Synthetic Strategies of Supported Pd-Based Bimetallic Catalysts for Selective Semi-Hydrogenation of Acetylene: A Review and Perspectives
Abstract
:1. Introduction
2. Synthesis of Supported Pd-Based Bimetallic Nano-Catalysts
2.1. Wet Chemistry Technique
2.1.1. Incipient Wetness Impregnation (IWI) Method
2.1.2. Precipitation Method
2.1.3. Sol-Gel Method
2.1.4. One-Pot Reduction Deposition (One-Pot RD) Method
2.1.5. Sequential Reduction-Deposition Method (S-RD)
2.1.6. Photochemical Reduction (PR)
2.1.7. Colloidal Synthesis
2.1.8. Hydrothermal/Solvothermal Method
2.1.9. Surface Inorganometallic Chemistry
2.2. Plasma Treatment
2.3. Thermal Pyrolysis
2.4. Vapor Deposition and Electrochemical Deposition
2.5. Ball Milling
3. Synthesis of Single Atom Alloy and Bimetallic Dual Atom Catalysts
4. Conclusions
- In summary, the synthesis of supported Pd-based bimetallic catalysts for selective semi-hydrogenation of acetylene is possible by a variety of fabrication procedures. However, it also needs to be aware that each synthesis method has its own characteristics, whether it is old or new; different methods have different application conditions and may be applicable to different catalyst systems. In order to establish a clear comparison of different synthesis strategies, their key characteristics, advantages, and disadvantages, and the catalyst systems that they have been applied to, are listed in Table 1.
- 2.
- The continuous improvement of the methods and their use in appropriate combinations will continue to be a research focus, contributing to the further improvement of the palladium-based bimetallic catalyst performance.
- 3.
- In any case, however, the ultimate application of palladium-based bimetallic catalysts for the selective semi-hydrogenation of acetylene is an industrial-scale reaction scenario. Therefore, to develop more simple and efficient catalyst preparation methods to meet the requirements of industrial-scale reactions will be one of the goals that researchers are constantly striving for.
- 4.
- The development of preparation methods with the participation of environmentally benign visible or ultraviolet (UV) light, cold plasma, and other new energy sources should be a development direction.
- 5.
- Dual-atom catalysts (DACs) theoretically can achieve the same high loadings as nano-catalysts and, at the same time, can achieve the same mono-dispersion of active metal atoms as single-atom alloy catalysts. With that in mind, supported Pd-based dual-atom catalysts should be the most promising alternative for selective semi-hydrogenation of acetylene in the future.
- 6.
- Most recently, machine learning (ML), combining experiments, has brought new solutions for the screening of active metals and suitable supports and for the performance optimization of catalyst systems [43,185]. The Liu group [43,185] performed pioneering works for the design of supported PdAg bimetallic catalysts for the acetylene semi-hydrogenation reaction. Reaction test results indicated a new record for the low-temperature selective semi-hydrogenation of acetylene: 97.2% selectivity and 100% acetylene conversion below 100 °C; moreover, the resulting Pd1Ag3/r-TiO2 is rather stable, above 95% selectivity at the high conversion (>98%) over a 120 h experiment. Thus, it could be reasonable to speculate that emerging science such as artificial intelligence (AI), machine learning (ML), big data, and supercomputing combined experiments demonstrate a broad prospect for the rational and efficient design of complex heterogeneous catalytic systems.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Glyzdova, D.V.; Smirnova, N.S.; Shlyapin, D.A.; Tsyrul’nikov, P.G. Gas-phase and liquid-phase hydrogenation of acetylene in lean and enriched mixtures over supported modified palladium catalysts. Russ. J. Gen. Chem. 2020, 90, 1120–1140. [Google Scholar] [CrossRef]
- Kley, K.S.; De Bellis, J.; Schüth, F. Selective hydrogenation of highly concentrated acetylene streams over mechanochemically synthesized PdAg supported catalysts. Catal. Sci. Technol. 2023, 13, 119–131. [Google Scholar] [CrossRef]
- Peinado, C.; Campos-Martin, J.M.; Rojas, S. Phosphotungstic acid catalysed bioethylene synthesis under industrially relevant conditions. React. Chem. Eng. 2023, 8. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, X.; Huang, X.; Deng, H.; Hu, Y.; Lu, L. Boosted photothermal hydrogenation of acetylene on an efficient Au–Fe alloy catalyst. Catal. Sci. Technol. 2023, 13, 41–46. [Google Scholar] [CrossRef]
- Kim, W.-J.; Moon, S.H. Modified pd catalysts for the selective hydrogenation of acetylene. Catal. Today 2012, 185, 2–16. [Google Scholar] [CrossRef]
- Lu, C.; Zeng, A.; Wang, Y.; Wang, A. Enhanced hydrogenation activity over a Zn-modified Cu-based catalyst in acetylene hydrogenation. Ind. Eng. Chem. Res. 2022, 61, 18696–18702. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Z.; Bu, J.; Ma, W.; Zhang, L.; Zhong, H.; Cheng, L.; Li, S.; Wang, T.; Zhang, J. Metal phthalocyanines as efficient electrocatalysts for acetylene semihydrogenation. Chem. Eng. J. 2022, 431, 134129. [Google Scholar] [CrossRef]
- Bu, J.; Liu, Z.; Ma, W.; Zhang, L.; Wang, T.; Zhang, H.; Zhang, Q.; Feng, X.; Zhang, J. Selective electrocatalytic semihydrogenation of acetylene impurities for the production of polymer-grade ethylene. Nat. Catal. 2021, 4, 557–564. [Google Scholar] [CrossRef]
- Sun, M.; Wang, F.; Lv, G.; Zhang, X. Effective inhibition of ethane generation on Fe5C2 nanoparticles doped with ppm level of Pd for selective hydrogenation of acetylene. Ind. Eng. Chem. Res. 2022, 61, 13341–13353. [Google Scholar] [CrossRef]
- McCue, A.J.; Anderson, J.A. Recent advances in selective acetylene hydrogenation using palladium containing catalysts. Front. Chem. Sci. Eng. 2015, 9, 142–153. [Google Scholar] [CrossRef]
- Liu, H.; Shi, L.; Zhang, Q.; Qi, P.; Zhao, Y.; Meng, Q.; Feng, X.; Wang, H.; Ye, J. Photothermal catalysts for hydrogenation reactions. Chem. Commun. 2021, 57, 1279–1294. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, Y.; Zeng, B.; Han, B.; Akri, M.; Shi, M.; Zhao, Y.; Li, Q.; Su, Y.; Li, L.; et al. Photo-thermo semi-hydrogenation of acetylene on Pd1/TiO2 single-atom catalyst. Nat. Commun. 2022, 13, 2648. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L.; Ren, Z.; Zhang, J. Advances in selectively electrocatalytic hydrogenation of alkynes to alkenes. Chem. Eur. J. 2022, 28, e202202979. [Google Scholar]
- Hou, R.; Wang, T.; Lan, X. Enhanced selectivity in the hydrogenation of acetylene due to the addition of a liquid phase as a selective solvent. Ind. Eng. Chem. Res. 2013, 52, 13305–13312. [Google Scholar] [CrossRef]
