Pyrrole-2-carboxaldehydes: Origins and Physiological Activities
Abstract
:1. Introduction
2. Synthesis and Biosynthesis of Pyrrole-2-carbaldehydes
3. Naturally Occurring Pyrrole-2-carbaldehyde Derivatives
3.1. Pyrrole-2-carboxaldehydes from Fungi
3.2. Pyrrole-2-carbaldehydes from Plant Sources
3.3. Pyrrole-2-Carbaldehydes from Microorganisms
4. Physiological Activities of Pyrrole-2-carbaldehydes
4.1. Physiological Activities of Pyrrole-2-carbaldehydes Originating from Fungi
4.2. Physiological Activities of Pyrrole-2-carbaldehydes Originating from Plants
4.3. Physiological Activities of Pyrrole-2-carboxaldehydes Originating from Microorganisms
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kato, H.; Fujimaki, M. Formation of 1-Alkyl-5-(hydroxymethyl)pyrrole-2-aldehydes in the browning reaction between hexoses and alkylamines. Agric. Biol. Chem. 1970, 34, 1071–1077. [Google Scholar] [CrossRef]
- Nakayama, T.; Hayase, F.; Kato, H. Formation of ε-(2-formyl-5-hydroxymethyl-pyrrol-1-yl)-L-norleucine in the Maillard reaction between D-glucose and L-lysine. Agric. Biol. Chem. 1980, 44, 1201–1202. [Google Scholar] [CrossRef]
- Ninomiya, M.; Matsuzaki, T.; Shigematsu, H. Formation of reducing substances in the Maillard reaction between D-glucose and γ-aminobutyric acid. Biosci. Biotechnol. Biochem. 1992, 56, 806–807. [Google Scholar] [CrossRef]
- Ledl, F.; Schleicher, R.N.H.E. New aspects of the Maillard reaction in foods and in the human body. Angew. Chem. Int. Ed. Engl. 1990, 29, 565–594. [Google Scholar] [CrossRef]
- Lederer, M.O.; Baumann, M. Formation of a phospholipid-linked pyrrole-carbaldehyde from model reactions of D-glucose and 3-deoxyglucosone with phosphatidyl ethanolamine. Bioorg. Med. Chem. 2000, 8, 115–121. [Google Scholar] [CrossRef]
- Wood, J.M.; Furkert, D.P.; Brimble, M. 2-Formylpyrrole natural products: Origin, structural diversity, bioactivity and synthesis. Nat. Prod. Rep. 2019, 36, 289–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Mora, E.I.; Caracas, M.A.; Escalante, C.H.; Madrigal, D.A.; Quiroz-Florentino, H.; Delgado, F.; Tamariz, J. Divergent and selective functionalization of 2-formylpyrrole and its application in the total synthesis of the aglycone alkaloid pyrrolemarumine. J. Mex. Chem. Soc. 2016, 60, 23–33. [Google Scholar] [CrossRef]
- Walsh, C.T.; Garneau-Tsodikova, S.; Howard-Jones, A.R. Biological formation of pyrroles: Nature’s logic and enzymatic machinery. Nat. Prod. Rep. 2006, 23, 517–531. [Google Scholar] [CrossRef]
- Lautru, S.; Song, L.; Demange, L.; Lombes, T.; Galons, H.; Challis, G.L.; Pernodet, J.-L. A sweet origin for the key congocidine precursor 4-acetamidopyrrole-2-carboxaldehyde. Angew. Chem. Int. Ed. Engl. 2012, 51, 7454–7458. [Google Scholar] [CrossRef] [PubMed]
- Titchiner, G.R.; Marshall, S.A.; Miscikas, H.; Leys, D. Biosynthesis of pyrrole-2-carboxaldehyde via enzymatic CO2 fixation. Catalysis 2022, 12, 538. [Google Scholar]
- Li, L.-Y.; Ding, Y.; Groth, I.; Menzel, K.-D.; Peschel, G.; Voigt, K. Pyrrole and indole alkaloids from an endophytic Fusarium incarnatum (HKI00504) isolated from the mangrove plant Aegiceras corniculatum. J. Asian Nat. Prod. Res. 2008, 10, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, T.; Taniguchi, Y.; Kanayama, M.; Shimura, M.; Yoshida, A. Extract of the Mycoleptodonoides aitchisonii induces a series of antioxidative and phase II detoxifying enzymes through activation of the transcription factor Nrf2. Food Chem. 2011, 129, 92–99. [Google Scholar] [CrossRef]
