.; Zhang, G.; Zhang, L.; Lin, K. Distribution of metals and brominated flame retardants (BFRs) in sediments, soils and plants from an informal e-waste dismantling site, South China. Environ. Sci. Pollut. Res. 2015, 22, 1020–1033. [Google Scholar] [CrossRef]
- Yang, S.-w.; Yan, Z.-g.; Xu, F.-f.; Wang, S.-r.; Wu, F.-c. Development of freshwater aquatic life criteria for Tetrabromobisphenol A in China. Environ. Pollut. 2012, 169, 59–63. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Yuan, X.; Yang, S.J.I. Contamination level, distribution characteristics, and ecotoxicity of tetrabromobisphenol a in water and sediment from Weihe River Basin, China. Int. J. Environ. Res. Public Health 2020, 17, 3750. [Google Scholar] [CrossRef]
- Zhu, A.; Liu, P.; Gong, Y.; Li, M.; Su, J.; Liu, G. Residual levels and risk assessment of tetrabromobisphenol A in Baiyang Lake and Fuhe river, China. Ecotoxicol. Environ. Saf. 2020, 200, 110770. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Ma, S.; Yang, Y.; Qi, Z.; Wang, Y.; Li, G.; Tang, J.; Yu, Y. Organophosphate flame retardants, tetrabromobisphenol A, and their transformation products in sediment of e-waste dismantling areas and the flame-retardant production base. Ecotoxicol. Environ. Saf. 2021, 225, 112717. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.; Sun, Y.; Wang, W.; Xie, J.; Xie, C.; Hu, Y.; Gao, Y.; Xu, X.; Luo, X. Tetrabromobisphenol A and hexabromocyclododecanes in sediments and biota from two typical mangrove wetlands of South China: Distribution, bioaccumulation and biomagnification. Sci. Total. Environ. 2021, 750, 141695. [Google Scholar] [CrossRef]
- Pan, Y.-F.; Liu, S.; Tian, F.; Chen, H.-G.; Xu, X.-R. Tetrabromobisphenol A and hexabromocyclododecanes in sediments from fishing ports along the coast of South China: Occurrence, distribution and ecological risk. Chemosphere 2022, 302, 134872. [Google Scholar] [CrossRef]
- Gauthier, L.T.; Laurich, B.; Hebert, C.E.; Drake, C.; Letcher, R. Tetrabromobisphenol-A-bis (dibromopropyl ether) flame retardant in eggs, regurgitates, and feces of herring gulls from multiple North American Great Lakes locations. Environ. Sci. Technol. 2019, 53, 9564–9571. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.-F.; He, M.-J.; Yang, Z.-H.; Wei, S.-Q. Occurrence of tetrabromobisphenol a (TBBPA) and hexabromocyclododecane (HBCD) in soil and road dust in Chongqing, western China, with emphasis on diastereoisomer profiles, particle size distribution, and human exposure. Environ. Pollut. 2018, 242, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.W.; Kim, C.S.; Kim, H.J.; Lee, C.H.; Hwang, S.M.; Choi, S.D. Spatial distribution, source identification, and anthropogenic effects of brominated flame retardants in nationwide soil collected from South Korea. Environ Pollut 2021, 272, 116026. [Google Scholar] [CrossRef]
- Tang, J.; Feng, J.; Li, X.; Li, G. Levels of flame retardants HBCD, TBBPA and TBC in surface soils from an industrialized region of East China. Environ. Sci. Process. Impacts 2014, 16, 1015–1021. [Google Scholar] [CrossRef]
- Xu, G.; Zhao, X.; Zhao, S.; Chen, C.; Rogers, M.J.; Ramaswamy, R.; He, J. Insights into the occurrence, fate, and impacts of halogenated flame retardants in municipal wastewater treatment plants. Environ. Sci. Technol. 2021, 55, 4205–4226. [Google Scholar] [CrossRef] [PubMed]
- Malkoske, T.; Tang, Y.; Xu, W.; Yu, S.; Wang, H. A review of the environmental distribution, fate, and control of tetrabromobisphenol A released from sources. Sci. Total. Environ. 2016, 569, 1608–1617. [Google Scholar] [CrossRef]
- Song, S.; Song, M.; Zeng, L.; Wang, T.; Liu, R.; Ruan, T.; Jiang, G. Occurrence and profiles of bisphenol analogues in municipal sewage sludge in China. Environ. Pollut. 2014, 186, 14–19. [Google Scholar] [CrossRef]
- Gorga, M.; Martínez, E.; Ginebreda, A.; Eljarrat, E.; Barceló, D. Determination of PBDEs, HBB, PBEB, DBDPE, HBCD, TBBPA and related compounds in sewage sludge from Catalonia (Spain). Sci. Total. Environ. 2013, 444, 51–59. [Google Scholar] [CrossRef]
- Chokwe, T.B.; Okonkwo, J.O.; Sibali, L.L.; Ncube, E.J. An integrated method for the simultaneous determination of alkylphenol ethoxylates and brominated flame retardants in sewage sludge samples by ultrasonic-assisted extraction, solid phase clean-up, and GC-MS analysis. Microchem. J. 2015, 123, 230–236. [Google Scholar] [CrossRef]
- Zhu, Q.; Jia, J.; Wang, Y.; Zhang, K.; Zhang, H.; Liao, C.; Jiang, G. Spatial distribution of parabens, triclocarban, triclosan, bisphenols, and tetrabromobisphenol A and its alternatives in municipal sewage sludges in China. Sci. Total. Environ. 2019, 679, 61–69. [Google Scholar] [CrossRef]