- Shittu, T.D.; Ayodele, O.B. Catalysis of semihydrogenation of acetylene to ethylene: Current trends, challenges, and outlook. Front. Chem. Sci. Eng. 2022, 16, 1031–1059. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, B.; Fan, M.; Ling, L.; Zhang, R. C2H2 selective hydrogenation over the Pd and S-modified Pd catalysts: Unraveling the role of Pd active site spatial scale caused by s atom in adjusting catalytic performance. Fuel 2023, 331, 125661. [Google Scholar] [CrossRef]
- Azizi, M.; Zolfaghari Sharak, A.; Mousavi, S.A.; Bakhtiari Ziabari, F.; Shariati, J.; Azizi, S. Study on the acetylene hydrogenation process for ethylene production: Simulation, modification, and optimization. Chem. Eng. Commun. 2013, 200, 863–877. [Google Scholar] [CrossRef]
- Pei, G.X.; Liu, X.Y.; Wang, A.; Lee, A.F.; Isaacs, M.A.; Li, L.; Pan, X.; Yang, X.; Wang, X.; Tai, Z.; et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal. 2015, 5, 3717–3725. [Google Scholar] [CrossRef]
- Ravanchi, M.T.; Sahebdelfar, S.; Fard, M.R. Influence of support structural characteristics on long-term performance of Pd–Ag/α-Al2O3 catalyst for tail-end acetylene selective hydrogenation. Int. J. Chem. React. Eng. 2016, 14, 1035–1046. [Google Scholar] [CrossRef]
- Edvinsson, R.K.; Holmgren, A.M.; Irandoust, S. Liquid-phase hydrogenation of acetylene in a monolithic catalyst reactor. Ind. Eng. Chem. Res. 1995, 34, 94–100. [Google Scholar] [CrossRef]
- Yoshida, H.; Zama, T.; Fujita, S.-i.; Panpranot, J.; Arai, M. Liquid phase hydrogenation of phenylacetylene over Pd and PdZn catalysts in toluene: Effects of alloying and CO2 pressurization. RSC Adv. 2014, 4, 24922–24928. [Google Scholar] [CrossRef]
- Glyzdova, D.V.; Afonasenko, T.N.; Khramov, E.V.; Leont’eva, N.N.; Prosvirin, I.P.; Bukhtiyarov, A.V.; Shlyapin, D.A. Liquid-phase acetylene hydrogenation over Ag-modified Pd/sibunit catalysts: Effect of Pd to Ag molar ratio. Appl. Catal. A 2020, 600, 117627. [Google Scholar] [CrossRef]
- Afonasenko, T.N.; Temerev, V.L.; Shlyapin, D.A.; Tsyrul’nikov, P.G. Liquid-phase hydrogenation of acetylene to ethylene in a flow on Pd/Al2O3 and Pd-Ga/Al2O3 catalysts in the presence of CO. Russ. J. Appl. Chem. 2019, 92, 128–134. [Google Scholar] [CrossRef]
- Glyzdova, D.V.; Afonasenko, T.N.; Khramov, E.V.; Trenikhin, M.V.; Prosvirin, I.P.; Shlyapin, D.A. Effect of reductive treatment duration on the structure and properties of Pd–Zn/C catalysts for liquid-phase acetylene hydrogenation. ChemCatChem 2022, 14, e202200893. [Google Scholar] [CrossRef]
- Glyzdova, D.V.; Afonasenko, T.N.; Temerev, V.L.; Shlyapin, D.A. Acetylene hydrogenation on Pd–Zn/sibunit catalyst: Effect of solvent and carbon monoxide. Pet. Chem. 2021, 61, 490–497. [Google Scholar] [CrossRef]
- Burke, L.D.; Lewis, F.A.; Kemball, C. Hydrogenation of acetylene at palladized palladium and platinized platinum electrodes. Trans. Faraday Soc. 1964, 60, 919–929. [Google Scholar] [CrossRef]
- An, S.; Liu, Z.; Bu, J.; Lin, J.; Yao, Y.; Yan, C.; Tian, W.; Zhang, J. Functional aqueous zinc–acetylene batteries for electricity generation and electrochemical acetylene reduction to ethylene. Angew. Chem. Int. Ed. 2022, 61, e202116370. [Google Scholar] [CrossRef]
- Sherbo, R.S.; Kurimoto, A.; Brown, C.M.; Berlinguette, C.P. Efficient electrocatalytic hydrogenation with a palladium membrane reactor. J. Am. Chem. Soc. 2019, 141, 7815–7821. [Google Scholar] [CrossRef]
- Song, C.; Wang, Z.; Yin, Z.; Xiao, D.; Ma, D. Principles and applications of photothermal catalysis. Chem Catal. 2022, 2, 52–83. [Google Scholar] [CrossRef]
- Ge, X.; Dou, M.; Cao, Y.; Liu, X.; Yuwen, Q.; Zhang, J.; Qian, G.; Gong, X.; Zhou, X.; Chen, L.; et al. Mechanism driven design of trimer Ni1Sb2 site delivering superior hydrogenation selectivity to ethylene. Nat. Commun. 2022, 13, 5534. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, H.; Ji, S.; Sui, Z.; Jiang, Z.; Wang, D.; Zaera, F.; Zhou, X.; Duan, X.; Li, Y. Adsorption site regulation to guide atomic design of Ni–Ga catalysts for acetylene semi-hydrogenation. Angew. Chem. 2020, 132, 11744–11749. [Google Scholar] [CrossRef]
- Jia, T.; Meng, D.; Duan, R.; Ji, H.; Sheng, H.; Chen, C.; Li, J.; Song, W.; Zhao, J. Single-atom nickel on carbon nitride photocatalyst achieves semihydrogenation of alkynes with water protons via monovalent nickel. Angew. Chem. 2023, 62, e202216511. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Jiang, Z.; Wang, T.; Tang, Q.; Yu, M.; Feng, T.; Tian, M.; Chang, R.; Yue, Y.; Pan, Z.; et al. Controllable synthesis of vacancy-defect Cu site and its catalysis for the manufacture of vinyl chloride monomer. ACS Catal. 2021, 11, 11016–11028. [Google Scholar] [CrossRef]
- Wang, B.; Jin, C.; Shao, S.; Yue, Y.; Zhang, Y.; Wang, S.; Chang, R.; Zhang, H.; Zhao, J.; Li, X. Electron-deficient Cu site catalyzed acetylene hydrochlorination. Green Energy Environ. 2022, 7. [Google Scholar] [CrossRef]
- Huang, F.; Deng, Y.; Chen, Y.; Cai, X.; Peng, M.; Jia, Z.; Xie, J.; Xiao, D.; Wen, X.; Wang, N.; et al. Anchoring cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene. Nat. Commun. 2019, 10, 4431. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Zhao, B.; He, L.; Wang, A.; Wang, B. Cost-effective promoter-doped Cu-based bimetallic catalysts for the selective hydrogenation of C2H2 to C2H4: The effect of the promoter on selectivity and activity. PCCP 2018, 20, 17487–17496. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Zhang, R.; Huang, Z.; Wang, B. Effect of the size of Cu clusters on selectivity and activity of acetylene selective hydrogenation. Appl. Catal. A 2017, 546, 111–121. [Google Scholar] [CrossRef]
- Zhao, X.; Chang, Y.; Chen, W.-J.; Wu, Q.; Pan, X.; Chen, K.; Weng, B. Recent progress in Pd-based nanocatalysts for selective hydrogenation. ACS Omega 2022, 7, 17–31. [Google Scholar] [CrossRef]
- Lv, H.; Qin, H.; Sun, M.; Jia, F.; Huang, B.; Liu, B. Mesoporosity-enabled selectivity of mesoporous palladium-based nanocrystals catalysts in semihydrogenation of alkynes. Angew. Chem. Int. Ed. 2022, 61, e202114539. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-T.; Chen, L.; Shang, C.; Liu, Z.-P. Selectivity control in alkyne semihydrogenation: Recent experimental and theoretical progress. Chin. J. Catal. 2022, 43, 1991–2000. [Google Scholar] [CrossRef]
- Huang, F.; Peng, M.; Chen, Y.; Cai, X.; Qin, X.; Wang, N.; Xiao, D.; Jin, L.; Wang, G.; Wen, X.-D.; et al. Low-temperature acetylene semi-hydrogenation over the Pd1–Cu1 dual-atom catalyst. J. Am. Chem. Soc. 2022, 144, 18485–18493. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Wang, J.; Guan, N.; Li, L. Catalysts and mechanisms for the selective heterogeneous hydrogenation of carbon-carbon triple bonds. Cell Rep. Phys. Sci. 2022, 3, 101017. [Google Scholar] [CrossRef]
- Li, X.-T.; Chen, L.; Shang, C.; Liu, Z.-P. In situ surface structures of PdAg catalyst and their influence on acetylene semihydrogenation revealed by machine learning and experiment. J. Am. Chem. Soc. 2021, 143, 6281–6292. [Google Scholar] [CrossRef]