- Choi, J.-H.; Ozawa, N.; Yamakawa, Y.; Nagai, K.; Hirai, H.; Kawagishi, H. Leccinine A, an endplasmic reticulum strss-suppressive compound from the edible mushroom Leccinum extremiorientale. Tetrahedron 2011, 67, 6649–6653. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.P.; Cheng, M.J.; Teng, C.M.; Chang, Y.L.; Tsai, I.L.; Chen, I.S. Chemical and anti-platelet constituents from Formosan Zanthoxylum simulans. Phytochemistry 2002, 61, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-D.; Cheng, M.-J.; Chen, I.-S.; Su, Y.-S.; Hsieh, S.-Y.; Chang, H.-S.; Chang, C.-W.; Yuan, G.-F. Phytochemical Investigation of Annulohypoxylon ilanense, an endophytic fungus derived from Cinnamomum species. Chem. Biodivers. 2013, 10, 493–505. [Google Scholar] [CrossRef] [PubMed]
- L, H.; Xiao, J.; Gao, Y.-Q.; Tang, J.-J.; Zhang, A.-L.; Gao, J.-M. Chaetoglobosins from Chaetomium globosum, an endophytic fungus in Gingko biloba, and their phytotoxic and cytotoxic activities. J. Agric. Food Chem. 2014, 62, 3734–3741. [Google Scholar]
- Chin, Y.-W.; Lim, S.-W.; Kim, S.-H.; Shin, D.-Y.; Suh, Y.-G.; Kim, Y.-B.; Kim, Y.C.; Kim, J. Hepatoprotective pyrrole derivatives of Lycium chinese fruits. Bioorg. Med. Chem. Lett. 2003, 13, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-H.; Suzuki, T.; Kawaguchi, T.; Yamashita, K.; Morita, A.; Masuda, K.; Yazawa, K.; Hirai, H.; Kawagishi, H. Makomotines A to D from Makomotake, Zizaria latifolia infected Ustilago esculenta. Tetrahedron Lett. 2014, 25, 3596–3599. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.-J.; Chan, H.-Y.; Cheng, Y.-C.; Wu, M.-D.; Chen, J.-J.; Chen, Y.-L.; Hsieh, S.-Y.; Yuan, G.-F.; Su, Y.-S. A new pyrrole metabolite from the endophytic fungus of Xylaria papulis. Chem. Nat. Compd. 2015, 51, 515–518. [Google Scholar] [CrossRef]
- Kim, S.B.; Ahn, B.; Kim, M.; Ji, H.-J.; Shin, S.-K.; Pong, I.P.; Kim, C.Y.; Hwang, B.Y.; Lee, M.K. Effect of Cordyceps militaris extract and active constituents on metabolic parameters of obesity induced by high-fat diet in C58BL/6J mice. J. Ethnopharm. 2014, 151, 478–484. [Google Scholar] [CrossRef]
- Li, M.; Xiong, J.; Huang, Y.; Wang, L.-J.; Tang, Y.; Yang, G.-X.; Liu, X.-H.; Wei, B.-G.; Fan, H.; Zhao, Y.; et al. Xylapyrroside A and B, two rare sugar-morpholine spiroketal pyrrole-derived alkaloids from Xylaria nigripes: Isolation, complete structure elucidation, and total syntheses. Tetrahedron 2015, 71, 5285–5295. [Google Scholar] [CrossRef]
- Yang, N.-N.; Huang, S.-Z.; Ma, Q.-Y.; Dai, H.-F.; Guo, Z.-K.; Yu, Z.-F.; Zhao, Y.-X. A new pyrrole alkaloid from Leccinum extremiorientale. Chem. Nat. Compd. 2015, 51, 730–732. [Google Scholar] [CrossRef]
- Xiong, J.; Huang, Y.; Wu, X.-Y.; Liu, X.-H.; Fan, H.; Wang, W.; Zhao, Y.; Yang, G.-X.; Zhang, H.-Y.; Hu, J.-F. Chemical constituents from the fermented mycelia of the medicinal fungus Xylaria nigripes. Helv. Chim. Acta 2016, 99, 83–89. [Google Scholar] [CrossRef]
- Fan, N.W.; Chang, H.S.; Cheng, M.J.; Chan, H.Y.; Hsieh, S.Y.; Liu, T.W.; Chen, S.W.; Yuan, G.F.; Chen, I.S. New metabolites from the endophytic fungus Mollisia sp. Chem. Nat. Compd. 2016, 52, 585–590. [Google Scholar] [CrossRef]
- Sakamoto, T.; Nishida, A.; Wada, N.; Nakamura, Y.; Sato, S.; Konishi, T.; Matsugo, S. Identification of a novel pyrrole alkaloid from the edible mushroom Basidiomycetes-X (Echigoshirayukitake). Molecules 2020, 25, 4679–4688. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Hu, M.; Sun, Z.; Zhu, N.; Yang, J.; Ma, G.; Xu, X. Pyrrole alkaloids from the edible mushroom Phlebopus portentosus with their bioactive activities. Molecules 2018, 23, 1196–2002. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.-Y.; Bai, H.-B.; Shan, W.-G.; Zhan, Z.-J. A new alkaloid from the mycelium of Inonotus obliquus. J. Chem. Res. 2014, 38, 245–246. [Google Scholar] [CrossRef]
- Shan, W.-G.; Wang, Y.; Ma, L.-F.; Zhan, Z.-J. A new alkaloid from the mycelium of Inonotus obliquus. J. Chem. Res. 2017, 41, 392–393. [Google Scholar] [CrossRef]
- Yang, J.J.; Zhang, M. A new alkaloid from the mycelium of Inonotus obliquus. Yao Xue Bao (Acta Pharm. Sin.) 1990, 22, 555–559. [Google Scholar]