- Hwang, I.-K.; Kang, H.-H.; Lee, I.-S.; Oh, J.-E. Assessment of characteristic distribution of PCDD/Fs and BFRs in sludge generated at municipal and industrial wastewater treatment plants. Chemosphere 2012, 88, 888–894. [Google Scholar] [CrossRef]
- Xiong, J.; An, T.; Zhang, C.; Li, G. Pollution profiles and risk assessment of PBDEs and phenolic brominated flame retardants in water environments within a typical electronic waste dismantling region. Environ. Geochem. Health 2015, 37, 457–473. [Google Scholar] [CrossRef]
- Liu, D.; Liu, J.; Guo, M.; Xu, H.; Zhang, S.; Shi, L.; Yao, C. Occurrence, distribution, and risk assessment of alkylphenols, bisphenol A, and tetrabromobisphenol A in surface water, suspended particulate matter, and sediment in Taihu Lake and its tributaries. Mar. Pollut. Bull. 2016, 112, 142–150. [Google Scholar] [CrossRef]
- Ma, S.; Yue, C.; Tang, J.; Lin, M.; Zhuo, M.; Yang, Y.; Li, G.; An, T. Occurrence and distribution of typical semi-volatile organic chemicals (SVOCs) in paired indoor and outdoor atmospheric fine particle samples from cities in southern China. Environ. Pollut. 2021, 269, 116123. [Google Scholar] [CrossRef]
- Tao, F.; Sellström, U.; de Wit, C.A. Organohalogenated flame retardants and organophosphate esters in office air and dust from Sweden. Environ. Sci. Technol. 2019, 53, 2124–2133. [Google Scholar] [CrossRef] [PubMed]
- Kweon, D.-J.; Kim, M.-K.; Zoh, K.-D. Distribution of brominated flame retardants and phthalate esters in house dust in Korea. Environ. Eng. Res. 2018, 23, 354–363. [Google Scholar] [CrossRef]
- Du, W.; Ji, R.; Sun, Y.; Zhu, J.; Wu, J.; Guo, H. Fate and ecological effects of decabromodiphenyl ether in a field lysimeter. Environ. Sci. Technol. 2013, 47, 9167–9174. [Google Scholar] [CrossRef]
- Cunha, S.C.; Oliveira, C.; Fernandes, J.O. Development of QuEChERS-based extraction and liquid chromatography-tandem mass spectrometry method for simultaneous quantification of bisphenol A and tetrabromobisphenol A in seafood: Fish, bivalves, and seaweeds. Anal. Bioanal. Chem. 2017, 409, 151–160. [Google Scholar] [CrossRef]
- Barrett, C.A.; Orban, D.A.; Seebeck, S.E.; Lowe, L.E.; Owens, J.E. Development of a low-density-solvent dispersive liquid–liquid microextraction with gas chromatography and mass spectrometry method for the quantitation of tetrabromobisphenol-A from dust. J. Sep. Sci. 2015, 38, 2503–2509. [Google Scholar] [CrossRef] [PubMed]
- Macêdo, W.V.; Bernegossi, A.C.; Sabatini, C.A.; Corbi, J.J.; Zaiat, M. Application of Dispersive Liquid–Liquid Microextraction Followed by High-Performance Liquid Chromatography/Tandem Mass Spectrometry Analysis to Determine Tetrabromobisphenol A in Complex Matrices. Environ. Toxicol. Chem. 2020, 39, 2147–2157. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Cao, J.; Sun, D.; Lu, H.; Xia, M.; Hou, B.; Li, D.; Jia, L. Determination of aqueous bisphenol A and tetrabromobisphenol A using molecular-complex-based liquid-liquid microextraction. J. Mol. Liq. 2020, 303, 112501. [Google Scholar] [CrossRef]
- Zhao, J.; Yan, X.; Li, H.; Zhang, P.; Zhou, T.; Li, Y.; Chen, Y.; Ding, L. High-throughput dynamic microwave-assisted extraction coupled with liquid–liquid extraction for analysis of tetrabromobisphenol A in soil. Anal. Methods 2016, 8, 8015–8021. [Google Scholar] [CrossRef]
- Kousaiti, A.; Hahladakis, J.N.; Savvilotidou, V.; Pivnenko, K.; Tyrovola, K.; Xekoukoulotakis, N.; Astrup, T.F.; Gidarakos, E. Assessment of tetrabromobisphenol-A (TBBPA) content in plastic waste recovered from WEEE. J. Hazard. Mater. 2020, 390, 121641. [Google Scholar] [CrossRef]
- Charitopoulou, M.A.; Papadopoulou, L.; Achilias, D.S. Microwave-assisted extraction as an effective method for the debromination of brominated flame retarded polymeric blends with a composition that simulates the plastic part of waste electric and electronic equipment (WEEE). Sustain. Chem. Pharm. 2022, 29, 100790. [Google Scholar] [CrossRef]
- Song, S.; Shao, M.; Wang, W.; He, Y.; Dai, X.; Wang, H.; Liu, L.; Guo, F. Development and evaluation of microwave-assisted and ultrasound-assisted methods based on a quick, easy, cheap, effective, rugged, and safe sample preparation approach for the determination of bisphenol analogues in serum and sediments. J. Sep. Sci. 2017, 40, 4610–4618. [Google Scholar] [CrossRef]
- Kang, H.; Wang, X.; Zhang, Y.; Wu, J.; Wang, H. Simultaneous extraction of bisphenol A and tetrabromobisphenol A from milk by microwave-assisted ionic liquid microextraction. RSC Adv. 2015, 5, 14631–14636. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, C.; Zhou, Q.; Li, Q.X.; Yuan, Y.; Tong, Y.; Wang, H.; Zhou, X.; Sun, Y.; Sheng, X.J. Polyamidoamine dendrimer decorated nanoparticles as an adsorbent for magnetic solid-phase extraction of tetrabromobisphenol A and 4-nonylphenol from environmental water samples. J. Colloid Interface Sci. 2019, 539, 361–369. [Google Scholar] [CrossRef]