- Guo, Q.; Chen, R.; Guo, J.; Qin, C.; Xiong, Z.; Yan, H.; Gao, W.; Pei, Q.; Wu, A.; Chen, P. Enabling semihydrogenation of alkynes to alkenes by using a calcium palladium complex hydride. J. Am. Chem. Soc. 2021, 143, 20891–20897. [Google Scholar] [CrossRef] [PubMed]
- Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R.Z.; Christensen, C.H.; Nørskov, J.K. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 2008, 320, 1320–1322. [Google Scholar] [CrossRef]
- Zhang, Y.; Diao, W.; Williams, C.T.; Monnier, J.R. Selective hydrogenation of acetylene in excess ethylene using Ag– and Au–Pd/SiO2 bimetallic catalysts prepared by electroless deposition. Appl. Catal. A 2014, 469, 419–426. [Google Scholar] [CrossRef]
- Wood, J.; Alldrick, M.J.; Winterbottom, J.M.; Stitt, E.H.; Bailey, S. Diffuse reflectance infrared fourier transform spectroscopy (drifts) study of ethyne hydrogenation on Pd/Al2O3. Catal. Today 2007, 128, 52–62. [Google Scholar] [CrossRef]
- Bos, A.N.R.; Westerterp, K.R. Mechanism and kinetics of the selective hydrogenation of ethyne and ethene. Chem. Eng. Process. 1993, 32, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Webb, G. Hydrogenation of alkenes and alkynes and related reactions catalysed by metals and metal complexes. In Catalysis; Kemball, C., Dowden, D., Eds.; RSC Publishing: London, UK, 1978; Volume 2, pp. 145–175. [Google Scholar]
- Al-Ammar, A.S.; Thomson, S.J.; Webb, G. Adsorption of [14C] acetylene and [14C] ethylene on supported metal catalysts: Relevance to the selective hydrogenation of acetylene. J. Chem. Soc. Chem. Commun. 1977, 9, 323–325. [Google Scholar] [CrossRef]
- Kang, J.H.; Shin, E.W.; Kim, W.J.; Park, J.D.; Moon, S.H. Selective hydrogenation of acetylene on TiO2-added Pd catalysts. J. Catal. 2002, 208, 310–320. [Google Scholar] [CrossRef]
- Zhang, J.; Sui, Z.; Zhu, Y.-A.; Chen, D.; Zhou, X.; Yuan, W. Composition of the green oil in hydrogenation of acetylene over a commercial Pd–Ag/Al2O3. Ind. Eng. Chem. Res. 2016, 39, 865–873. [Google Scholar]
- Larsson, M.; Jansson, J.; Asplund, S. The role of coke in acetylene hydrogenation on Pd/α–Al2O3. J. Catal. 1998, 178, 49–57. [Google Scholar] [CrossRef]
- Fan, J.; Du, H.; Zhao, Y.; Wang, Q.; Liu, Y.; Li, D.; Feng, J. Recent progress on rational design of bimetallic Pd based catalysts and their advanced catalysis. ACS Catal. 2020, 10, 13560–13583. [Google Scholar] [CrossRef]
- Liao, F.; Lo, T.W.B.; Tsang, S.C.E. Recent developments in palladium-based bimetallic catalysts. ChemCatChem 2015, 7, 1998–2014. [Google Scholar] [CrossRef]
- Frevel, L.K.; Kressley, L.J. Selective Hydrogenation of Acetylene in Ethylene and catalyst Therefor. U.S. Patent 2,802,889, 13 August 1957. [Google Scholar]
- Wang, Q.; Zhao, J.; Xu, L.; Yu, L.; Yao, Z.; Lan, G.; Guo, L.; Zhao, J.; Lu, C.; Pan, Z.; et al. Tuning electronic structure of palladium from wheat flour-derived N-doped mesoporous carbon for efficient selective hydrogenation of acetylene. Appl. Surf. Sci. 2021, 562, 150141. [Google Scholar] [CrossRef]
- Delgado, J.A.; Benkirane, O.; Claver, C.; Curulla-Ferré, D.; Godard, C. Advances in the preparation of highly selective nanocatalysts for the semi-hydrogenation of alkynes using colloidal approaches. Dalton Trans. 2017, 46, 12381–12403. [Google Scholar] [CrossRef] [Green Version]
- Delgado, J.A.; Godard, C. Progress in the selective semi–hydrogenation of alkynes by nanocatalysis. In Recent Advances in Nanoparticle Catalysis; van Leeuwen, P.W.N.M., Claver, C., Eds.; Springer International Publishing: Berlin, Germany, 2020; pp. 303–344. [Google Scholar]
- Zhang, L.; Zhou, M.; Wang, A.; Zhang, T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms. Chem. Rev. 2020, 120, 683–733. [Google Scholar] [CrossRef]
- Sankar, M.; He, Q.; Engel, R.V.; Sainna, M.A.; Logsdail, A.J.; Roldan, A.; Willock, D.J.; Agarwal, N.; Kiely, C.J.; Hutchings, G.J. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chem. Rev. 2020, 120, 3890–3938. [Google Scholar] [CrossRef] [Green Version]
- Nowicka, E.; Meenakshisundaram, S. Designing Pd-based supported bimetallic catalysts for environmental applications. J. Zju-Sci. A 2018, 19, 5–20. [Google Scholar] [CrossRef]
- Ji, S.; Chen, Y.; Wang, X.; Zhang, Z.; Wang, D.; Li, Y. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955. [Google Scholar] [CrossRef]
- Han, B.; Guo, Y.; Huang, Y.; Xi, W.; Xu, J.; Luo, J.; Qi, H.; Ren, Y.; Liu, X.; Qiao, B. Strong metal–support interactions between Pt single atoms and TiO2. Angew. Chem. Int. Ed. 2020, 59, 11824–11829. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Xu, J.; Zhu, M.; Han, Y.-F. Essential role of the support for nickel-based CO2 methanation catalysts. ACS Catal. 2020, 10, 14581–14591. [Google Scholar] [CrossRef]
- Jie, Z.; Xia, H.; Zhong, S.-L.; Feng, Q.; Li, S.; Liang, S.; Zhong, H.; Liu, Z.; Gao, Y.; Zhao, H. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 2017, 8, 845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, S.; Pal, A.; Pal, T. Supported metal and metal oxide particles with proximity effect for catalysis. RSC Adv. 2020, 10, 35449–35472. [Google Scholar] [CrossRef]
- Sharma, A.K.; Mehara, P.; Das, P. Recent advances in supported bimetallic Pd–Au catalysts: Development and applications in organic synthesis with focused catalytic action study. ACS Catal. 2022, 12, 6672–6701. [Google Scholar] [CrossRef]
- Yusuf, B.A.; Yaseen, W.; Xie, J.; Babangida, A.A.; Muhammad, A.I.; Xie, M.; Xu, Y. Rational design of noble metal-based multimetallic nanomaterials: A review. Nano Energy 2022, 104, 107959. [Google Scholar] [CrossRef]
- Cao, X.; Lyu, T.; Xie, W.; Mirjalili, A.; Bradicich, A.; Huitema, R.; Jang, B.W.L.; Keum, J.K.; More, K.; Liu, C.; et al. Preparation and investigation of Pd doped Cu catalysts for selective hydrogenation of acetylene. Front. Chem. Sci. Eng. 2020, 14, 522–533. [Google Scholar] [CrossRef]
- Gu, X.; Lu, Z.-H.; Jiang, H.-L.; Akita, T.; Xu, Q. Synergistic catalysis of metal-organic framework-immobilized Au–Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. J. Am. Chem. Soc. 2011, 133, 11822–11825. [Google Scholar] [CrossRef]
- He, Y.; Liang, L.; Liu, Y.; Feng, J.; Ma, C.; Li, D. Partial hydrogenation of acetylene using highly stable dispersed bimetallic Pd–Ga/MgO–Al2O3 catalyst. J. Catal. 2014, 309, 166–173. [Google Scholar] [CrossRef]
- Wei, Z.; Sun, J.; Li, Y.; Datye, A.K.; Wang, Y. Bimetallic catalysts for hydrogen generation. Chem. Soc. Rev. 2012, 41, 7994–8008. [Google Scholar] [CrossRef]
- Ota, A.; Kröhnert, J.; Weinberg, G.; Kasatkin, I.; Kunkes, E.L.; Ferri, D.; Girgsdies, F.; Hamilton, N.; Armbrüster, M.; Schlögl, R.; et al. Dynamic surface processes of nanostructured Pd2Ga catalysts derived from hydrotalcite-like precursors. ACS Catal. 2014, 4, 2048–2059. [Google Scholar] [CrossRef]
