Bioactive Ingredients with Health-Promoting Properties of Strawberry Fruit (Fragaria x ananassa Duchesne)
Abstract
:1. Introduction
2. World Production and Consumption of Strawberries
3. Health and Nutritional Properties of the Strawberry Fruit
4. Vitamins in Strawberry Fruits
5. The Content of Organic Acids in Strawberry Fruits
6. The Content of Polyphenolic Compounds in Strawberry Fruits
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, Z.; Hasing, T.; Johnson, T.S.; Garner, D.M.; Schwieterman, M.L.; Barbey, C.R.; Colquhoun, T.A.; Sims, C.A.; Resende, M.F.R.; Whitaker, V.M. Strawberry sweetness and consumer preference are enhanced by specific volatile compounds. Hortic. Res. 2021, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Darrow, G.M. The Strawberry. History, Breeding and Physiology. Holt, Rinehart and Winston, New York, 1966. Available online: https://specialcollections.nal.usda.gov/speccoll/collectionsguide/darrow/Darrow_TheStrawberry.pdf (accessed on 2 June 2022).
- Tulipani, S.; Mezzetti, B.; Battino, M. Impact of strawberries on human health: Insight into marginally discussed bioactive compounds for the Mediterranean diet. Public Health Nutr. 2009, 12, 1656–1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giampieri, F.; Tulipani, S.; Alvarez-Suarez, J.M.; Quiles, J.L.; Mezzetti, B.; Battino, M. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition 2012, 28, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.; Feucht, W.; Schmid, M. Bioactive Compounds of Strawberry and Blueberry and Their Potential Health Effects Based on Human Intervention Studies: A Brief Overview. Nutrients 2019, 11, 1510. [Google Scholar] [CrossRef] [Green Version]
- Nunes, G.; Teixeira, F.; Schwarz, K.; Camargo, C.K.; de Resende, J.T.V.; dos Santos, E.F.; Franco, B.C.; Novello, D. Influence of genetic variability on the quality of strawberry cultivars: Sensorial, physical-chemical and nutritional characterization. Acta Sci. Agron. 2021, 43, 46862. [Google Scholar] [CrossRef]
- Khammayom, N.; Maruyama, N.; Chaichana, C. The Effect of Climatic Parameters on Strawberry Production in a Small Walk-In Greenhouse. Agriengineering 2022, 4, 104–121. [Google Scholar] [CrossRef]
- Lapshin, V.; Yakovenko, V.; Shcheglov, S. Genotypic assessment of productivity and quality of berries of strawberry varieties. BIO Web Conf. 2021, 34, 02004. [Google Scholar] [CrossRef]
- Łakomiak, A.; Zhichkin, K.A. Economic aspects of fruit production: A case study in Poland. BIO Web Conf. 2020, 17, 00236. [Google Scholar] [CrossRef] [Green Version]
- Mezzetti, B.; Giampieri, F.; Zhang, Y.-T.; Zhong, C.-F. Status of strawberry breeding programs and cultivation systems in Europe and the rest of the world. J. Berry Res. 2018, 8, 205–221. [Google Scholar] [CrossRef]
- Neri, D.; Baruzzi, G.; Massetani, F.; Faedi, W. Strawberry production in forced and protected culture in Europe as a response to climate change. Can. J. Plant Sci. 2012, 92, 1021–1036. [Google Scholar] [CrossRef]
- Taghavi, T.; Siddiqui, R.; Rutto, L.K. The Effect of Preharvest Factors on Fruit and Nutritional Quality in Strawberry. In Strawberry Pre- and Post-Harvest Management Techniques for Higher Fruit Quality; Toshiki, A., Asaduzzaman, M., Eds.; IntechOpen: London, UK, 2019. [Google Scholar]
- Wysocki, K.; Banaszkiewicz, T.; Kopytowski, J. Factors affecting the chemical composition of strawberry fruits. Pol. J. Nat. Sci. 2012, 27, 5–13. [Google Scholar]
- FAO. Faostat Crops. 2017. Available online: www.fao.org/faostat/en/#data/QC (accessed on 5 July 2022).
- FAO. FAOSTAT online Database. 2016. Available online: http://www.fao.org/faostat/en/#data/QV (accessed on 5 July 2022).