- Han, F.; Gao, Y.; Hu, F.; Yu, X.; Xie, H.; Li, H.; Zhao, Y.; Kimura, S.Y.; Zhang, Y.; Zubizarreta, M.E. Solid-phase extraction of seventeen alternative flame retardants in water as determined by ultra-high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2019, 1602, 64–73. [Google Scholar] [CrossRef]
- Dong, S.; Lou, Q.; Huang, G.; Guo, J.; Wang, X.; Huang, T. Dispersive solid-phase extraction based on MoS2/carbon dot composite combined with HPLC to determine brominated flame retardants in water. Anal. Bioanal. Chem. 2018, 410, 7337–7346. [Google Scholar] [CrossRef]
- Wang, X.; He, F.; Zhang, L.; Yu, A. Application of micro-nanostructured magnetite in separating tetrabromobisphenol A and hexabromocyclododecane from environmental water by magnetic solid phase extraction. PLoS ONE 2021, 16, e0251021. [Google Scholar] [CrossRef]
- Pabby, A.K.; Sastre, A.M. Solvent Extraction: Principles and Practices. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Gao, W.; Li, M.; Fa, Y.; Zhao, Z.; Cai, Y.; Liang, X.; Yu, Y.; Jiang, G. Porous covalent organic frameworks-improved solid phase microextraction ambient mass spectrometry for ultrasensitive analysis of tetrabromobisphenol-A analogs. Chin. Chem. Lett. 2022, 33, 3849–3852. [Google Scholar] [CrossRef]
- Yin, Y.-M.; Chen, Y.-P.; Wang, X.-F.; Liu, Y.; Liu, H.-L.; Xie, M.-X. Dummy molecularly imprinted polymers on silica particles for selective solid-phase extraction of tetrabromobisphenol A from water samples. J. Chromatogr. A 2012, 1220, 7–13. [Google Scholar] [CrossRef]
- Sun, X.; Peng, J.; Wang, M.; Wang, J.; Tang, C.; Yang, L.; Lei, H.; Li, F.; Wang, X.; Chen, J. Determination of nine bisphenols in sewage and sludge using dummy molecularly imprinted solid-phase extraction coupled with liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2018, 1552, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Wang, Y.; Xiao, T.; Yan, Z.; Wan, J.; Xie, Q. Targeted degradation of TBBPA using novel molecularly imprinted polymer encapsulated C-Fe-Nx nanocomposite driven from MOFs. J. Hazard. Mater. 2022, 424, 127499. [Google Scholar] [CrossRef]
- Shao, Y.; Bai, H.; Wang, H.; Fei, G.; Li, L.; Zhu, Y. Magnetically sensitive and high template affinity surface imprinted polymer prepared using porous TiO2-coated magnetite-silica nanoparticles for efficient removal of tetrabromobisphenol A from polluted water. Adv. Compos. Hybrid Mater. 2022, 5, 130–143. [Google Scholar] [CrossRef]
- Qu, G.; Liu, A.; Hu, L.; Liu, S.; Shi, J.; Jiang, G. Recent advances in the analysis of TBBPA/TBBPS, TBBPA/TBBPS derivatives and their transformation products. TrAC Trends Anal. Chem. 2016, 83, 14–24. [Google Scholar] [CrossRef]
- Gao, G.; Chen, H.; Zhu, L.; Chai, Y.; Ma, G.; Wang, C.; Hao, Z.; Liu, X.; Lu, C. Simultaneous determination of bisphenol A and tetrabromobisphenol A in tea using a modified QuEChERS sample preparation method coupled with liquid chromatography-tandem mass spectrometry. Anal. Methods 2017, 9, 6769–6776. [Google Scholar] [CrossRef]
- Mascolo, G.; Locaputo, V.; Mininni, G. New perspective on the determination of flame retardants in sewage sludge by using ultrahigh pressure liquid chromatography–tandem mass spectrometry with different ion sources. J. Chromatogr. A 2010, 1217, 4601–4611. [Google Scholar] [CrossRef]
- Megson, D.; Robson, M.; Jobst, K.J.; Helm, P.A.; Reiner, E. Determination of halogenated flame retardants using gas chromatography with atmospheric pressure chemical ionization (APCI) and a high-resolution quadrupole time-of-flight mass spectrometer (HRqTOFMS). Anal. Chem. 2016, 88, 11406–11411. [Google Scholar] [CrossRef]
- Paseiro-Cerrato, R.; Ackerman, L.; de Jager, L.; Begley, T. Brominated flame retardants (BFRs) in contaminated food contact articles: Identification using DART-HRMS and GC-MS. Food Addit. Contam. Part A 2021, 38, 350–359. [Google Scholar] [CrossRef]
- Subuhi, N.E.A.M.; Saad, S.M.; Zain, N.N.M.; Lim, V.; Miskam, M.; Kamaruzaman, S.; Raoov, M.; Yahaya, N. An efficient biosorption-based dispersive liquid-liquid microextraction with extractant removal by magnetic nanoparticles for quantification of bisphenol A in water samples by gas chromatography-mass spectrometry detection. J. Sep. Sci. 2020, 43, 3294–3303. [Google Scholar] [CrossRef]