- Liu, Y.; He, Y.; Zhou, D.; Feng, J.; Li, D. Catalytic performance of Pd-promoted Cu hydrotalcite-derived catalysts in partial hydrogenation of acetylene: Effect of Pd–Cu alloy formation. Catal. Sci. Technol. 2016, 6, 3027–3037. [Google Scholar] [CrossRef]
- Liao, F.; Lo, B.T.; Sexton, D.; Qu, J.; Ma, C.; Chan, R.C.-T.; Lu, Q.; Che, R.; Kwok, W.-M.; He, H.; et al. A new class of tunable heterojunction by using two support materials for the synthesis of supported bimetallic catalysts. ChemCatChem 2015, 7, 230–235. [Google Scholar] [CrossRef]
- Bonarowska, M.; Machynskyy, O.; Łomot, D.; Kemnitz, E.; Karpiński, Z. Supported palladium–copper catalysts: Preparation and catalytic behavior in hydrogen-related reactions. Catal. Today 2014, 235, 144–151. [Google Scholar] [CrossRef]
- Okhlopkova, L.B.; Cherepanova, S.V.; Prosvirin, I.P.; Kerzhentsev, M.A.; Ismagilov, Z.R. Semihydrogenation of 2-methyl-3-butyn-2-ol on Pd–Zn nanoalloys: Effect of composition and heterogenization. Appl. Catal. A 2018, 549, 245–253. [Google Scholar] [CrossRef]
- Zhang, Y.; Park, S.-J. Stabilization of dispersed cupd bimetallic alloy nanoparticles on ZIF-8 for photoreduction of Cr(vi) in aqueous solution. Chem. Eng. J. 2019, 369, 353–362. [Google Scholar] [CrossRef]
- Dodangeh, F.; Rashidi, A.; Aghaie, H.; Zare, K. Synthesis of novel Ag-modified Pd-supported mesoporous carbon nitride for selective hydrogenation of acetylene with an excellence ethylene selectivity. J. Phys. Chem. Solids 2021, 158, 110219. [Google Scholar] [CrossRef]
- Lou, B.; Kang, H.; Yuan, W.; Ma, L.; Huang, W.; Wang, Y.; Jiang, Z.; Du, Y.; Zou, S.; Fan, J. Highly selective acetylene semihydrogenation catalyst with an operation window exceeding 150 °C. ACS Catal. 2021, 11, 6073–6080. [Google Scholar] [CrossRef]
- Yang, T.; Feng, Y.; Ma, R.; Li, Q.; Yan, H.; Liu, Y.; He, Y.; Miller, J.T.; Li, D. Improvement of selectivity in acetylene hydrogenation with comparable activity over ordered PdCu catalysts induced by post-treatment. ACS Appl. Mater. Interfaces 2021, 13, 706–716. [Google Scholar] [CrossRef]
- Han, S.; He, C.; Yun, Q.; Li, M.; Chen, W.; Cao, W.; Lu, Q. Pd-based intermetallic nanocrystals: From precise synthesis to electrocatalytic applications in fuel cells. Coord. Chem. Rev. 2021, 445, 214085. [Google Scholar] [CrossRef]
- Marakatti, V.S.; Sarma, S.C.; Sarkar, S.; Krajčí, M.; Gaigneaux, E.M.; Peter, S.C. Synthetically tuned Pd-based intermetallic compounds and their structural influence on the O2 dissociation in benzylamine oxidation. ACS Appl. Mater. Interfaces 2019, 11, 37602–37616. [Google Scholar] [CrossRef] [PubMed]
- Armbrüster, M.; Wowsnick, G.; Friedrich, M.; Heggen, M.; Cardoso-Gil, R. Synthesis and catalytic properties of nanoparticulate intermetallic Ga–Pd compounds. J. Am. Chem. Soc. 2011, 133, 9112–9118. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jang, B.W.L. Selective hydrogenation of acetylene over Pd/Al2O3 catalysts: Effect of non-thermal RF plasma preparation methodologies. Top. Catal. 2017, 60, 997–1008. [Google Scholar] [CrossRef]
- Hannagan, R.T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E.C.H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044–12088. [Google Scholar] [CrossRef]
- Ravanchi, M.T.; Sahebdelfar, S.; Komeili, S. Acetylene selective hydrogenation: A technical review on catalytic aspects. Rev. Chem. Eng. 2018, 34, 215–237. [Google Scholar] [CrossRef]
- Luneau, M.; Shirman, T.; Foucher, A.C.; Duanmu, K.; Verbart, D.M.A.; Sautet, P.; Stach, E.A.; Aizenberg, J.; Madix, R.J.; Friend, C.M. Achieving high selectivity for alkyne hydrogenation at high conversions with compositionally optimized PdAu nanoparticle catalysts in raspberry colloid-templated SiO2. ACS Catal. 2020, 10, 441–450. [Google Scholar] [CrossRef]
- Da, Y.; Jiang, R.; Tian, Z.; Han, X.; Chen, W.; Hu, W. The applications of single-atom alloys in electrocatalysis: Progress and challenges. SmartMat 2023, 4, e1136. [Google Scholar] [CrossRef]
- Iqbal, M.; Kaneti, Y.V.; Kim, J.; Yuliarto, B.; Kang, Y.-M.; Bando, Y.; Sugahara, Y.; Yamauchi, Y. Chemical design of palladium-based nanoarchitectures for catalytic applications. Small 2019, 15, 1804378. [Google Scholar] [CrossRef] [Green Version]
- Mohanapriya, S.; Gopi, D. Electro-oxidation of alcohols–recent advancements in synthesis and applications of palladium core-shell nanostructured model catalysts. Renew. Sustain. Energy Rev. 2021, 148, 111211. [Google Scholar] [CrossRef]
- Xu, Z.; Ao, Z.; Yang, M.; Wang, S. Recent progress in single-atom alloys: Synthesis, properties, and applications in environmental catalysis. J. Hazard. Mater. 2022, 424, 127427. [Google Scholar] [CrossRef]
- Mao, J.; Yin, J.; Pei, J.; Wang, D.; Li, Y. Single atom alloy: An emerging atomic site material for catalytic applications. Nano Today 2020, 34, 100917. [Google Scholar] [CrossRef]
- Zhang, T.; Walsh, A.G.; Yu, J.; Zhang, P. Single-atom alloy catalysts: Structural analysis, electronic properties and catalytic activities. Chem. Soc. Rev. 2021, 50, 569–588. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Porosoff, M.D.; Chen, J.G. Review of Pt-based bimetallic catalysis: From model surfaces to supported catalysts. Chem. Rev. 2012, 112, 5780–5817. [Google Scholar] [CrossRef] [PubMed]
- Ball, M.R.; Rivera-Dones, K.R.; Gilcher, E.B.; Ausman, S.F.; Hullfish, C.W.; Lebrón, E.A.; Dumesic, J.A. AgPd and CuPd catalysts for selective hydrogenation of acetylene. ACS Catal. 2020, 10, 8567–8581. [Google Scholar] [CrossRef]
- Tate, G.; Kenvin, A.; Diao, W.; Monnier, J.R. Preparation of Pt-containing bimetallic and trimetallic catalysts using continuous electroless deposition methods. Catal. Today 2019, 334, 113–121. [Google Scholar] [CrossRef]
- Pongthawornsakun, B.; Wimonsupakit, N.; Panpranot, J. Preparation of TiO2 supported Au–Pd and Cu–Pd by the combined strong electrostatic adsorption and electroless deposition for selective hydrogenation of acetylene. J. Chem. Sci. 2017, 129, 1721–1734. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Wang, Y.; Wang, B.; Fan, M.; Ling, L.; Zhang, R. C2H2 selective hydrogenation to C2H4: Engineering the surface structure of Pd–based alloy catalysts to adjust the catalytic performance. JPCC 2021, 125, 15251–15261. [Google Scholar] [CrossRef]
- Zhang, Y.; Diao, W.; Monnier, J.R.; Williams, C.T. Pd–Ag/SiO2 bimetallic catalysts prepared by galvanic displacement for selective hydrogenation of acetylene in excess ethylene. Catal. Sci. Technol. 2015, 5, 4123–4132. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, Y.; Huang, H.; Zhang, H.; Wang, Y.; Wang, Y. Ordered Ag@Pd alloy supported on Ti4O7 by ascorbic acid-assisted galvanic replacement for efficient oxygen reduction. J. Alloys Compd. 2022, 929, 167251. [Google Scholar] [CrossRef]