- Farag, S.F.; Kimura, Y.; Ito, H.; Takayasu, J.; Tokuda, H.; Hatano, T. New isoflavone glycosides from Iris squria L. (Calizona) cultivated in Egypt. J. Nat. Med. 2009, 63, 91–95. [Google Scholar] [CrossRef]
- Abe, E.; Nakatani, Y.; Yamanishi, T.; Muraki, S. Studies on the “sugary flavor” of raw cane sugar. Proc. Jpn. Acad. Ser. B 1978, 54, 542–547. [Google Scholar] [CrossRef] [Green Version]
- Sannai, A.; Fujimori, T.; Kato, K. Studies on flavor components of roasted chicory root. Agric. Biol. Chem. 1982, 46, 429–433. [Google Scholar]
- Anderson, R.C.; Kelly, A.G.; Roberts, J.S. Two new acidic constituents of flue-cured Virginia tobacco. J. Agric. Food Chem. 1983, 31, 458–459. [Google Scholar] [CrossRef]
- Lynn, D.G.; Jaffe, K.; Cornwall, M.; Tramontano, W. Characterization of an endogeneous factor controlling the cell cycle of complex tissues. J. Am. Chem. Soc. 1987, 109, 5858–5859. [Google Scholar] [CrossRef]
- Zennie, T.M.; Cassady, J.M. Funeral, a new pyrrole lactone alkaloid from Quararibea funebris. J. Nat. Prod. 1990, 53, 1611–1614. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Pai, N.N.N.; Ablaza, S.L.; Yu, S.-X.; Bolvig, S.; Forsyth, D.A.; Le-Quesne, P.W. Quararibea metabolites. 4. Total synthesis and conformational studies of (±)-funebrine and (±)-funebral. J. Org. Chem. 1999, 64, 2657–2666. [Google Scholar] [CrossRef]
- Tamura, O.; Iyama, N.; Ishibashi, H. Syntheses of (–)-funebrine and (–)-funebral, using sequential transesterification and intramolecular cycloaddition of a chiral nitrone. J. Org. Chem. 2004, 69, 1475–1480. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-J.; Chen, C.-C.; Shieh, B.-J. The new constituents from the leaves of Magnolia coco. J. Nat. Prod. 1998, 61, 1017–1019. [Google Scholar] [CrossRef] [PubMed]
- Sang, S.; Lao, A.; Wang, Y.; Chin, C.-K.; Rosen, R.T.; Ho, C.-T. Antifungal constituents from the seeds of Allium fistulosum L. J. Agric. Food Chem. 2002, 50, 6318–6321. [Google Scholar] [CrossRef] [PubMed]
- Hiermann, A.; Kedwani, S.; Schramm, H.W.; Seger, C. A new pyrrole alkaloid from seeds of Castanea sativa. Fitoterapia 2002, 73, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-Y.; Zhang, W.-D.; Chen, H.-S.; Gu, Z.-B.; Li, T.-Z.; Zhou, Y. Pyrrole alkaloids from Bolbostemma paniculatum. J. Asian Nat. Prod. Res. 2003, 5, 159–163. [Google Scholar] [CrossRef]
- Kayano, S.; Kikuzaki, H.; Ikami, T.; Suzuki, T.; Mitani, T.; Nakatani, N. A new bipyrrole and some phenolic constituents in prunes (Prunus domestica L.) and their oxygen radical absorbance capacity (ORAC). Biosci. Biotechnol. Biochem. 2004, 68, 942–944. [Google Scholar] [CrossRef] [Green Version]
- Don, M.-J.; Shen, C.-C.; Lin, Y.-L.; Syu, W.-J.; Ding, Y.-H.; Sun, C.-M. Nitrogen-containing compounds from Salvia miltiorrhiza. J. Nat. Prod. 2005, 68, 1066–1070. [Google Scholar] [CrossRef]
- Guo, Y.; Li, X.; Wang, J.; Xu, J.; Li, N. A new alkaloid from the fruits of Celastrus orbiculatus. Ficoterapia 2005, 76, 273–275. [Google Scholar] [CrossRef]
- Kayano, S.; Kikuzaki, H.; Yamada-Fukutsuka, N.; Aoki, A.; Kasamatsu, K.; Yamasaki, Y.; Ikami, T.; Suzuki, T.; Mitani, T.; Nakatani, N. Antioxidant properties of prunes (Prunus domestica L.) and their constituents. Biofactors 2008, 21, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.-H.; Kim, Y.-H.; Choo, S.-J.; Ryoo, I.-J.; Yoo, J.-K.; Ahn, J.-S.; Yoo, I.-D. Chemical constituents from the leaves of Ilex paraguariensis inhibit human neutrophil elastase. Arch. Pharm. Res. 2009, 32, 1215–1220. [Google Scholar] [CrossRef] [PubMed]
- Youn, U.J.; Kil, Y.-S.; Nam, J.-W.; Lee, Y.J.; Kim, J.; Lee, D.; Lee, J.-H.; Seo, E.-K. New pyrrole alkaloids with bulky N-alkyl side chains containing stereogenic centers from Lyceum chinense. Helv. Chim. Acta 2013, 96, 1482–1487. [Google Scholar] [CrossRef]