- Grużewska, A.; Gugała, M.; Zarzecka, K. Analysis of the Berry Market—Selected Elements. Probl. World Agric. 2018, 18, 152–161. (In Polish) [Google Scholar] [CrossRef]
- Available online: https://www.atlasbig.com/pl/kraje-wedlug-produkcji-truskawek (accessed on 8 September 2022).
- Lewers, K.S.; Newell, M.J.; Park, E.; Luo, Y. Consumer preference and physiochemical analyses of fresh strawberries from ten cultivars. Int. J. Fruit Sci. 2020, 20, 733–756. [Google Scholar] [CrossRef]
- Stea, T.H.; Nordheim, O.; Bere, E.; Stornes, P.; Eikemo, T.A. Fruit and vegetable consumption in Europe according to gender, educational attainment and regional affiliation—A cross-sectional study in 21 European countries. PLoS ONE 2020, 15, e0232521. [Google Scholar] [CrossRef]
- Bhat, R.; Geppert, J.; Funken, E.; Stamminger, R. Consumers Perceptions and Preference for Strawberries—A Case Study from Germany. Int. J. Fruit Sci. 2015, 15, 405–424. [Google Scholar] [CrossRef]
- Watson, R.; Wright, C.J.; McBurney, T.; Taylor, A.J.; Linforth, R. Influence of harvest date and light integral on the development of strawberry flavour compounds. J. Exp. Bot. 2002, 53, 2121–2129. [Google Scholar] [CrossRef]
- Sharma, R.; Patel, V.; Krishna, H. Relationship between light, fruit and leaf mineral content with albinism incidence in strawberry (Fragaria x ananassa Duch.). Sci. Hortic. 2006, 109, 66–70. [Google Scholar] [CrossRef]
- Asami, D.K.; Hong, Y.-J.; Barrett, D.M.; Mitchell, A.E. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry and corn growing using conventional, organic and sustainable agricultural practices. J. Agric. Food Chem. 2003, 51, 1237–1241. [Google Scholar] [CrossRef]
- Crecente-Campo, J.; Damaceno, M.N.; Romero-Rodríguez, M.; Vázquez-Odériz, M. Color, anthocyanin pigment, ascorbic acid and total phenolic compound determination in organic versus conventional strawberries (Fragaria x ananassa Duch, cv Selva). J. Food Compos. Anal. 2012, 28, 23–30. [Google Scholar] [CrossRef]
- Conti, S.; Villari, G.; Faugno, S.; Melchionna, G.; Somma, S.; Caruso, G. Effects of organic vs. conventional farming system on yield and quality of strawberry grown as an annual or biennial crop in southern Italy. Sci. Hortic. 2014, 180, 63–71. [Google Scholar] [CrossRef]
- Nes, A.; Henriksen, J.K.; Serikstad, G.L.; Stensvand, A. Cultivars and cultivation systems for organic strawberry production in Norway. Acta Agric. Scand. Sect. B Soil Plant Sci. 2017, 67, 485–491. [Google Scholar] [CrossRef]
- Roussos, P.A.; Triantafillidis, A.; Evaggelos Kepolas, E.; Peppas, P.; Piou, A.; Zoti, M.; Gasparatos, D. Effects of Integrated and Organic Management on Strawberry (cv. Camarosa) Plant Growth, Nutrition, Fruit Yield, Quality, Nutraceutical Characteristics, and Soil Fertility Status. Horticulturae 2022, 8, 184. [Google Scholar] [CrossRef]
- Hannum, S.M. Potential Impact of Strawberries on Human Health: A Review of the Science. Crit. Rev. Food Sci. Nutr. 2004, 44, 1–17. [Google Scholar] [CrossRef]
- Afrin, S.; Gasparrini, M.; Forbes-Hernandez, T.Y.; Reboredo-Rodriguez, P.; Mezzetti, B.; Varela-López, A.; Giampieri, F.; Battino, M. Promising Health Benefits of the Strawberry: A Focus on Clinical Studies. J. Agric. Food Chem. 2016, 64, 4435–4449. [Google Scholar] [CrossRef] [PubMed]
- Promsong, A.; Chung, W.O.; Satthakarn, S.; Nittayananta, W. Ellagic acid modulates the expression of oral innate immune mediators: Potential role in mucosal protection. J. Oral Pathol. Med. 2015, 44, 214–221. [Google Scholar] [CrossRef]