- Xiao, Z.; Wang, R.; Suo, D.; Li, T.; Su, X. Trace analysis of bisphenol A and its analogues in eggs by ultra-performance liquid chromatography-tandem mass spectrometry. Food Chem. 2020, 327, 126882. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, A.; Zhang, Q.; Shi, J.; He, B.; Yun, Z.; Jiang, G. Determination of tetrabromobisphenol-A/S and their main derivatives in water samples by high performance liquid chromatography coupled with inductively coupled plasma tandem mass spectrometry. J. Chromatogr. A 2017, 1497, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, J.; Liu, Q.; Du, X.; Jiang, G. Rapid determination of tetrabromobisphenol A and its main derivatives in aqueous samples by ultrasound-dispersive liquid–liquid microextraction combined with high-performance liquid chromatography. Talanta 2013, 116, 906–911. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Feng, Y.; Tan, C.; Xia, S.; Zhao, L.; Wang, S.; Wang, Y.; Chen, X. An on-line solid-phase extraction disc packed with a phytic acid induced 3D graphene-based foam for the sensitive HPLC-PDA determination of bisphenol A migration in disposable syringes. Talanta 2018, 179, 153–158. [Google Scholar] [CrossRef]
- Álvarez-Muñoz, D.; Llorca, M.; Blasco, J.; Barceló, D. Contaminants in the marine environment. In Marine Ecotoxicology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–34. [Google Scholar]
- Bu, D.; Zhuang, H.; Zhou, X.; Yang, G. Biotin–streptavidin enzyme-linked immunosorbent assay for detecting Tetrabromobisphenol A in electronic waste. Talanta 2014, 120, 40–46. [Google Scholar] [CrossRef]
- Yu, L.; Liu, L.; Song, S.; Kuang, H.; Xu, C. Development of an immunochromatographic test strip and ic-ELISA for tetrabromobisphenol: A detection in lake water and rice pudding samples. Food Agric. Immunol. 2016, 27, 460–470. [Google Scholar] [CrossRef]
- Aydin, S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 2015, 72, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Balingit, J.C.; Phu Ly, M.H.; Matsuda, M.; Suzuki, R.; Hasebe, F.; Morita, K.; Moi, M.L. A simple and high-throughput elisa-based neutralization assay for the determination of anti-flavivirus neutralizing antibodies. Vaccines 2020, 8, 297. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.; Vázquez-Villegas, P.; Rito-Palomares, M.; Martinez-Chapa, S.O. Enzyme-Linked Immunosorbent Assay (ELISA): From A to Z; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Yanagisawa, H.; Sasaki, K.; Sasaki, Y.; Omata, A.; Ichino, R.; Fujimaki, S. Photometric screening of Tetrabromobisphenol A in resin using Iron (III) Nitrate/hexacyanoferrate (III) Mixture as a Colorimetric Reagent. Anal. Sci. 2021, 37, 1815–1819. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, F.; Ye, X.; Wu, T.; Wu, K.; Li, C. Photoelectrochemical immunosensing of tetrabromobisphenol A based on the enhanced effect of dodecahedral gold nanocrystals/MoS2 nanosheets. Sens. Actuators B Chem. 2017, 245, 205–212. [Google Scholar] [CrossRef]
- Yakubu, S.; Xiao, J.; Gu, J.; Cheng, J.; Wang, J.; Li, X.; Zhang, Z. A competitive electrochemical immunosensor based on bimetallic nanoparticle decorated nanoflower-like MnO2 for enhanced peroxidase-like activity and sensitive detection of Tetrabromobisphenol A. Sens. Actuators B Chem. 2020, 325, 128909. [Google Scholar] [CrossRef]
- Shen, J.; Bian, C.; Xia, S.; Wu, K. Poly (sulfosalicylic acid)-functionalized gold nanoparticles for the detection of tetrabromobisphenol A at pM concentrations. J. Hazard. Mater. 2020, 388, 121733. [Google Scholar] [CrossRef]
- Yang, H.; Luo, X.-J.; Zeng, Y.-H.; Mai, B.-X. Determination of tetrabromobisphenol-A/S and their eight derivatives in abiotic (soil/dust) samples using ultra-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2021, 1647, 462152. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.-J.; Wang, Y.; Xiao, Z.-L.; Wang, H.; Li, Z.-F.; Shen, Y.-D.; Lei, H.-T.; Sun, Y.-M.; Xu, Z.-L.; Hammock, B. A rapid and simple fluorescence enzyme-linked immunosorbent assay for tetrabromobisphenol A in soil samples based on a bifunctional fusion protein. Ecotoxicol. Environ. Saf. 2020, 188, 109904. [Google Scholar] [CrossRef]
- He, J.; Ma, S.; Wu, S.; Xu, J.; Tian, J.; Li, J.; Gee, S.J.; Hammock, B.D.; Li, Q.X.; Xu, T. Construction of immunomagnetic particles with high stability in stringent conditions by site-directed immobilization of multivalent nanobodies onto bacterial magnetic particles for the environmental detection of tetrabromobisphenol-A. Anal. Chem. 2019, 92, 1114–1121. [Google Scholar] [CrossRef]
- Zeng, L.; Cui, H.; Chao, J.; Huang, K.; Wang, X.; Zhou, Y.; Jing, T. Colorimetric determination of tetrabromobisphenol A based on enzyme-mimicking activity and molecular recognition of metal-organic framework-based molecularly imprinted polymers. Microchim. Acta. 2020, 187, 142. [Google Scholar] [CrossRef] [PubMed]
- Ai, R.; He, Y. Covalent organic framework-inspired chromogenic system for visual colorimetric detection of carcinogenic 3, 3′-diaminobenzidine. Sens. Actuators B Chem. 2020, 304, 127372. [Google Scholar] [CrossRef]