- Chen, G.; Zhu, X.; Chen, R.; Liao, Q.; Ye, D.; Zhang, B.; Feng, H.; Liu, J.; Liu, M.; Wang, K. Hierarchical Pd@Ni catalyst with a snow-like nanostructure on Ni foam for nitrobenzene hydrogenation. Appl. Catal. A 2019, 575, 238–245. [Google Scholar] [CrossRef]
- Fu, X.; Liu, J.; Kanchanakungwankul, S.; Hu, X.; Yue, Q.; Truhlar, D.G.; Hupp, J.T.; Kang, Y. Two-dimensional Pd rafts confined in copper nanosheets for selective semihydrogenation of acetylene. Nano Lett. 2021, 21, 5620–5626. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Venkateshalu, S.; Jeong, S.; Tomboc, G.M.; Jo, J.; Park, J.; Lee, K. Galvanic replacement reaction to prepare catalytic materials. Bull. Korean Chem. Soc. 2023, 44, 4–22. [Google Scholar] [CrossRef]
- Ball, M.R.; Rivera-Dones, K.R.; Stangland, E.; Mavrikakis, M.; Dumesic, J.A. Hydrodechlorination of 1,2-dichloroethane on supported AgPd catalysts. J. Catal. 2019, 370, 241–250. [Google Scholar] [CrossRef]
- Chia, M.; Pagán-Torres, Y.J.; Hibbitts, D.; Tan, Q.; Pham, H.N.; Datye, A.K.; Neurock, M.; Davis, R.J.; Dumesic, J.A. Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium–rhenium catalysts. J. Am. Chem. Soc. 2011, 133, 12675–12689. [Google Scholar] [CrossRef]
- Jara, N.; Milán, N.S.; Rahman, A.; Mouheb, L.; Boffito, D.C.; Jeffryes, C.; Dahoumane, S.A. Photochemical synthesis of gold and silver nanoparticles—A review. Molecules 2021, 26, 4585. [Google Scholar] [CrossRef]
- Zou, S.; Lou, B.; Yang, K.; Yuan, W.; Zhu, C.; Zhu, Y.; Du, Y.; Lu, L.; Liu, J.; Huang, W.; et al. Grafting nanometer metal/oxide interface towards enhanced low-temperature acetylene semi-hydrogenation. Nat. Commun. 2021, 12, 5770. [Google Scholar] [CrossRef]
- Liu, K.; Qin, R.; Zheng, N. Insights into the interfacial effects in heterogeneous metal nanocatalysts toward selective hydrogenation. J. Am. Chem. Soc. 2021, 143, 4483–4499. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajjadi, M.; Dadashi, J.; Ghafuri, H. Pd-based nanoparticles: Plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities. Adv. Colloid Interface Sci. 2020, 276, 102103. [Google Scholar] [CrossRef]
- Shen, Y.; Yin, K.; An, C.; Xiao, Z. Design of a difunctional Zn–Ti LDHs supported PdAu catalyst for selective hydrogenation of phenylacetylene. Appl. Surf. Sci. 2018, 456, 1–6. [Google Scholar] [CrossRef]
- Campisi, S.; Capelli, S.; Ferri, M.; Villa, A.; Dann, E.; Wade, A.; Wells, P.P.; Dimitratos, N. On the role of bismuth as modifier in AuPdBi catalysts: Effects on liquid-phase oxidation and hydrogenation reactions. Catal. Commun. 2021, 158, 106340. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Yu, X.; Han, S.; Zhou, Y.; Yang, Y.; Zhang, H.; Jiang, Z.; Zhu, C.; Li, W.-X. Tuning crystal-phase of bimetallic single-nanoparticle for catalytic hydrogenation. Nat. Commun. 2022, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Maligal-Ganesh, R.V.; Pei, Y.; Xiao, C.; Chen, M.; Goh, T.W.; Sun, W.; Wu, J.; Huang, W. Sub-5 nm intermetallic nanoparticles confined in mesoporous silica wells for selective hydrogenation of acetylene to ethylene. ChemCatChem 2020, 12, 3022–3029. [Google Scholar] [CrossRef]
- Luneau, M.; Guan, E.; Chen, W.; Foucher, A.C.; Marcella, N.; Shirman, T.; Verbart, D.M.A.; Aizenberg, J.; Aizenberg, M.; Stach, E.A.; et al. Enhancing catalytic performance of dilute metal alloy nanomaterials. Commun. Chem. 2020, 3, 46. [Google Scholar] [CrossRef] [Green Version]
- Lomelí-Rosales, D.A.; Delgado, J.A.; Díaz de los Bernardos, M.; Pérez-Rodríguez, S.; Gual, A.; Claver, C.; Godard, C. A general one-pot methodology for the preparation of mono- and bimetallic nanoparticles supported on carbon nanotubes: Application in the semi-hydrogenation of alkynes and acetylene. Chem.–Eur. J. 2019, 25, 8321–8331. [Google Scholar] [CrossRef]
- Da Silva, F.P.; Fiorio, J.L.; Gonçalves, R.V.; Teixeira-Neto, E.; Rossi, L.M. Synergic effect of copper and palladium for selective hydrogenation of alkynes. Ind. Eng. Chem. Res. 2018, 57, 16209–16216. [Google Scholar] [CrossRef]
- McCue, A.J.; Baker, R.T.; Anderson, J.A. Acetylene hydrogenation over structured Au–Pd catalysts. Faraday Discuss. 2016, 188, 499–523. [Google Scholar] [CrossRef] [Green Version]
- Menezes, W.G.; Altmann, L.; Zielasek, V.; Thiel, K.; Bäumer, M. Bimetallic Co–Pd catalysts: Study of preparation methods and their influence on the selective hydrogenation of acetylene. J. Catal. 2013, 300, 125–135. [Google Scholar] [CrossRef]
- McCue, A.J.; Shepherd, A.M.; Anderson, J.A. Optimisation of preparation method for Pd doped Cu/Al2O3 catalysts for selective acetylene hydrogenation. Catal. Sci. Technol. 2015, 5, 2880–2890. [Google Scholar] [CrossRef]
- Yarulin, A.; Yuranov, I.; Cárdenas-Lizana, F.; Alexander, D.T.L.; Kiwi-Minsker, L. How to increase the selectivity of Pd-based catalyst in alkynol hydrogenation: Effect of second metal. Appl. Catal. A 2014, 478, 186–193. [Google Scholar] [CrossRef]
- Shirman, E.; Shirman, T.; Shneidman, A.V.; Grinthal, A.; Phillips, K.R.; Whelan, H.; Bulger, E.; Abramovitch, M.; Patil, J.; Nevarez, R. Modular design of advanced catalytic materials using hybrid organic-inorganic raspberry particles. Adv. Funct. Mater. 2018, 28, 1704559. [Google Scholar] [CrossRef]
- Benavidez, A.D.; Burton, P.D.; Nogales, J.L.; Jenkins, A.R.; Ivanov, S.A.; Miller, J.T.; Karim, A.M.; Datye, A.K. Improved selectivity of carbon-supported palladium catalysts for the hydrogenation of acetylene in excess ethylene. Appl. Catal. A 2014, 482, 108–115. [Google Scholar] [CrossRef]
- Mikami, Y.; Dhakshinamoorthy, A.; Alvaro, M.; García, H. Catalytic activity of unsupported gold nanoparticles. Catal. Sci. Technol. 2013, 3, 58–69. [Google Scholar] [CrossRef]
- Albani, D.; Shahrokhi, M.; Chen, Z.; Mitchell, S.; Hauert, R.; López, N.; Pérez-Ramírez, J. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nat. Commun. 2018, 9, 2634. [Google Scholar] [CrossRef] [Green Version]
- Vilé, G.; Albani, D.; Almora-Barrios, N.; López, N.; Pérez-Ramírez, J. Advances in the design of nanostructured catalysts for selective hydrogenation. ChemCatChem 2016, 8, 21–33. [Google Scholar] [CrossRef]
- Wasim, E.; Din, N.U.; Le, D.; Zhou, X.; Sterbinsky, G.E.; Pape, M.S.; Rahman, T.S.; Tait, S.L. Ligand-coordination effects on the selective hydrogenation of acetylene in single-site Pd-ligand supported catalysts. J. Catal. 2022, 413, 81–92. [Google Scholar] [CrossRef]
- Rafique, M.S.; Rafique, M.; Tahir, M.B.; Hajra, S.; Nawaz, T.; Shafiq, F. Chapter 3–Synthesis methods of nanostructures. In Nanotechnology and Photocatalysis for Environmental Applications; Tahir, M.B., Rafique, M., Rafique, M.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 45–56. [Google Scholar]
- Li, L.; Wang, P.; Shao, Q.; Huang, X. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072–3106. [Google Scholar] [CrossRef]