- Youn, U.J.; Lee, J.Y.; Kil, Y.-S.; Han, A.R.; Chae, C.H.; Ryu, S.Y.; Seo, E.-K. Identification of new pyrrole alkaloids from the fruits of Lycium chinense. Arch. Pharm. Res. 2016, 39, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Wang, C.-H.; Chou, G.-X.; Wu, T.; Cheng, X.-M.; Wang, Z.-T. New alkaloids from Capparis spinosa: Structure and X-ray crystallographic analysis. Food Chem. 2010, 123, 705–710. [Google Scholar] [CrossRef]
- Fang, C.-W.; Chen, J.-J.; Liu, S.-J. Studies on the chemical constituents of rhizome of Coniogramme japonica. J. Chin. Med. Mater. 2010, 33, 557–559. [Google Scholar]
- Sahakitpichan, P.; Mahidol, C.; Disadee, W.; Ruchirawat, S.; Kanchanapoom, T. Unusual glycosides of pyrrole alkaloid and 4’-hydroxyphenylethanamide from leaves of Moringa olefera. Phytochemistry 2011, 72, 791–795. [Google Scholar] [CrossRef]
- Kuo, P.-C.; Hwang, T.-L.; Lin, Y.-T.; Kuo, Y.-C.; Leu, Y.-L. Chemical constituents from Lobelia chinensis and their anti-virus and anti-inflammatory bioactivities. Arch. Pharm. Res. 2011, 34, 715–722. [Google Scholar] [CrossRef]
- Liu, L.-L.; Yang, J.-L.; Shi, Y.-P. Sesquiterpenoids and other constituents from the flower buds of Tussilago farfara. J. Asian Nat. Prod. Res. 2011, 13, 920–929. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.J.; Jung, H.A.; Kang, S.S.; Lee, J.-H.; Cho, Y.D.; Moon, K.H.; Choi, J.S. Inhibitory activity of Aralia continentalis roots on protein tyrosine phosphatase 1B and rat lens aldose reductase. Arch. Pharm. Res. 2012, 35, 1771–1777. [Google Scholar] [CrossRef] [PubMed]
- Zou, G.A.; Mansur, S.; Hu, S.C.; Aisa, H.A.; Shakhidovatov, K.M. Pyrrole alkaloids from Alhagi sparsifolia. Chem. Nat. Comp. 2012, 48, 635–637. [Google Scholar] [CrossRef]
- Xiong, L.; Peng, C.; Xie, X.-F.; Guo, L.; He, C.-J.; Geng, Z.; Wan, F.; Dai, O.; Zhou, Q.-M. Alkaloids isolated from the lacteral root of Aconitum carmichaelii. Molecules 2012, 17, 9939–9946. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhao, R.; Yang, J. Two new alkaloid galactosides from the kernel of Prinsepia uniflora. Nat. Prod. Res. 2013, 27, 687–690. [Google Scholar] [CrossRef]
- Wang, X.-F.; Yu, L.; Hao, W.-J.; Ma, L.; Yin, L.; Fu, X.-Y. Chemical constituents of Aconitum flavum. Chem. Nat. Compd. 2016, 52, 769–770. [Google Scholar] [CrossRef]
- Zhou, Z.; Luo, J.; Pan, K.; Kong, L. A new alkaloid glycoside from the rhizomes of Aristolochia fordiana. Nat. Prod. Res. 2014, 28, 1065–1069. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.B.; Chang, B.Y.; Jo, Y.H.; Lee, S.H.; Han, S.B.; Hwang, B.Y.; Kim, S.Y.; Lee, M.K. Macrophage activating activity of pyrrole alkaloids from Morus alba fruits. J. Ethnopharm. 2013, 145, 393–396. [Google Scholar] [CrossRef]
- Kikuchi, T.; Ikedaya, A.; Toda, A.; Ikushima, K.; Yamakawa, T.; Okada, R.; Yamada, T.; Tanaka, R. Pyrazole alkaloids from watermelon (Citrullus lanatus) seeds. Phytochem. Lett. 2015, 12, 94–97. [Google Scholar] [CrossRef]
- Forte, B.; Malgesini, B.; Piutti, C.; Quartieri, F.; Scolaro, A.; Papeo, G. A submarine journey: The pyrrole-imidazole alkaloids. Mar. Drugs 2009, 7, 705–753. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.-L.; Feng, Z.-M.; Yang, Y.-J.; Zhang, Z.-W.; Zhang, P.-C. Pollenopyrroside A and B, novel pyrrole ketohexoside derivatives from bee-collected Brassica campestris pollen. Chem. Pharm. Bull. 2010, 58, 983–985. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Li, Y.; Wang, S.; Guo, X.; Wang, L.; Zhao, W. Total synthesis of two pyrrole spiroketal alkaloids: Pollenopyrroside A and Capparisine B. Synlett 2015, 26, 921–926. [Google Scholar]
- Wood, J.M.; Furkert, D.P.; Brimble, M.A. Synthesis of the 2-formylpyrrole spiroketal pollenopyrroside A and structural elucidation of xylapyrroside A, shensongine A and capparisine B. Org. Biomol. Chem. 2016, 14, 7659–7664. [Google Scholar] [CrossRef]