- Li, P.; Lee, S.M.; Kim, H.Y.; Kim, S.; Park, S.; Park, K.S.; Park, H.G. Colorimetric detection of individual biothiols by tailor made reactions with silver nanoprisms. Sci. Rep. 2021, 11, 3937. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.; Kwon, H.J.; Yong, D.; Lee, I.C.; Kim, H.; Kang, H. Colorimetric detection of SARS-CoV-2 and drug-resistant pH1N1 using CRISPR/dCas9. ACS Sens. 2020, 5, 4017–4026. [Google Scholar] [CrossRef]
- Wang, L.; Wei, Z.L.; Chen, Z.Z.; Liu, C.; Dong, W.K.; Ding, Y.J. A chemical probe capable for fluorescent and colorimetric detection to Cu2+ and CN− based on coordination and nucleophilic addition mechanism. Microchem J. 2020, 155, 104801. [Google Scholar] [CrossRef]
- Ziyaina, M.; Rasco, B.; Coffey, T.; Ünlü, G.; Sablani, S.S. Colorimetric detection of volatile organic compounds for shelf-life monitoring of milk. Food Control. 2019, 100, 220–226. [Google Scholar] [CrossRef]
- Ge, L.; Liu, Q.; Hao, N.; Kun, W. Recent developments of photoelectrochemical biosensors for food analysis. J. Mater. Chem. B 2019, 7, 7283–7300. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.; Tang, D. Recent advances in photoelectrochemical sensing: From engineered photoactive materials to sensing devices and detection modes. Anal. Chem. 2019, 92, 363–377. [Google Scholar] [CrossRef]
- Sun, C.; Liu, M.; Sun, H.; Lu, H.; Zhao, G. Immobilization-free photoelectrochemical aptasensor for environmental pollutants: Design, fabrication and mechanism. Biosens. Bioelectron. 2019, 140, 111352. [Google Scholar] [CrossRef]
- Koutavarapu, R.; Babu, B.; Reddy, C.V.; Reddy, I.N.; Reddy, K.R.; Rao, M.; Aminabhavi, T.M.; Cho, M.; Kim, D.; Shim, J. ZnO nanosheets-decorated Bi2WO6 nanolayers as efficient photocatalysts for the removal of toxic environmental pollutants and photoelectrochemical solar water oxidation. J. Environ. Manag. 2020, 265, 110504. [Google Scholar] [CrossRef]
- Shi, H.; Wang, Y.; Zhao, J.; Huang, X.; Zhao, G. Cathodic photoelectrochemical detection of PCB101 in environmental samples with high sensitivity and selectivity. J. Hazard. Mater. 2018, 342, 131–138. [Google Scholar] [CrossRef]
- Song, M.; Sun, H.; Yu, J.; Wang, Y.; Li, M.; Liu, M.; Zhao, G. Enzyme-Free Molecularly Imprinted and Graphene-Functionalized Photoelectrochemical Sensor Platform for Pollutants. ACS Appl. Mater. Interfaces 2021, 13, 37212–37222. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Y.; Xu, D.; Chen, L.; Qiu, X.; Zhu, Y. Graphitic Carbon Nitride for Photoelectrochemical Detection of Environmental Pollutants. ACS EST Eng. 2022, 2, 140–157. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, D.; Li, Y.; Shen, X.; Li, L.; Liu, Y.; You, T. Ratiometric electrochemical, electrochemiluminescent, and photoelectrochemical strategies for environmental contaminant detection. Curr. Opin. Electrochem. 2019, 17, 47–55. [Google Scholar] [CrossRef]
- Li, Z.; Hu, J.; Lou, Z.; Zeng, L.; Zhu, M. Molecularly imprinted photoelectrochemical sensor for detecting tetrabromobisphenol A in indoor dust and water. Microchim. Acta 2021, 188, 320. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, B.; Li, S.; Tong, Y.; Li, Z.; Liu, M.; Li, Y.; Qu, T.; Zhou, Q.J.C. Novel electrochemical sensor from magnetic carbon dots and cetyltrimethylammonium bromide for sensitive measurement of tetrabromobisphenol A in beverages. Chemosphere 2022, 298, 134326. [Google Scholar] [CrossRef]
- Zhu, Y.; Chao, J.; Zhu, F.; Zhu, N.; Zhang, Q.; Gyimah, E.; Yakubu, S.; Zou, Y.; Zhang, Z. Ratiometric fluorescence immunoassay based on FAM-DNA–functionalized CdSe/ZnS QDs for the sensitive detection of tetrabromobisphenol A in foodstuff and the environment. Anal. Bioanal. Chem. 2020, 412, 3605–3613. [Google Scholar] [CrossRef]
- Zhang, K.; Kwabena, A.S.; Wang, N.; Lu, Y.; Cao, Y.; Luan, Y.; Liu, T.; Peng, H.; Gu, X.; Xu, W. Electrochemical assays for the detection of TBBPA in plastic products based on rGO/AgNDs nanocomposites and molecularly imprinted polymers. J. Electroanal. Chem. 2020, 862, 114022. [Google Scholar] [CrossRef]
- Chao, J.; Zeng, L.; Li, R.; Zhou, Y. Molecularly imprinted polymer-capped wrinkled silica-quantum dot hybrid particles for fluorescent determination of tetra bromo bisphenol A. Microchim. Acta 2021, 188, 126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-L.; Li, S.-M.; Chen, S.; Feng, F.; Bai, J.-Q.; Li, J.-R. Ammoniated MOF-74 (Zn) derivatives as luminescent sensor for highly selective detection of tetrabromobisphenol A. Ecotoxicol. Environ. Saf. 2020, 187, 109821. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Y.; Vasylieva, N.; Wan, D.; Yin, Z.; Dong, J.; Hammock, B.D. An ultrasensitive bioluminescent enzyme immunoassay based on nanobody/nanoluciferase heptamer fusion for the detection of tetrabromobisphenol A in sediment. Anal. Chem. 2020, 92, 10083–10090. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.-Q.; Li, Z.-L.; Nan, J.; Su, J.-H.; Liang, B.; Li, C.-J.; Wang, A.-J. Biodegradation and metabolism of tetrabromobisphenol A in microbial fuel cell: Behaviors, dynamic pathway and the molecular ecological mechanism. J. Hazard. Mater. 2021, 417, 126104. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, Y.; Fan, M.; Chen, Y.; Shen, S. The stimulatory effect of humic acid on the co-metabolic biodegradation of tetrabromobisphenol A in bioelectrochemical system. J. Environ. Manag. 2019, 235, 350–356. [Google Scholar] [CrossRef]