- Luo, Q.; Wang, H.; Wang, L.; Xiao, F.-S. Alloyed PdCu nanoparticles within siliceous zeolite crystals for catalytic semihydrogenation. ACS Mater. Au 2022, 2, 313–320. [Google Scholar] [CrossRef]
- Ding, K.; Cullen, D.A.; Zhang, L.; Cao, Z.; Roy, A.D.; Ivanov, I.N.; Cao, D. A general synthesis approach for supported bimetallic nanoparticles via surface inorganometallic chemistry. Science 2018, 362, 560–564. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, Y.; Neyts, E.C.; Cao, X.; Zhang, X.; Jang, B.W.L.; Liu, C.-J. Catalyst preparation with plasmas: How does it work? ACS Catal. 2018, 8, 2093–2110. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, C.-Y.; Jang, B.W.L.; Zhu, A.-M. Radio-frequency H2 plasma treatment of AuPd/TiO2 catalyst for selective hydrogenation of acetylene in excess ethylene. Catal. Today 2015, 256, 161–169. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Lee, J.W.; Hong, C.-Y.; Mou, C.-Y.; Jang, B.W.L. Selective hydrogenation of acetylene in excess ethylene over SiO2 supported Au–Ag bimetallic catalyst. Appl. Catal. A 2012, 439–440, 8–14. [Google Scholar] [CrossRef]
- Liu, X.; Mou, C.-Y.; Lee, S.; Li, Y.; Secrest, J.; Jang, B.W.L. Room temperature O2 plasma treatment of SiO2 supported au catalysts for selective hydrogenation of acetylene in the presence of large excess of ethylene. J. Catal. 2012, 285, 152–159. [Google Scholar] [CrossRef]
- Liu, C.-J.; Zou, J.; Yu, K.; Cheng, D.; Han, Y.; Zhan, J.; Ratanatawanate, C.; Jang, B.W.-L. Plasma application for more environmentally friendly catalyst preparation. Pure Appl. Chem. 2006, 78, 1227–1238. [Google Scholar] [CrossRef]
- Liu, C.-J.; Zhao, Y.; Li, Y.; Zhang, D.-S.; Chang, Z.; Bu, X.-H. Perspectives on electron-assisted reduction for preparation of highly dispersed noble metal catalysts. ACS Sustain. Chem. Eng. 2014, 2, 3–13. [Google Scholar] [CrossRef]
- Liu, C.-J.; Li, M.; Wang, J.; Zhou, X.; Guo, Q.; Yan, J.; Li, Y. Plasma methods for preparing green catalysts: Current status and perspective. Chin. J. Catal. 2016, 37, 340–348. [Google Scholar] [CrossRef]
- Zhou, T.; Jang, K.; Jang, B.-W.L. Ionic liquid and plasma effects on SiO2 supported Pd for selective hydrogenation of acetylene. Catal. Today 2013, 211, 147–155. [Google Scholar] [CrossRef]
- Shi, C.; Hoisington, R.; Jang, B.-W.L. Promotion effects of air and H2 nonthermal plasmas on TiO2 supported Pd and Pd–Ag catalysts for selective hydrogenation of acetylene. Ind. Eng. Chem. Res. 2007, 46, 4390–4395. [Google Scholar] [CrossRef]
- Li, Y.; Jang, B.-W.L. Investigation of calcination and O2 plasma treatment effects on TiO2–supported palladium catalysts. Ind. Eng. Chem. Res. 2010, 49, 8433–8438. [Google Scholar] [CrossRef]
- Li, Y.; Jang, B.-W.L. Non-thermal RF plasma effects on surface properties of Pd/TiO2 catalysts for selective hydrogenation of acetylene. Appl. Catal. A 2011, 392, 173–179. [Google Scholar] [CrossRef]
- Shi, C.; Jang, B.-W.L. Nonthermal RF plasma modifications on Pd/γ–Al2O3 for selective hydrogenation of acetylene in the presence of ethylene. Ind. Eng. Chem. Res. 2006, 45, 5879–5884. [Google Scholar] [CrossRef]
- Ratanatawanate, C.; Macias, M.; Jang, B.W.L. Promotion effect of the nonthermal RF plasma treatment on Ni/Al2O3 for benzene hydrogenation. Ind. Eng. Chem. Res. 2005, 44, 9868–9874. [Google Scholar] [CrossRef]
- Kyriakou, G.; Boucher, M.B.; Jewell, A.D.; Lewis, E.A.; Lawton, T.J.; Baber, A.E.; Tierney, H.L.; Flytzani-Stephanopoulos, M.; Sykes, E.C.H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, C.; Schweinar, K.; Jones, T.E.; Beeg, S.; Schmidt, F.-P.; Schlögl, R.; Greiner, M. Isolated Pd atoms in a silver matrix: Spectroscopic and chemical properties. J. Chem. Phys. 2021, 154, 184703. [Google Scholar] [CrossRef] [PubMed]
- Panafidin, M.A.; Bukhtiyarov, A.V.; Prosvirin, I.P.; Chetyrin, I.A.; Yu Klyushin, A.; Knop-Gericke, A.; Smirnova, N.S.; Markov, P.V.; Mashkovsky, I.S.; Zubavichus, Y.V.; et al. A mild post-synthesis oxidative treatment of Pd–In/HOPG bimetallic catalysts as a tool of their surface structure fine tuning. Appl. Surf. Sci. 2022, 571, 151350. [Google Scholar] [CrossRef]
- Liu, Y.; Ye, W.; Lin, H.; Song, C.; Rong, Z.; Lu, R.; Zhang, H.; Huang, H.; Tang, Z.; Zhang, S. Embedding Pd–Cu alloy nanoparticles in shell of surface-porous N-doped carbon nanosphere for selective hydrogenation of p-chloronitrobenzene. Chin. J. Chem. 2021, 39, 2843–2851. [Google Scholar] [CrossRef]
- Hu, M.; Zhao, S.; Liu, S.; Chen, C.; Chen, W.; Zhu, W.; Liang, C.; Cheong, W.C.; Wang, Y.; Yu, Y. MOF-confined sub-2 nm atomically ordered intermetallic PdZn nanoparticles as high-performance catalysts for selective hydrogenation of acetylene. Adv. Mater. 2018, 30, 1801878. [Google Scholar] [CrossRef]
- Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438–1511. [Google Scholar] [CrossRef]
- Wang, T.; Cao, X.; Jiao, L. MOFs-derived carbon-based metal catalysts for energy-related electrocatalysis. Small 2021, 17, 2004398. [Google Scholar] [CrossRef]
- Cao, X.; Tong, R.; Tang, S.; Jang, B.W.-L.; Mirjalili, A.; Li, J.; Guo, X.; Zhang, J.; Hu, J.; Meng, X. Design of PdZn bimetal MOF nanosheets and MOF-derived Pd3.9Zn6.1/CNS catalyst for selective hydrogenation of acetylene under simulated front-end conditions. Molecules 2022, 27, 5736. [Google Scholar] [CrossRef]
- He, X.; He, Q.; Deng, Y.; Peng, M.; Chen, H.; Zhang, Y.; Yao, S.; Zhang, M.; Xiao, D.; Ma, D. A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nat. Commun. 2019, 10, 3663. [Google Scholar] [CrossRef] [Green Version]
- Han, A.; Wang, B.; Kumar, A.; Qin, Y.; Jin, J.; Wang, X.; Yang, C.; Dong, B.; Jia, Y.; Liu, J.; et al. Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods 2019, 3, 1800471. [Google Scholar] [CrossRef]
- Sarkar, C.; Koley, P.; Shown, I.; Lee, J.; Liao, Y.-F.; An, K.; Tardio, J.; Nakka, L.; Chen, K.-H.; Mondal, J. Integration of interfacial and alloy effects to modulate catalytic performance of MOF derived Cu–Pd nanocrystals toward hydrogenolysis of 5-hydroxymethylfurfural. ACS Sustain. Chem. Eng. 2019, 7, 10349–10362. [Google Scholar] [CrossRef]
- Xing, Y.; Guo, Z.; Su, W.; Wen, W.; Wang, X.; Zhang, H. A review of the hot spot analysis and the research status of single-atom catalysis based on the bibliometric analysis. New J. Chem. 2021, 45, 4253–4269. [Google Scholar] [CrossRef]
- Bavykina, A.; Kolobov, N.; Khan, I.S.; Bau, J.A.; Ramirez, A.; Gascon, J. Metal-organic frameworks in heterogeneous catalysis: Recent progress, new trends, and future perspectives. Chem. Rev. 2020, 120, 8468–8535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmermann, R.R.; Siebert, M.; Ibrahimkutty, S.; Dittmeyer, R.; Armbrüster, M. Intermetallic GaPd2 thin films for selective hydrogenation of acetylene. Z. Anorg. Allg. Chem. 2020, 646, 1218–1226. [Google Scholar] [CrossRef]