- Favarin, D.C.; Teixeira, M.M.; de Andrade, E.L.; Alves, C.D.F.; Chica, J.E.L.; Sorgi, C.A.; Faccioli, L.H.; Rogerio, A.P. Anti-Inflammatory Effects of Ellagic Acid on Acute Lung Injury Induced by Acid in Mice. Mediat. Inflamm. 2013, 164202. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.-M.; Zhao, L.; Li, H.; Xu, H.; Chen, W.-W.; Tao, L. Research progress on the anticarcinogenic actions and mechanisms of ellagic acid. Cancer Biol. Med. 2014, 11, 92–100. [Google Scholar] [CrossRef]
- Li, J.; Zhang, D.; Stoner, G.D.; Huang, C. Differential effects of black raspberry and strawberry extracts on BaPDE-induced activation of transcription factors and their target genes. Mol. Carcinog. 2008, 47, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Somasagara, R.R.; Hegde, M.; Chiruvella, K.K.; Musini, A.; Choudhary, B.; Raghavan, S.C. Extracts of Strawberry Fruits Induce Intrinsic Pathway of Apoptosis in Breast Cancer Cells and Inhibits Tumor Progression in Mice. PLoS ONE 2012, 10, 47021. [Google Scholar] [CrossRef] [Green Version]
- Naidu, K.A. Vitamin C in human health and disease is still a mystery? An overview. Nutr. J. 2003, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Chambial, S.; Dwivedi, S.; Shukla, K.K.; John, P.J.; Sharma, P. Vitamin C in Disease Prevention and Cure: An Overview. Indian J. Clin. Biochem. 2013, 28, 314–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padayatty, S.J.; Levine, M. Vitamin C: The known and the unknown and Goldilocks. Oral Dis. 2016, 22, 463–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, A.C.; Maggini, S. Vitamin C and Immune Function. Nutrients 2017, 9, 1211. [Google Scholar] [CrossRef] [Green Version]
- Kobi, H.; Martins, M.; Silva, P.; Souza, J.; Carneiro, J.; Heleno, F.; Queiroz, M.; Costa, N. Organic and conventional strawberries: Nutritional quality, antioxidant characteristics and pesticide residues. Fruits Int. J. Trop. Subtrop. Hortic. 2018, 73, 39–47. [Google Scholar] [CrossRef]
- Voća, S.; Dobričević, N.; Skendrović Babojelić, M.; Družić, J.; Duralija, B.; Levačić, J. Differences in Fruit Quality of Strawberry cv. Elsanta Depending on Cultivation System and Harvest Time. Agric. Conspec. Sci. 2007, 72, 285–288. [Google Scholar]
- Alvarez-Suarez, J.M.; Mazzoni, L.; Forbes-Hernandez, T.Y.; Gasparrini, M.; Sabbadini, S.; Giampieri, F. The effects of pre-harvest and post-harvest factors on the nutritional quality of strawberry fruits: A review. J. Berry Res. 2014, 4, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Drobek, M.; Frąc, M.; Zdunek, A.; Cybulska, J. The Effect of Cultivation Method of Strawberry (Fragaria x ananassa Duch.) cv. Honeoye on Structure and Degradation Dynamics of Pectin during Cold Storage. Molecules 2020, 25, 4325. [Google Scholar] [CrossRef] [PubMed]
- Hallmann, E.; Piotrowska, A.; Świąder, K. The effect of organic practices on the bioactive compounds content in strawberry fruits. J. Res. Appl. Agric. Eng. 2016, 61, 176–179. [Google Scholar]
- Reganold, J.P.; Andrews, P.K.; Reeve, J.R.; Carpenter-Boggs, L.; Schadt, C.W.; Alldredge, R.J.; Ross, C.F.; Davies, N.M.; Zhou, J. Fruit and Soil Quality of Organic and Conventional Strawberry Agroecosystems. PLoS ONE 2010, 5, e12346. [Google Scholar] [CrossRef]