- Tong, X.-G.; Zhou, L.-L.; Wang, Y.-H.; Xia, C.; Wang, Y.; Liang, M.; Hou, F.-F.; Cheng, Y.-X. Acortatarins A and B, Two novel antioxidative spiroalkaloids with a naturally unusual morpholine motif from Acorus tatarinowii. Org. Lett. 2010, 12, 1844–1847. [Google Scholar] [CrossRef] [PubMed]
- Sudhakar, G.; Kadam, V.D.; Bayya, S.; Pranitha, G.; Jagadeesh, B. Total synthesis of stereochemical revision of acortatarins A and B. Org. Lett. 2011, 21, 5452–5455. [Google Scholar] [CrossRef]
- Geng, H.M.; Chen, J.L.-Y.; Furkert, D.P.; Jiang, S.; Brimble, M.A. A convergent synthesis of the 2-formylpyrrole spiroketal natural product acortatarin A. Synlett 2012, 23, 855–858. [Google Scholar]
- Wurst, J.M.; Verano, A.L.; Tan, D.S. Stereoselective synthesis of acortatarins A and B. Org. Lett. 2012, 14, 4442–4445. [Google Scholar] [CrossRef] [PubMed]
- Borrero, N.V.; Aponick, A. Total synthesis acortatarin A using a Pd (II) -catalyzed spiroketalization strategy. J. Org. Chem. 2012, 77, 8410–8416. [Google Scholar] [CrossRef]
- Teranishi, T.; Kageyama, M.; Kuwahara, S. Concise total synthesis of acortatarin A. Biosci. Biotechnol. Biochem. 2013, 77, 676–678. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Nakamura, S.; Ohta, T.; Fujimoto, K.; Yoshikawa, M.; Ogawa, K.; Matsuda, H. A rare glutamine derivative from the flower buds of daylily. Org. Lett. 2014, 16, 3076–3307. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Nakamura, S.; Nakashima, S.; Ohta, T.; Yano, M.; Tsujihata, J.; Tsukioka, J.; Ogawa, K.; Fukaya, M.; Yoshikawa, M.; et al. g-Lactam alkaloids from the flower buds of daylily. J. Nat. Med. 2016, 70, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.M.; Furkert, D.P.; Brimble, M.A. Total synthesis and stereochemical revision of the 2-formylpyrrole alkaloid hemerocallisamine I. J. Nat. Prod. 2017, 80, 1926–1929. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.; Dai, Y.; Hou, Y.-L.; Yao, X.-S. Spiroalkaloids from shensong yangxin capsule. J. Asian Nat. Prod. Res. 2015, 17, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Pan, L.; Naman, C.B.; Deng, Y.; Chai, H.; Keller, W.J.; Kinghorn, A.D. Pyrrole alkaloids with potential cancer chemopreventive activity isolated from a Goji berry-contaminated commercial sample of African mango. J. Agric. Food Chem. 2014, 62, 5054–5060. [Google Scholar] [CrossRef]
- Feng, Z.-M.; Zhan, Z.-L.; Yang, Y.-N.; Jiang, J.-S.; Zhang, P.-C. Naturally occurring hybrids derived from γ-amino acids and sugars with potential tail to tail ether bond. Sci. Rep. 2016, 6, 25443. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.-M.; Zhan, Z.-L.; Yang, Y.-N.; Jiang, J.-S.; Zhang, P.-C. New heterocyclic compounds from Ranunculus ternatus Thunb. Bioorg. Chem. 2017, 74, 10–14. [Google Scholar] [CrossRef]
- Xia, J.-J.; Li, Y.-D.; Liu, X.-M.; Lu, Y.; Wu, Y.-Q.; Qin, Y.-H. A new benzofuran derivative from Nicotiana tabacum. J. Asian Nat. Prod. Res. 2016, 18, 779–783. [Google Scholar] [CrossRef]
- Verano, A.L.; Tan, D.S. Family-level stereoselective synthesis and biological evaluation of pyrromorpholine spiroketal natural product antioxidants. Chem. Sci. 2017, 8, 3687–3693. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Deng, A.J.; Wu, A.-Q.; Ji, M.; Zhang, H.-J.; Li, Z.-H.; Ma, L.; Zhang, Z.-H.; Chen, X.-G.; Qin, H.-L. Azacyclo-indoles and phenolics from the flowers of Junglans regia. J. Nat. Prod. 2017, 80, 2189–2198. [Google Scholar] [CrossRef]
- Yang, X.-F.; Cao, X.-H.; Ma, Y.-M.; Qiao, K. A new analog of pyrrolezanthine from the roots of Reynoutria ciliinervis (Nakai) Moldenke. Nat. Prod. Res. 2018, 32, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Qi, B.; Yang, W.; Ding, N.; Luo, Y.; Jia, F.; Liu, X.; Wang, J.; Wang, X.; Tu, P.; Shi, S. Pyrrole 2-carbaldehyde derived alkaloids from the roots of Angelica dahurica. J. Nat. Med. 2019, 73, 769–776. [Google Scholar] [CrossRef]