- Zhang, Y.; Jing, L.; He, X.; Li, Y.; Ma, X. Sorption enhancement of TBBPA from water by fly ash-supported nanostructured γ-MnO2. J. Ind. Eng. Chem. 2015, 21, 610–619. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, S.; Su, X.; Xu, J.; Nie, G.; Zhang, Y.; He, Y.; Yu, S. Synthesis and characterization of Ag-loaded p-type TiO2 for adsorption and photocatalytic degradation of tetrabromobisphenol A. Water Environ. Res. 2020, 92, 713–721. [Google Scholar] [CrossRef]
- Taylor, B.; Ruiz-Haas, P. Estrogenic Properties and Removal of Tetrabromobisphenol-a (TBBPA) by UV Advanced Oxidation; Abstracts of Papers of the American Chemical Society; American Chemical Society: Washington, DC, USA, 2019. [Google Scholar]
- Kuo, C.-S.; Kuo, D.T.F.; Chang, A.; Wang, K.; Chou, P.-H.; Shih, Y.-H. Rapid debromination of tetrabromobisphenol A by Cu/Fe bimetallic nanoparticles in water, its mechanisms, and genotoxicity after treatments. J. Hazard. Mater. 2022, 432, 128630. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhao, D.; Sun, Y.; Sheng, X.; Zhao, J.; Guo, J.; Zhou, B. g–C3N4–and polyaniline-co-modified TiO2 nanotube arrays for significantly enhanced photocatalytic degradation of tetrabromobisphenol A under visible light. Chemosphere 2020, 252, 126468. [Google Scholar] [CrossRef]
- Du, H.; Shen, Q.; Li, P.; Xing, D.; Dong, W.; Dong, Z.; Sun, F. Tetrabromobisphenol A (TBBPA) generation and removal paths analysis in printed circuit board (PCB) industrial wastewater: Lab-scale investigations. Environ. Eng. Res. 2022, 28, 220190. [Google Scholar] [CrossRef]
- Mir, S.; Dhawan, N.J.R. Conservation; Recycling, A comprehensive review on the recycling of discarded printed circuit boards for resource recovery. Resour. Conserv. Recycl. 2022, 178, 106027. [Google Scholar] [CrossRef]
- Yang, M.; Liu, H.; Ye, B.; Qian, W.J. Recycling of printed circuit boards by abrasive waterjet cutting. Process. Saf. Environ. Prot. 2021, 148, 805–812. [Google Scholar] [CrossRef]
- Chu, H.; Qian, C.; Tian, B.; Qi, S.; Wang, J.; Xin, B. Pyrometallurgy coupling bioleaching for recycling of waste printed circuit boards. Resour. Conserv. Recycl. 2022, 178, 106018. [Google Scholar] [CrossRef]
- Ilyas, S.; Srivastava, R.R.; Kim, H.; Ilyas, N. Biotechnological recycling of hazardous waste PCBs using Sulfobacillus thermosulfidooxidans through pretreatment of toxicant metals: Process optimization and kinetic studies. Chemosphere 2022, 286, 131978. [Google Scholar] [CrossRef]
- Kang, K.D.; Ilankoon, I.S.K.; Dushyantha, N.; Chong, M.N. Assessment of pre-treatment techniques for coarse printed circuit boards (PCBs) recycling. Minerals 2021, 11, 1134. [Google Scholar] [CrossRef]
- Sousa, P.M.; Martelo, L.M.; Marques, A.T.; Bastos, M.M.; Soares, H.M. A closed and zero-waste loop strategy to recycle the main raw materials (gold, copper and fiber glass layers) constitutive of waste printed circuit boards. Chem. Eng. J. 2022, 434, 134604. [Google Scholar] [CrossRef]
- Ashiq, A.; Kulkarni, J.; Vithanage, M. Hydrometallurgical recovery of metals from e-waste. In Electronic Waste Management and Treatment Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 225–246. [Google Scholar]
- Islam, A.; Ahmed, T.; Awual, M.R.; Rahman, A.; Sultana, M.; Abd Aziz, A.; Monir, M.U.; Teo, S.H.; Hasan, M.J. Advances in sustainable approaches to recover metals from e-waste—A review. J. Clean. Prod. 2020, 244, 118815. [Google Scholar] [CrossRef]
- Hsu, E.; Barmak, K.; West, A.C.; Park, A.-H. Advancements in the treatment and processing of electronic waste with sustainability: A review of metal extraction and recovery technologies. Green Chem. 2019, 21, 919–936. [Google Scholar] [CrossRef]
- Liu, Y.; Song, Q.; Zhang, L.; Xu, Z. Separation of metals from Ni-Cu-Ag-Pd-Bi-Sn multi-metal system of e-waste by leaching and stepwise potential-controlled electrodeposition. J. Hazard. Mater. 2021, 408, 124772. [Google Scholar] [CrossRef] [PubMed]