- Liu, F.; Xia, Y.; Xu, W.; Cao, L.; Guan, Q.; Gu, Q.; Yang, B.; Lu, J. Integration of bimetallic electronic synergy with oxide site isolation improves the selective hydrogenation of acetylene. Angew. Chem. Int. Ed. 2021, 60, 19324–19330. [Google Scholar] [CrossRef]
- Pei, G.X.; Liu, X.Y.; Yang, X.; Zhang, L.; Wang, A.; Li, L.; Wang, H.; Wang, X.; Zhang, T. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal. 2017, 7, 1491–1500. [Google Scholar] [CrossRef]
- Han, Z.-K.; Sarker, D.; Ouyang, R.; Mazheika, A.; Gao, Y.; Levchenko, S.V. Single-atom alloy catalysts designed by first-principles calculations and artificial intelligence. Nat. Commun. 2021, 12, 1833. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Q.-A.; Wang, J.; Wang, J.; Zhang, J.; Zhao, Y. Supported dual-atom catalysts: Preparation, characterization, and potential applications. Chin. J. Catal. 2020, 41, 783–798. [Google Scholar] [CrossRef]
- Gao, R.; Xu, J.; Wang, J.; Lim, J.; Peng, C.; Pan, L.; Zhang, X.; Yang, H.; Zou, J.-J. Pd/Fe2O3 with electronic coupling single-site Pd–Fe pair sites for low-temperature semihydrogenation of alkynes. J. Am. Chem. Soc. 2022, 144, 573–581. [Google Scholar] [CrossRef]
- He, T.; Santiago, A.R.P.; Kong, Y.; Ahsan, M.A.; Luque, R.; Du, A.; Pan, H. Atomically dispersed heteronuclear dual-atom catalysts: A new rising star in atomic catalysis. Small 2022, 18, 2106091. [Google Scholar] [CrossRef]
- Li, L.; Yuan, K.; Chen, Y. Breaking the scaling relationship limit: From single-atom to dual-atom catalysts. Acc. Mater. Res. 2022, 3, 584–596. [Google Scholar] [CrossRef]
- Boucher, M.B.; Zugic, B.; Cladaras, G.; Kammert, J.; Marcinkowski, M.D.; Lawton, T.J.; Sykes, E.C.H.; Flytzani-Stephanopoulos, M. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions. PCCP 2013, 15, 12187–12196. [Google Scholar] [CrossRef] [PubMed]
- Pei, G.; Liu, X.; Chai, M.; Wang, A.; Zhang, T. Isolation of Pd atoms by Cu for semi-hydrogenation of acetylene: Effects of Cu loading. Chin. J. Catal. 2017, 38, 1540–1548. [Google Scholar] [CrossRef]
- Wang, Q.; Gong, J.; Zhang, H.; Fan, Q.-Y.; Xue, L.; Wu, J.; Li, J.; Wang, Y.; Liu, Z.; Gao, R.; et al. Co-promotion of two-type active sites: PtCux single-atom alloy and copper–ceria interface for preferential oxidation of CO. Appl. Catal. B 2022, 306, 121117. [Google Scholar] [CrossRef]
- Cao, X.; Mirjalili, A.; Wheeler, J.; Xie, W.; Jang, B.W.L. Investigation of the preparation methodologies of Pd–Cu single atom alloy catalysts for selective hydrogenation of acetylene. Front. Chem. Sci. Eng. 2015, 9, 442–449. [Google Scholar] [CrossRef]
- Xu, X.; Wang, Q.; Xie, L.; Liu, Y.; Li, D.; Feng, J.; Duan, X. Thermal effect optimization endows a selective and stable PdCu single atom alloy catalyst for acetylene hydrogenation. AlChE J. 2023, 69, e18042. [Google Scholar] [CrossRef]
- Trimpalis, A.; Giannakakis, G.; Cao, S.; Flytzani-Stephanopoulos, M. Niau single atom alloys for the selective oxidation of methacrolein with methanol to methyl methacrylate. Catal. Today 2020, 355, 804–814. [Google Scholar] [CrossRef]
- Pei, G.X.; Liu, X.Y.; Wang, A.; Li, L.; Huang, Y.; Zhang, T.; Lee, J.W.; Jang, B.W.L.; Mou, C.-Y. Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New J. Chem. 2014, 38, 2043–2051. [Google Scholar] [CrossRef]
- Lee, J.; Kumar, A.; Yang, T.; Liu, X.; Jadhav, A.R.; Park, G.H.; Hwang, Y.; Yu, J.; Nguyen, C.T.K.; Liu, Y.; et al. Stabilizing the OOH* intermediate via pre-adsorbed surface oxygen of a single Ru atom-bimetallic alloy for ultralow overpotential oxygen generation. Energy Environ. Sci. 2020, 13, 5152–5164. [Google Scholar] [CrossRef]
- Molina, D.L.; Muir, M.; Abdel-Rahman, M.K.; Trenary, M. The influence of palladium on the hydrogenation of acetylene on Ag(111). J. Chem. Phys. 2021, 154, 184701. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Lee, H. Atomically dispersed platinum on gold nano-octahedra with high catalytic activity on formic acid oxidation. ACS Catal. 2013, 3, 437–443. [Google Scholar] [CrossRef]
- Zhuang, L.; Jia, Y.; Liu, H.; Wang, X.; Hocking, R.K.; Liu, H.; Chen, J.; Ge, L.; Zhang, L.; Li, M.; et al. Defect-induced Pt–Co–Se coordinated sites with highly asymmetrical electronic distribution for boosting oxygen-involving electrocatalysis. Adv. Mater. 2019, 31, 1805581. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Luo, Q.; Liu, W.; Lin, Y.; Guan, Q.; Zheng, X.; Pan, H.; Zhu, J.; Sun, Z.; Wei, S.; et al. Quasi Pd1Ni single-atom surface alloy catalyst enables hydrogenation of nitriles to secondary amines. Nat. Commun. 2019, 10, 4998. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Huang, Z.; Liu, W.; Chang, C.; Tang, H.; Li, Z.; Chen, W.; Jia, C.; Yao, T.; Wei, S.; et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284. [Google Scholar] [CrossRef]
- Yang, G.; Zhu, J.; Yuan, P.; Hu, Y.; Qu, G.; Lu, B.-A.; Xue, X.; Yin, H.; Cheng, W.; Cheng, J.; et al. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 2021, 12, 1734. [Google Scholar] [CrossRef]
- Abid, N.; Khan, A.M.; Shujait, S.; Chaudhary, K.; Ikram, M.; Imran, M.; Haider, J.; Khan, M.; Khan, Q.; Maqbool, M. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv. Colloid Interface Sci. 2022, 300, 102597. [Google Scholar] [CrossRef]
- Li, H.; Zhu, H.; Zhang, S.; Zhang, N.; Du, M.; Chai, Y. Nano high-entropy materials: Synthesis strategies and catalytic applications. Small Struct. 2020, 1, 2000033. [Google Scholar] [CrossRef]
- Tareen, A.K.; Priyanga, G.S.; Behara, S.; Thomas, T.; Yang, M. Mixed ternary transition metal nitrides: A comprehensive review of synthesis, electronic structure, and properties of engineering relevance. Prog. Solid State Chem. 2019, 53, 1–26. [Google Scholar] [CrossRef]
- Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019, 53, 101174. [Google Scholar] [CrossRef]
- Chen, L.; Li, X.-T.; Ma, S.; Hu, Y.-F.; Shang, C.; Liu, Z.-P. Highly selective low-temperature acetylene semihydrogenation guided by multiscale machine learning. ACS Catal. 2022, 12, 14872–14881. [Google Scholar] [CrossRef]
Synthetic Method | Key Features | Synthesized Catalyst Types | Merits | Demerits | Example and Ref. |
---|---|---|---|---|---|
Incipient wetness impregnation (IWI) method | Most widely used preparation method | Supported bimetallic nano-catalysts/single atom alloy | Easy operation; low cost; high production capacity; sample resistance to sintering; SMSI | Minimal control of particle size and element distribution; calcination contamination | Pd1Ag3/r-TiO2 (T750) [185] |
Co-precipitation (CP) | Simultaneous precipitation of the two metals and the support | Supported bimetallic nano-catalysts | Easy control of particle size and element distribution; maximum metal loading and metal-support interaction | Accurate control of synthesis conditions; impurity (by precipitant) removal is required; small proportion of active components on the surface; thermal treatment | Mco-PdCu/MgAl-cHT [75] |