- Zhao, H.; Feng, Y.-L.; Wang, M.; Wang, J.-J.; Liu, T.; Yu, J. The Angelica dahurica: A review of traditional uses, phytochemistry and pharmacology. Front. Pharmacol. 2022, 13, 896637. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.-P.; Zou, Z.-X.; Zhang, Y.; Li, J.; Cheng, F.; Xu, P.-S. New adenine analogues and a pyrrole alkaloid from Selaginella delicatula. Nat. Prod. Res. 2019, 33, 1985–1991. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Wang, M.; Sun, C.; Li, X. Five new compounds from Hosta plantaginea flowers and their anti-inflammatory activities. Bioorg. Chem. 2020, 95, 103494. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Ju, P.; Chen, Y.; Li, X.; Wang, M. Analgesic alkaloids from Urticae fissae herba. Chin. Herb. Med. 2022, 14, 125–129. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, R.; Li, J.; Huang, Q.; Liu, S.; He, J. Pyrrole-2-carbaldehydes with neuroprotective activities from Moringa oleifera seeds. Phytochemistry 2022, 204, 113451. [Google Scholar] [CrossRef]
- Cimio, G.; de Stefano, S.; Minale, L. Long alkyl chains-3-substituted-2-aldehyde (2-carbozylic acid and methyl ester) from the marine sponge Oscarella lobularis. Experientia 1975, 31, 1387–1389. [Google Scholar] [CrossRef]
- Stierle, D.B.; Faulkner, D.J. Metabolites of the marine sponge Laxosuberites sp. J. Org. Chem. 1980, 45, 4980–4982. [Google Scholar] [CrossRef]
- Ortega, M.J.; Zubia, E.; Carballo, J.L.; Slva, J. New cytotoxic metabolites from the sponge Mycale microanthoxea. Tetrahedron 1997, 53, 331–340. [Google Scholar] [CrossRef]
- Compagnone, R.S.; Oliveri, M.C.; Pina, I.C.; Marques, S.; Rangel, H.R.; Dagger, F.; Suarez, A.I.; Gomez, M. 5-Alkylpyrrole-2-carboxaldehydes from the Caribbean sponges Mycale microsigmatosa and Desmapsamma anchorata. Nat. Prod. Lett. 1999, 13, 203–211. [Google Scholar] [CrossRef]
- Reddy, G.B.; Dhananjaya, N. Chemical investigation of Mycale mytilorum and a study on toxicity and antidiabetic activity of 5-octadecylpyrrole-2-carboxaldehyde. Bioorg. Med. Chem. 2000, 8, 27–36. [Google Scholar] [CrossRef]
- Venkatesham, U.; Rama Rao, M.; Venkateswarlu, Y. New 5-alkykpyrrole-2-carboxaldehyde derivatives from the sponge Mycale tenuispiculta. J. Nat. Prod. 2000, 63, 1318–1320. [Google Scholar] [CrossRef]
- Ortega, M.J.; Zubia, E.; Sanchez, M.C.; Salva, J.; Carballo, J.L. Structure and cytotoxicity of new metabolites from the sponge Mycale cecilia. Tetrahedron 2004, 60, 2517–2524. [Google Scholar] [CrossRef]
- Mao, S.-C.; Liu, Y.; Morgan, J.B.; Jekabsons, M.B.; Zhou, Y.-D.; Nagle, D.G. Lipophilic 2,5-disubstituted pyrroles from the marine sponge Mycale sp. Inhibit mitochondrial respiration and HIF-1 activation. J. Nat. Prod. 2009, 72, 1927–1936. [Google Scholar] [CrossRef] [Green Version]
- Hertiani, T.; Edrada, R.A.; Van Soest, R.W.; Muller, W.E.; Proksch, P. Chemical investigation on Indonesian marine sponge Mycale phyllophila. Indones. J. Pharm. 2009, 20, 104–111. [Google Scholar]
- Carballo, J.L.; Yanez, B.; Zubia, E.; Ortega, M.J.; Vega, C. Culture of explants from the sponge Mycale cecilia to isolated bioactive mycalazal-type metabolites. Marine Biotechnol. 2010, 12, 516–525. [Google Scholar] [CrossRef]
- Xue, D.-Q.; Liu, H.-L.; Chen, S.-H.; Mollo, E.; Gavagnin, M.; Li, J.; Li, X.-W.; Guo, Y.-W. 5-Alkylpyrrole-2-carboxaldehyde derivatives from the Chinese sponge Mycale lissochela and their PTP1B inhibitory activities. Chin. Chem. Lett. 2017, 28, 1190–1193. [Google Scholar] [CrossRef]
- Wang, P.; Kong, F.; Wei, J.; Wang, Y.; Wang, W.; Hong, K.; Zhu, W. Alkaloids from the mangrove-derived actinomycete Jishengella endophytica 161111. Mar. Drugs 2014, 12, 477–490. [Google Scholar] [CrossRef] [Green Version]