- Boonyakiat, D.; Chuamuangphan, C.; Maniwara, P.; Seehanam, P. Comparison of physico-chemical quality of different strawberry cultivars at three maturity stages. Int. Food Res. 2016, 23, 2405–2412. [Google Scholar]
- Cervantes, L.; Ariza, M.; Miranda, L.; Lozano, D.; Medina, J.; Soria, C.; Martínez-Ferri, E. Stability of Fruit Quality Traits of Different Strawberry Varieties under Variable Environmental Conditions. Agronomy 2020, 10, 1242. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Cosmulescu, S. Antioxidant Compounds, Nutritional Quality and Colour of Two Strawberry Genotypes from Fragaria x ananassa. Erwerbs-Obstbau 2016, 59, 123–131. [Google Scholar] [CrossRef]
- Pineli, L.D.L.D.O.; Moretti, C.L.; dos Santos, M.S.; Campos, A.B.; Brasileiro, A.V.; Córdova, A.C.; Chiarello, M.D. Antioxidants and other chemical and physical characteristics of two strawberry cultivars at different ripeness stages. J. Food Compos. Anal. 2011, 24, 11–16. [Google Scholar] [CrossRef]
- Sirijan, M.; Pipattanawong, N.; Saeng-On, B.; Chaiprasart, P. Anthocyanin content, bioactive compounds and physico-chemical characteristics of potential new strawberry cultivars rich in-anthocyanins. J. Berry Res. 2020, 10, 397–410. [Google Scholar] [CrossRef]
- Skupień, K.; Oszmiański, J. Comparison of six cultivars of strawberries (Fragaria x ananassa Duch.) grown in northwest Poland. Eur. Food Res. Technol. 2004, 219, 66–70. [Google Scholar] [CrossRef]
- Octavia, L.; Choo, W.S. Folate, ascorbic acid, anthocyanin and colour changes in strawberry (Fragaria x annanasa) during refrigerated storage. LWT Food Sci. Technol. 2017, 86, 652–659. [Google Scholar] [CrossRef]
- Turmanidze, T.; Gulua, L.; Jgenti, M.; Wicker, L. Potential antioxidant retention and quality maintenance in raspberries and strawberries treated with calcium chloride and stored under refrigeration. Braz. J. Food Technol. 2017, 20, e2016089. [Google Scholar] [CrossRef] [Green Version]
- Brandt, K.; Leifert, C.; Sanderson, R.; Seal, C. Agroecosystem management and nutritional quality of plant foods: The case of organic fruits and vegetables. CRC Crit. Rev. Plant Sci. 2011, 30, 177–197. [Google Scholar] [CrossRef]
- Banaś, A.; Korus, A. The nutritional value of strawberries and cherries and their use in nutrition. Med. Rodz. 2016, 19, 158–162. Available online: https://docplayer.pl/46443568-Wartosci-odzywcze-i-wykorzystanie-w-zywieniu-owocow-truskawki-i-wisni.html (accessed on 8 September 2022). (In Polish).
- Giampieri, F.; Alvarez-Suarez, J.M.; Mazzoni, L.; Forbes-Hernandez, T.Y.; Gasparrini, M.; Gonzàlez-Paramàs, A.M.; Santos-Buelga, C.; Quiles, J.L.; Bompadre, S.; Mezzetti, B.; et al. Polyphenol-Rich Strawberry Extract Protects Human Dermal Fibroblasts against Hydrogen Peroxide Oxidative Damage and Improves Mitochondrial Functionality. Molecules 2014, 19, 7798–7816. [Google Scholar] [CrossRef] [Green Version]
- Mezzetti, B.; Balducci, F.; Capocasa, F.; Zhong, C.F.; Cappelletti, R.; Di Vittori, L.; Mazzoni, L.; Giampieri, F.; Battino, M. Breeding Strawberry for Higher Phytochemicals Content and Claim It: Is It Possible? Int. J. Fruit Sci. 2016, 16, 194–206. [Google Scholar] [CrossRef]
- Rami, J.; Dumler, C.; Weber, N.; Rychlik, M.; Netzel, G.; Hong, H.T.; Wright, O.; O’Hare, T.J.; Netzel, M.E. Folate in Red Rhapsody Strawberry—Content and Storage Stability. Proceedings 2020, 70, 47. [Google Scholar] [CrossRef]