- Azizitorghabeh, A.; Mahandra, H.; Ramsay, J.; Ghahreman, A. Gold leaching from an oxide ore using thiocyanate as a lixiviant: Process optimization and kinetics. ACS Omega 2021, 6, 17183–17193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cui, M.; Wang, J.; Liu, X.; Lyu, X. A review of gold extraction using alternatives to cyanide: Focus on current status and future prospects of the novel eco-friendly synthetic gold lixiviants. Miner. Eng. 2022, 176, 107336. [Google Scholar] [CrossRef]
- Alam, T.; Golmohammadzadeh, R.; Faraji, F.; Shahabuddin, M. E-Waste Recycling Technologies: An Overview, Challenges and Future Perspectives. In Paradigm Shift in e-Waste Management; CRC Press: Boca Raton, FL, USA, 2022; pp. 143–176. [Google Scholar]
- Yuan, Z.; Ruan, J.; Li, Y.; Qiu, R. A new model for simulating microbial cyanide production and optimizing the medium parameters for recovering precious metals from waste printed circuit boards. J. Hazard. Mater. 2018, 353, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Becci, A.; Amato, A.; Fonti, V.; Karaj, D.; Beolchini, F. An innovative biotechnology for metal recovery from printed circuit boards. Resour. Conserv. Recycl. 2020, 153, 104549. [Google Scholar] [CrossRef]
- Shah, S.S.; Palmieri, M.C.; Sponchiado, S.R.P.; Bevilaqua, D.J.H. Environmentally sustainable and cost-effective bioleaching of aluminum from low-grade bauxite ore using marine-derived Aspergillus niger. Hydrometallurgy. 2020, 195, 105368. [Google Scholar] [CrossRef]
- Yuan, Z.; Yuan, Y.; Liu, W.; Ruan, J.; Li, Y.; Fan, Y.; Qiu, R. Heat evolution and energy analysis of cyanide bioproduction by a cyanogenic microorganism with the potential for bioleaching of precious metals. J. Hazard. Mater. 2019, 377, 284–289. [Google Scholar] [CrossRef]
- Birich, A.; Raslan Mohamed, S.; Friedrich, B. Screening of non-cyanide leaching reagents for gold recovery from waste electric and electronic equipment. J. Sustain. Met. 2018, 4, 265–275. [Google Scholar] [CrossRef]
- Mamo, S.K.; Elie, M.; Baron, M.G.; Simons, A.M.; Gonzalez-Rodriguez, J. Leaching kinetics, separation, and recovery of rhenium and component metals from CMSX-4 superalloys using hydrometallurgical processes. Sep. Purif. Technol. 2019, 212, 150–160. [Google Scholar] [CrossRef]
- Ramanayaka, S.; Keerthanan, S.; Vithanage, M. Urban mining of E-waste: Treasure hunting for precious nanometals. In Handbook of Electronic Waste Management; Elsevier: Amsterdam, The Netherlands, 2020; pp. 19–54. [Google Scholar]
- Heo, J.; Park, J.; Park, J.H. Effect of pyro-processing conditions on impurity removal and precious metal enrichment in waste printed circuit board (WPCB) recycling process. Resour. Conserv. Recycl. 2022, 179, 106068. [Google Scholar] [CrossRef]
- Charitopoulou, M.A.; Kalogiannis, K.G.; Lappas, A.A.; Achilias, D.S. Novel trends in the thermo-chemical recycling of plastics from WEEE containing brominated flame retardants. Environ. Sci. Pollut. Res. 2021, 28, 59190–59213. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Zhou, N.; Lv, Y.; Cheng, Y.; Wang, Y.; Liu, Y.; Cobb, K.; Chen, P.; Lei, H.; Ruan, R. Pyrolysis technology for plastic waste recycling: A state-of-the-art review. Prog. Energy Combust. Sci. 2022, 93, 101021. [Google Scholar] [CrossRef]
- Andooz, A.; Eqbalpour, M.; Kowsari, E.; Ramakrishna, S.; Cheshmeh, Z.A. A comprehensive review on pyrolysis of E-waste and its sustainability. J. Clean. Prod. 2021, 130191. [Google Scholar] [CrossRef]
- Qiu, R.; Lin, M.; Ruan, J.; Fu, Y.; Hu, J.; Deng, M.; Tang, Y.; Qiu, R. Recovering full metallic resources from waste printed circuit boards: A refined review. J. Clean. Prod. 2020, 244, 118690. [Google Scholar] [CrossRef]
- Chawla, S.; Varghese, B.S.; Chithra, A.; Hussain, C.G.; Keçili, R.; Hussain, C.M. Environmental impacts of post-consumer plastic wastes: Treatment technologies towards eco-sustainability and circular economy. Chemosphere 2022, 308, 135867. [Google Scholar] [CrossRef]
Scheme | Number of Samples | Concentration | Reference |
---|---|---|---|
Breast milk | 1600 | 0.14–66.8 ng/g lw | [19] |
64 | <0.1–2200 ng/g lw | [20] | |
111 | <LOD-42 ng/g lw | [57] | |
106 | <LOD-15.1 ng/g lw | [61] | |
53 | - | [63] | |
120 | 0.03–0.17 ng/g lw | [64] | |
11 | <0.29–0.17 ng/g lw | [65] | |
- | 4.73 ng/g lw | [66] | |
50 | <2–688 ng/g lw | [67] | |
36 | <0.04–0.65 ng/g lw | [68] | |
43 | <0.03–0.55 ng/g lw | [69] | |
19 | ND – 8.7 ng/g lw | [70] | |
Hair | 15 | ND-1.08 ng/g | [53] |
24 | ND-16.04 ng/g | [53] | |
- | ND-16.04 ng/g | [53] | |
Serum | 76 | 8.61–83 ng/g | [48] |
- | ≥480 ng/L | [49] | |
Urine | 140 | 0.19–127.24 µg/g | [42] |
86 | 0.0793 µg/L | [43] | |
104 | 0.633 µg/L | [43] | |
110 | 1.15 µg/L | [43] | |
40 | 0.030–0.830 µg/L | [71] |
Matrices | Sampling Year | Concentration | Reference |
---|---|---|---|
Sea water | 2015 | ND-460 ng/L | [21] |
River water | 2017 | ND-12.279 ng/L | [119] |
Lake water | 2018 | 18.5–82.6 ng/L | [120] |