- Chagas, F.O.; Caraballo-Rodriguez, A.M.; Dorrestein, P.C.; Pupo, M.T. Expanding the chemical repertoire of the endophyte Streptomyces albospinus RLe7 reveals amphotericin B as an inducer of a fungal phenotype. J. Nat. Prod. 2017, 80, 1302–1309. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.-H.; Li, J.; Wang, D.; Zhang, M.-M.; Liu, L.-Y.; Sun, F.; Li, J.-Y.; Capon, R.J.; Lin, H.-W. Cinerols, nitrogenous meroterpenoids from the marine sponge Dysidea cinerea. J. Nat. Prod. 2019, 82, 2586–2593. [Google Scholar] [CrossRef]
- El-Demerdash, A.; Tammam, M.A.; Atanasov, A.G.; Hooper, J.N.A.; Mourabit, A.A.; Kijjoa, A. Chemistry and biological activities of the marine sponges genera Mycale (Arenochalina), Biemna and Clathria. Mar. Drugs 2018, 16, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seipp, K.; Geske, L.; Opatz, T. Marine pyrrole alkaloids. Mar. Drugs 2021, 19, 514. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Gao, C.; Jiang, Y.; Guan, P.; Liu, J.; Li, L.; Xu, L.; Huang, X. Jiangrines A–F and jiangolide from an actinobacterium, Jiangella gansuensis. J. Nat. Prod. 2014, 77, 2605–2610. [Google Scholar] [CrossRef]
- Guan, P.; Wang, X.; Jiang, Y.; Dou, N.; Qu, X.; Liu, J.; Lin, B.; Han, L.; Huang, X.; Jiang, C. The anti-inflammatory effects of jiangrines from Jiangella alba through inhibition of p38 and NF-κB signaling pathways. Bioorg. Chem. 2020, 95, 103507. [Google Scholar] [CrossRef]
- Bao, Z.X.; Liu, R.; Li, C.Q.; Pan, X.R.; Zhao, P.J. Pathogenicity and metabolites of Purpureocillium lavendulum YMF1.00683 against Meloidogyne incognita. Pathogens 2022, 11, 795. [Google Scholar] [CrossRef]
- Chiou, W.-F.; Shen, C.-C.; Yu, H.-J.; Chiang, C.-H.; Chen, C.-C.; Chang, W.; Don, M.-J. Total synthesis and antioxidative activity of mangnolamide from Magnolia coco. Heterocycles 2005, 65, 1215–1220. [Google Scholar]
- Kim, S.B.; Chang, B.Y.; Hwang, B.Y.; Kim, S.Y.; Lee, M.K. Pyrrole alkaloids from the fruits of Morus alba. Bioorg. Med. Chem. Lett. 2014, 24, 5656–5659. [Google Scholar] [CrossRef]
- Scotti, C.; Barlow, J.W. Natural products containing the nitrile functional group and their biological activities. Nat. Prod. Commun. 2022, 17, 1–24. [Google Scholar] [CrossRef]
- Kil, Y.-S.; Baral, B.; Jeong, B.-S.; Laatikainen, P.; Han, A.-R.; Hong, M.-J.; Kim, J.-B.; Choi, H.; Park, P.-H.; Nam, J.-W. Combining NMR and MS to describe pyrrole-2-carbaldehydes in wheat bran radiation. J. Agric. Food Chem. 2022, 70, 13002–13014. [Google Scholar] [CrossRef] [PubMed]
Fungal Species | Compound/s | Biological Activity | Strength of Activity | Reference |
---|---|---|---|---|
Mycoleptodonoides aitchisonii | 9 | NQO1 | mild to strong | [12] |
Zizania latifolia | 12, 13, 14 | osteoclast forming inhibition | very weak (no) | [18] |
Cordyceps millitaris | 16 | adipocyte differentiation | significant | [20] |
Xylaria nigripes | 17, 18, 19, 20 | Inhibition of oxidative stress | mild to strong | [21] |
Phlebopus portentosus | 29, 30, 31, 32, 33, 34, 35 | neuroprotective effect | mild to strong | [26] |
Purpureocillium lavendulum | 37 | nematocidal activity | very strong | [107] |
Plant Species | Source | Compound/s | Biological Activity | Strength of Activity | Reference |
---|---|---|---|---|---|
Magnolia coco | leaves | 44 | inhibition off LDL oxidation | mild to strong | [108] |
Ilex paraguariensis | leaves | 49 | elastase inhibition | no activity | [46] |
Lyciumchinense | fruits | 3, 21, 12, 50 | hepatoprotection | very strong | [17] |
Lobelia chinensis | MeOH extract | 61 | elastase inhibition | mild | [52] |
Aralia continentalis | MeOH extract | 21 | elastase inhibition | mild | [54] |
Aconitum carmichaelii, | lateral roots | 4, 63 | antibacterial activity | weak | [56] |
Morus alba | fruits | 3, 4, 21, 65, 66 | macrophage activation | significant (3, 21) | [60] |
Morus alba | fruits | 12, 21, 23, 24, 32, 37–40, 47, 48, 50, 67–71 | lipase activity | significant (23, 32); no activity (12, 21, 24, 37–40, 47, 48, 50, 67–71) | [109] |
Citrullus lanatus | fruits and seeds | 72, 73 | melanogenesis inhibition | moderate (72) | [61] |