- Strålsjö, L.M.; Witthöft, C.M.; Sjöholm, I.M.; Jägerstad, M.I. Folate Content in Strawberries (Fragaria x ananassa): Effects of Cultivar, Ripeness, Year of Harvest, Storage, and Commercial Processing. J. Agric. Food Chem. 2003, 51, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Striegel, L.; Chebib, S.; Netzel, M.E.; Rychlik, M. Improved Stable Isotope Dilution Assay for Dietary Folates Using LC-MS/MS and Its Application to Strawberries. Front. Chem. 2018, 6, 11. [Google Scholar] [CrossRef]
- Tulipani, S.; Mezzetti, B.; Capocasa, F.; Bompadre, S.; Beekwilder, J.; de Vos, C.H.R.; Capanoglu, E.; Bovy, A.; Battino, M. Antioxidants, Phenolic Compounds, and Nutritional Quality of Different Strawberry Genotypes. J. Agric. Food Chem. 2008, 56, 696–704. [Google Scholar] [CrossRef]
- Iyer, R.; Tomar, S. Folate: A Functional Food Constituent. J. Food Sci. 2009, 74, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Shulpekova, Y.; Nechaev, V.; Kardasheva, S.; Sedova, A.; Kurbatova, A.; Bueverova, E.; Kopylov, A.; Malsagova, K.; Dlamini, J.; Ivashkin, V. The Concept of Folic Acid in Health and Disease. Molecules 2021, 26, 3731. [Google Scholar] [CrossRef]
- Paparozzi, E.T.; Meyer, G.E.; Schlegel, V.; Blankenship, E.E.; Adams, S.A.; Conley, M.E.; Loseke, B.; Read, P.E. Strawberry cultivars vary in productivity, sugars and phytonutrient content when grown in a greenhouse during the winter. Sci. Hortic. 2018, 227, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Wang, Y.; Liao, X.; Hu, X. Characterization of physico-chemical and bio-chemical compositions of selected four strawberry cultivars. J. Appl. Bot. Food Qual. 2018, 91, 155–162. [Google Scholar] [CrossRef]
- Ikegaya, A.; Toyoizumi, T.; Ohba, S.; Nakajima, T.; Kawata, T.; Ito, S.; Arai, E. Effects of distribution of sugars and organic acids on the taste of strawberries. Food Sci. Nutr. 2019, 7, 2419–2426. [Google Scholar] [CrossRef]
- Gecer, M.K.; Orman, E.; Gundogdu, M.; Ercisli, S.; Karunakaran, R. Identification of Metabolites Changes and Quality in Strawberry Fruit: Effect of Cultivation in High Tunnel and Open Field. Plants 2022, 11, 1368. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.; Lee, Y.H.; Hong, S.J.; Yeoung, Y.R. Sugar and organic acid contents of day-neutral and ever-bearing strawberry cultivars in high-elevation for summer and autumn fruit production in Korea. Hortic. Environ. Biotechnol. 2013, 54, 214–222. [Google Scholar] [CrossRef]
- Holcroft, D.M.; Kader, A.A. Controlled atmosphere-induced changes in pH and organic acid metabolism may affect color of stored strawberry fruit. Postharvest Biol. Technol. 1999, 17, 19–32. [Google Scholar] [CrossRef]
- Bordonaba, J.G.; Terry, L. Manipulating the taste-related composition of strawberry fruits (Fragaria x ananassa) from different cultivars using deficit irrigation. Food Chem. 2010, 122, 1020–1026. [Google Scholar] [CrossRef] [Green Version]
- Ikegaya, A.; Toyoizumi, T.; Kosugi, T.; Arai, E. Taste and palatability of strawberry jam as affected by organic acid content. Int. J. Food Prop. 2020, 23, 2087–2096. [Google Scholar] [CrossRef]
- Famiani, F.; Battistelli, A.; Moscatello, S.; Cruz-Castillo, J.G.; Walker, R.P. The organic acids that are accumulated in the flesh of fruits: Occurrence, metabolism and factors affecting their contents—A review. Rev. Chapingo Ser. Hortic. 2015, XXI, 97–128. [Google Scholar] [CrossRef]
- Teucher, B.; Olivares, M.; Cori, H. Enhancers of Iron Absorption: Ascorbic Acid and other Organic Acids. Int. J. Vitam. Nutr. Res. 2004, 74, 403–419. [Google Scholar] [CrossRef]