River | 2018 | 18.5–82.6 ng/L | [120] |
River water | 2013 | ND-920 ng/L | [135] |
Surface water | 2014 | ND-32.3 ng/L | [136] |
Road dust | 2016 | <LOD-74.1 ng/g dw | [125] |
Indoor dust | 2017 | ND-144 pg/m3 | [137] |
Outdoor dust | 2017 | ND-326 pg/m3 | [137] |
Office dust | 2016–2017 | <0.1 pg/m3 | [138] |
House dust | 2011 | 69 ng/g dw | [139] |
Sediment | 2019 | 19.8–1.52 × 104 ng/g dw | [34] |
2017 | ND-3.889 ng/g dw | [119] | |
2019 | 0.76–2.51 ng/g dw | [121] | |
2020 | 108–3.1 × 103 ng/g dw | [121] | |
2012 | 0.003–0.31 ng/g dw | [122] | |
2019–2020 | 0.02–21.5 ng/g dw | [123] | |
2013 | ND-230 ng/g dw | [135] | |
2015 | 0.168–2.66 ng/g dw | [136] | |
2009–2010 | 0.06–300 ng/g dw | [140] | |
Biota | 2019 | 6.96–1.97 × 105 ng/g ww | [34] |
2013 | 0.56–22.1 ng/g ww | [122] | |
2019 | <LOD-42.8 ng/g ww | [124] | |
Soil | 2016 | <LOD-33.8 ng/g dw | [125] |
4.4 ng/g dw | [126] | ||
0.025–78.6 ng/g dw | [126] |
Sample Type | Pretreatment Method | Main Components | Detection Device | Limit of Detection | Reference |
---|---|---|---|---|---|
ng/g | |||||
Sea food | QuEChERS-LLE | hexane:tertbutylmethylether | LC-MS/MS | 0.006 | [141] |
(3:1 v/v), NaCl, MgSO4 | |||||
Sediment | MAE-QuEChERS | Tetrahydrofuran: methanol (50:50, v/v) | UHPLC-MS/MS | 0.1 and 0.5 | [142] |
Sludge | MIP-SPE | Methanol, water | HPLC-MS/MS | 0.0004–8.28 | [144] |
Soil | MAE-LLE | - | HPLC-MS | 1.4 | [145] |
µg/L | |||||
Water | MC-LLME | - | HPLC | 0.16–0.23 | [143] |
Plastic waste | MAE | Isopropanol/hexane; hexane/ethanol | GC/MS | - | [147] |
Serum | UAE-QuEChERS | Ethyl acetate:hexane (75:25, v/v) | UHPLC-MS/MS | 0.1 and 1.0 | [148] |
Dust | DL-LME | acetone/methanol (75:25, v/v), acetonitrile, ethanol, and 2-propanol | GC/MC | - | [149] |
Water | M-SPE | Methanol, magnetic nanoparticle | HPLC | 0.011 | [150] |
Water | SPE | Methanol:acetonitrile (1:1, v:v) | UPLC-MS/MS | 0.0001 | [151] |
Water | DSPE | MoS2/CD:acetonitrile | HPLC | 0.01–0.06 | [152] |
Water | MSPE | Methanol, acetonitrile | GC-MS | 0.13 | [153] |
Water | SPME | - | CFDI-MS | 0.0001–0.0032 | [155] |
Water | DMIP | DIP, BPA, methanol | RRLC | 2 | [156] |
Sewage | MIP-SPE | Methanol, water | HPLC-MS/MS | 7 × 10−7–0.0163 | [157] |
Matrix Type | Detection Method | Detection Limit | µg/L | µg/g | Reference |
---|---|---|---|---|---|
Water | UPLC-MS | 0.1–2.5 ng/L | 0.0001–0.0025 | [151] | |
EC/I | 0.1 ng/mL | 0.1 | [178] | ||
Waste water | EC/S | 25 pM | [179] | ||
Soil | UPLC-MS/MS | 0.22–88 pg/gdw | 2 × 10−7–8.8 × 10−5 | [180] | |
FELISA | 0.05ng/g | 5 × 10−5 | [181] | ||
Sewage | ELISA | <LOD-0.75 ng/mL | <LOD-0.75 | [182] | |
Sludge | ELISA | <LOD-3.65 ng/mL | <LOD-3.65 | [182] | |
landfill leachate | ELISA | <LOD-1.17 ng/mL | <LOD-1.17 | [182] | |
Dust | MIP-CO | 3 pg/g | 3 × 10−6 | [183] | |
Indoor dust | MIPES | 0.5 nM | [197] | ||
Beverage | EC/S | 0.75 nM | 0.00075 | [198] | |
Food samples | RFI | 0.118 µg/L | 0.118 | [199] | |
Plastic products | EC/S-MIP | 0.015 nM | [200] | ||
E-waste | FL-MIP | 3.6 ng/g | 0.0036 | [201] | |
Plastic e-waste | FL-MIP | 5.4 nM | [202] | ||
Sediment | BLEIA | 2.5 pg/mL | 0.0025 | [203] | |
UPLC-MS-ultra-high performance liquid chromatography-mass spectrometry | |||||
EC/I-Electrochemical immunoassay; EC/S-Electrochemical sensor | |||||
FELISA-Fluorescence enzyme linked immunosorbent assay | |||||
ELISA- Enzyme linked immunosorbent assay | |||||
BLEIA-Bioluminescent enzyme immunoassay | |||||
RFI-Ratiometric fluorescence immunoassay | |||||
MIP-Molecular Imprinted Polymer | |||||
MIP-CO-Molecular imprinted polymer-colorimetry | |||||
MIPES-Molecular imprinted polymer photoelectrochemical sensor | |||||
FL-MIP-Fluorescence-molecular imprinted polymer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, B.; Yakubu, S.; Zhu, Q.; Issaka, E.; Zhang, Y.; Adams, M. A Review on Tetrabromobisphenol A: Human Biomonitoring, Toxicity, Detection and Treatment in the Environment. Molecules 2023, 28, 2505. https://doi.org/10.3390/molecules28062505
Miao B, Yakubu S, Zhu Q, Issaka E, Zhang Y, Adams M. A Review on Tetrabromobisphenol A: Human Biomonitoring, Toxicity, Detection and Treatment in the Environment. Molecules. 2023; 28(6):2505. https://doi.org/10.3390/molecules28062505
Chicago/Turabian StyleMiao, Baoji, Salome Yakubu, Qingsong Zhu, Eliasu Issaka, Yonghui Zhang, and Mabruk Adams. 2023. "A Review on Tetrabromobisphenol A: Human Biomonitoring, Toxicity, Detection and Treatment in the Environment" Molecules 28, no. 6: 2505. https://doi.org/10.3390/molecules28062505
APA StyleMiao, B., Yakubu, S., Zhu, Q., Issaka, E., Zhang, Y., & Adams, M. (2023). A Review on Tetrabromobisphenol A: Human Biomonitoring, Toxicity, Detection and Treatment in the Environment. Molecules, 28(6), 2505. https://doi.org/10.3390/molecules28062505