Capparis spinosa | fruits | 18, 37, 47, 18, 58 | inhibition of apoptosis | no activity | [49] |
Brassica campestris | bee-collected | 17, 18 | cytotoxicity toward cancer cells | no activity | [63] |
Acorus tartainowii | rhizomes | 18, 74 | protection against high-glucose stress (oxidative) | significant (18) | [66] |
Daylily | flower buds | 75, 76 | inhibition of amyloid aggregation | no activity (75) | [73] |
Shensong Yangxin | capsule | 18, 19, 20, 77 | cardiovascular activity | strong (19, 77); no clear activity (18, 20) | [75] |
African mango commercial sample | powdered seeds | 3, 4, 37, 78 | hydroxyl radical scavenging quinone reductase | moderate (3, 78); no activity (4, 37) | [76] |
Nicotiana tabacum | leaves (EtOH) | 10 | cytotoxicity in lung cancer cells | moderate | [79] |
Juglans regia | flowers (EtOH) | 84, 85 | cytotoxicity (cancer cells) | significant (84) | [81] |
Reynoutria ciliinervis (Nakai) moldenke | roots (EtOH) | 86 | antibacterial and antifungal | moderate | [82] |
Angelica dohurica | Root | 59, 75, 87–92, 93, 94 | AChE inhibition | weak (59, 75, 88, 89, 90) | [83] |
Selaginella delicatula | n-BuOH extract | 95 | antivirus (HBV) | very weak or no activity | [85] |
Hosta Plantaginea | 96 | anti-inflammatory | significant | [86] | |
Urtica fissae herba | aerial part | 12, 16, 18, 21, 58, 59, 61, 92, 97, 98 | antinociception | significant (59, 61, 92, 98) | [87] |
Moringa oleifera | seeds | 5, 10, 96, 99–105, 106 | neuroprotective | significant (5, 99, 103) | [88] |
Microorganism | Source | Compound/s | Biological Activity | Strength of Activity | Reference |
---|---|---|---|---|---|
M. micracanthoxea | Sponge | 121, 122 | cytotoxicity toward cancer cells | strong (122); no activity (121) | [91] |
M. microsigmatosa | Sponge | 115, 116, 123–135 | proliferation inhibition (parasite) | moderate (123) | [92] |
M. mytilorum | Sponge | 136, 137 | hypoglycemic activity | weak (136) | [93] |
Mycale cecilia | Sponge | 109, 112, 115, 117, 123, 126, 127, 131, 141–154 | cytotoxicity (LN-caP, GROV, SK-BR3, SK-Mel-28, A-549, K-562, PANC1, LOVO, HeLa) | strong (148, LN-cap); moderate (123, 142) | [95] |
Micale sp. | Sponge | 115, 116, 123, 126, 127, 141, 152, 153, 155–172 | HIF activity in T47D cells | strong (157, 158); moderate (152, 156, 159, 164); weak (126, 141, 166, 168, 169, 170, 172) | [96] |
M. phyllophia | Sponge | 172, 173 (2:1 mixture) | cytotoxicity toward Hela cells | significant | [97] |
M. lissochela | Sponge | 123, 138, 153, 154, 164, 174, 175 | PTP1B inhibition | strong (138); significant (174, 175) | [99] |
J. endophytica 161111 | actinomycete | 36, 38–40, 48 | anti-H1N1, cytotoxicity (kidney cells) | no activity | [100] |
S. albospinus RLe7 | Endocyte | 39, 48 | antifungal, fungal pigmentation inhibition | no activity | [101] |
D. cinera | Sponge | 176 | PTP1B inhibition | no activity | [98] |
Jiangella gansuensis | actinobacterium | 10, 177–181 | inhibition of macrophage NO production | strong (10, 177–181) | [105] |
Jiangella alba | fermentation broth | 10, 182, 183 | anti-inflammatory | Strong (10, 182, 183 *) | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsugo, S.; Nakamura, Y. Pyrrole-2-carboxaldehydes: Origins and Physiological Activities. Molecules 2023, 28, 2599. https://doi.org/10.3390/molecules28062599
Matsugo S, Nakamura Y. Pyrrole-2-carboxaldehydes: Origins and Physiological Activities. Molecules. 2023; 28(6):2599. https://doi.org/10.3390/molecules28062599
Chicago/Turabian StyleMatsugo, Seiichi, and Yutaka Nakamura. 2023. "Pyrrole-2-carboxaldehydes: Origins and Physiological Activities" Molecules 28, no. 6: 2599. https://doi.org/10.3390/molecules28062599
APA StyleMatsugo, S., & Nakamura, Y. (2023). Pyrrole-2-carboxaldehydes: Origins and Physiological Activities. Molecules, 28(6), 2599. https://doi.org/10.3390/molecules28062599