- Noonan, S.C.; Savage, G.P. Oxalate content of foods and its efect on humans. Asia Pac. J. Clin. Nutr. 1999, 8, 64–74. [Google Scholar]
- Sakhaee, K. Recent advances in the pathophysiology of nephrolithiasis. Kidney Int. 2009, 75, 585–595. [Google Scholar] [CrossRef] [Green Version]
- Attalla, K.; De, S.; Monga, M. Oxalate Content of Food: A Tangled Web. Urology 2014, 84, 555–560. [Google Scholar] [CrossRef]
- Massey, L.K. Food Oxalate: Factors Affecting Measurement, Biological Variation, and Bioavailability. J. Am. Diet. Assoc. 2007, 107, 1191–1194. [Google Scholar] [CrossRef] [PubMed]
- Ibranji, A.; Nikolla, E.; Loloci, G.; Mingomataj, E. A case report on transitory histamine intolerance from strawberry intake in a 15 month old child with acute gastroenteritis. Clin. Transl. Allergy 2015, 5, 61. [Google Scholar] [CrossRef] [Green Version]
- Hjernø, K.; Alm, R.; Canbäck, B.; Matthiesen, R.; Trajkovski, K.; Björk, L.; Roepstorff, P.; Emanuelsson, C. Down-regulation of the strawberry Bet v 1-homologous allergen in concert with the flavonoid biosynthesis pathway in colorless strawberry mutant. Proteomics 2006, 6, 1574–1587. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, M.; Yoshikawa, H.; Uno, Y. Expression Profiling of Strawberry Allergen Fra a during Fruit Ripening Controlled by Exogenous Auxin. Int. J. Mol. Sci. 2017, 18, 1186. [Google Scholar] [CrossRef] [Green Version]
- Barre, A.; Simplicien, M.; Benoist, H.; Rougé, P. Fruit allergies: Beware of the seed allergens! Allergies aux fruits: Attention aux allergenes des grains. Rev. Fr. Allergol. 2018, 58, 308–317. [Google Scholar] [CrossRef]
- Muñoz, C.; Hoffmann, T.; Escobar, N.M.; Ludemann, F.; Botella, M.A.; Valpuesta, V.; Schwab, W. The strawberry fruit Fra a allergen functions in flavonoid biosynthesis. Mol. Plant 2010, 3, 113–124. [Google Scholar] [CrossRef]
- Aninowski, M.; Kazimierczak, R.; Hallmann, E.; Rachtan-Janicka, J.; Fijoł-Adach, E.; Feledyn-Szewczyk, B.; Majak, I.; Leszczyńska, J. Evaluation of the Potential Allergenicity of Strawberries in Response to Different Farming Practices. Metabolites 2020, 10, 102. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Y.; Zheng, W. Effect of plant growth temperature on antioxidant capacity in strawberry. J. Agric. Food Chem. 2001, 49, 4977–4982. [Google Scholar] [CrossRef]
- Amini, A.M.; Muzs, K.; Spencer, J.P.; Yaqoob, P. Pelargonidin-3-O-glucoside and its metabolites have modest anti-inflammatory effects in human whole blood cultures. Nutr. Res. 2017, 46, 88–95. [Google Scholar] [CrossRef]
- Schaart, J.G.; Dubos, C.; De La Fuente, I.R.; van Houwelingen, A.M.M.L.; de Vos, R.C.H.; Jonker, H.H.; Xu, W.; Routaboul, J.M.; Lepiniec, L.; Bovy, A.G. Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria ananassa) fruits. New Phytol. 2013, 197, 454–467. [Google Scholar] [CrossRef]
- Kadomura-Ishikawa, Y.; Miyawaki, K.; Noji, S.; Takahashi, A. Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria x ananassa fruits. J. Plant Res. 2013, 126, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Aaby, K.; Mazur, S.; Arnfinn Nes, A.; Skrede, G. Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits: Composition in 27 cultivars and changes during ripening. Food Chem. 2012, 132, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Cerda, B.; Toma’s-Barbera´n, F.A.; Espın, J.C. Metabolism of antioxidant and chemopreventive ellagitannins from strawberries, raspberries, walnuts, and oak-aged wine in humans: Identification of biomarkers and individual variability. J. Agr. Food Chem. 2005, 53, 7–235. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Quispe, C.; Castillo, C.M.S.; Caroca, R.; Lazo-Vélez, M.A.; Antonyak, H.; Polishchuk, A.; Lysiuk, R.; Oliinyk, P.; De Masi, L.; et al. Ellagic Acid: A Review on Its Natural Sources, Chemical Stability, and Therapeutic Potential. Oxidative Med. Cell Longev. 2022, 24. [Google Scholar] [CrossRef]