Deposition-precipitation (DP) | Widely used in the preparation of supported metal catalysts; one-pot synthesis | Supported bimetallic nano-catalysts/single atom alloy/bimetallic dual atom catalysts | Particle size and component distribution are generally superior to those prepared by IWI; SMSI | Accurate control of synthesis conditions; impurity removal is required; metal-support interaction is required; thermal treatment; easy liquid-phase nucleation | Pd1Cu1/ND@G (DACs) [41] |
One-pot reduction deposition (one-pot RD) | One-pot synthesis; simultaneous reduction of the two metals to deposit on the support; chemical reducing agents participate in the reduction. | Supported bimetallic nano-catalysts | Particle size and component distribution are generally superior to those prepared by DP | Accurate control of synthesis conditions; impurity removal is required; metal-support interaction is required; thermal treatment; existing liquid-phase nucleation and mono-metal deposition | PdBi/Calcite [81] |
Electroless reduction deposition (eless-RD) | Parent metal activates chemical reducing agents to reduce the secondary metal; atom-by-atom deposition on the parent metal | Supported bimetallic nano-catalysts | Available complex structures, e.g., core–shell structures; achieving deposition of the dopant metal that cannot be performed by GR | No deposition on the support is still a question to consider; in most of cases, more precise control of synthesis parameters than GR | Cu–Pd/TiO2 [99] |
Galvanic replacement (GR) | Supported parent metal is prepared first; atom-by-atom metal exchange driven by reduction potential. | Supported bimetallic nano–catalysts/single atom alloy | Available special compositions and structures; shape of the template maintained | Complicated steps; deposition depends on the difference in reduction potentials between the two metals | Pd–Ag/SiO2 [101] |
Controlled surface reaction (CSR) | Reduction of the parent metal occurs first; strict operation conditions | Supported bimetallic nano-catalysts/single atom alloy | Available complex structures | High-level complex steps; need to perform in an inert atmosphere and anhydrous solutions | CuPd0.02/TiO2 [97] |
Photochemical reduction (PR) | Greenness; visible or ultraviolet (UV) light drives reactions | Supported bimetallic nano-catalysts/single atom alloy/bimetallic dual atom catalysts | Simplicity; high efficiency; greenness; normally room temperature and atmospheric pressure | Some metal atoms do not sensitively respond to irradiation | Pd9Au1/ZnTi [112] |
Colloidal synthesis | Metal precursors form a metallic colloid to support on the matrix | Supported bimetallic nano-catalysts/single atom alloy | Easy and flexible control of particle shape, size, and element distribution | Precise control of synthesis conditions and impurity removal is generally required | Au@Pd/TiO2 [119] |
Sol-gel method | The precursors undergo the processes of hydrolysis and polymerization, forming sol and then gel | Supported bimetallic nano-catalysts/single atom alloy | Easy control of particle size and element distribution at the atomic level; facile synthesis condition | High price of metal precursors; environmental health issues; long-time synthesis. | CuPd/ZIF-8 [79] |
Physical vapor deposition (PVD) | Physical vaporization of metals; model catalyst preparation; layer-by-layer deposition on the matrix | Supported bimetallic nano-catalysts/single atom alloy | Simple steps; environmental friendliness; diverse coating material availability; controllable size and dispersion | High equipment cost; high process temperature; high surface cleanliness; UHV conditions; not suitable for deposition on a complex surface | GaPd2/Si(111) [159] |
Atomic layer deposition (ALD) | Atomic layer-by-layer deposition; ordered self-terminated reduction occurs on the substrate surface; gaseous metal molecule precursor | Supported bimetallic nano-catalysts/single atom alloy | Atomically distributed; flexible control of the surface, composition, overlayers, and even atomic level thickness; extraordinary reproducibility | High equipment cost; high price of metal precursors; UHV conditions; slow ALD progression | Ga2O3-coated Pd@Ag/SiO2 [160] |
Electrochemical deposition (ECD) | Reactions are driven by an outside current basis | Supported bimetallic nano-catalysts/single atom alloy | Near ambient conditions; efficient usedness of precursors; easy fabrication with excellent control of the morphology and composition with high reproducibility; inexpensive method | Need a sophisticated instrument; poor scalability | Cu dendrites [8] |
Cold plasmas treatment | A partially ionized gas containing many highly active species; non-equilibrium state | Supported bimetallic nano-catalysts | A more efficient, controlled, and mild method, compared with the traditional thermal methods | Specialized equipment | Au–Ag/SiO2 [135] |
Thermal pyrolysis | Thermal pyrolysis and carbonization of organic or polymer materials and metals with van der Waals force or chemical bonding force | Supported bimetallic nano-catalysts/single atom alloy/bimetallic dual atom catalysts | Simplicity; simultaneous one-step preparation of support and active metal | Long reaction time; not easy to control particle size and element distribution; excessive energy usage; air contamination | Pd–Zn-ins/CNS [153] |
Ball milling | The simplest and most efficient mechanical process | Supported bimetallic nano-catalysts/single atom alloy | Extensive range of applications; simplicity; safety | Specialized heavy equipment is required; big power loss; contamination and noise | Pd–Ag/α-Al2O3 [2] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Jang, B.W.-L.; Hu, J.; Wang, L.; Zhang, S. Synthetic Strategies of Supported Pd-Based Bimetallic Catalysts for Selective Semi-Hydrogenation of Acetylene: A Review and Perspectives. Molecules 2023, 28, 2572. https://doi.org/10.3390/molecules28062572
Cao X, Jang BW-L, Hu J, Wang L, Zhang S. Synthetic Strategies of Supported Pd-Based Bimetallic Catalysts for Selective Semi-Hydrogenation of Acetylene: A Review and Perspectives. Molecules. 2023; 28(6):2572. https://doi.org/10.3390/molecules28062572
Chicago/Turabian StyleCao, Xinxiang, Ben W.-L. Jang, Jiaxue Hu, Lei Wang, and Siqi Zhang. 2023. "Synthetic Strategies of Supported Pd-Based Bimetallic Catalysts for Selective Semi-Hydrogenation of Acetylene: A Review and Perspectives" Molecules 28, no. 6: 2572. https://doi.org/10.3390/molecules28062572
APA StyleCao, X., Jang, B. W. -L., Hu, J., Wang, L., & Zhang, S. (2023). Synthetic Strategies of Supported Pd-Based Bimetallic Catalysts for Selective Semi-Hydrogenation of Acetylene: A Review and Perspectives. Molecules, 28(6), 2572. https://doi.org/10.3390/molecules28062572