- Kolniak, J. Effect of freezing, thawing and cryoprotective additives on the content of total polyphenols, anthocyanins and antioxidant capacity of frozen strawberry. Żywność. Nauka. Technologia. Jakoś. 2008, 5, 135–148. (In Polish) [Google Scholar]
- Fijoł-Adach, E.B.; Feledyn-Szewczyk, B.; Kazimierczak, R.; Stalenga, J. Influence of the agricultural production system on the occurrence of bioactive substances in strawberry fruits. Postępy Tech. PrzetwÓRstwa Spożywczego 2016, 1, 78–81. (In Polish) [Google Scholar]
- Bojarska, J.E.; Czaplicki, S.; Zarecka, K.; Zadernowski, R. Phenolic compounds of fruits of selected strawberry varieties. Żywność. Nauka. Technologia. Jakość. 2006, 2, 20–27. (In Polish) [Google Scholar]
- Cordenunsi, B.R.; Genovese, M.I.; Nascimento, J.R.O.D.; Hassimotto, N.M.A.; dos Santos, R.J.; Lajolo, F.M. Effects of Temperature on the Chemical Composition and Antioxidant Activity of Three Strawberry Cultivars. Food Chem. 2005, 91, 113–121. [Google Scholar] [CrossRef]
- Tudor, V.; Manole, C.G.; Teodorescu, R.; Asanica, A.; Barbulescu, I.D. Analysis of some phenolic compounds and free radical scavenging activity of strawberry fruits during storage period. Agric. Agric. Sci. Procedia 2015, 6, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Wang, S.Y. Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J. Agric. Food Chem. 2003, 51, 502–509. [Google Scholar] [CrossRef]
- Wang, S.Y.; Millner, P. Effect of different cultural systems on antioxidant capacity, phenolic content, and fruit quality of strawberries (Fragaria x aranassa duch.). J. Agric. Food Chem. 2009, 57, 9651–9657. [Google Scholar] [CrossRef] [PubMed]
- Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef] [PubMed]
Country | Production [t] | Production per Person [kg] |
---|---|---|
China | 2,964,263 | 2.127 |
USA | 1,296,272 | 3.955 |
Mexico | 653,639 | 5.24 |
Turkey | 440,968 | 5.457 |
Egypt | 362,639 | 3.72 |
Spain | 344,679 | 7.387 |
South Korea | 213,054 | 4.126 |
Russia | 199,000 | 1.355 |
Poland | 195,578 | 5.089 |
Japan | 163,486 | 1.292 |
Morocco | 143,440 | 4.125 |
Vitamin C Content [mg/100 g] | Investigated Factor Influencing Vitamin C Content | Source |
---|---|---|
63.73 ± 3.98–72.57 ± 3.12 | variety | [45] |
37.92 ± 0.42–75.50 ± 6.40 | variety and environmental conditions | [46] |
52.9 ± 0.6–63.4 ± 2.2 | agrosystem | [42] |
97.93–112.34 | agrosystem and variety | [39] |
56.6 ± 1.5–62.1 ± 1.5 | agrosystem | [44] |
28.8 ± 3.7–88.7 ± 8.2 | variety | [10] |
42.15 ± 2.27–81.62 ± 3.55 | variety | [47] |
23.16 ± 2.32–52.85 ± 1.03 | variety and maturity degree | [48] |
81.00–82.50 | variety | [49] |
54.00–87.00 | variety | [50] |
32.42 ± 0.71–83.07 ± 0.31 | agrosystem and date of harvest | [40] |
41.39 ± 9.14–82.64 ± 9.37 | date of harvest | [43] |
57.00 ± 11 | storage condition | [51] |
27.35 ± 0.35–45.17 ± 0.24 | storage condition | [52] |
Vitamin | Content | Source |
---|---|---|
A [μg] | 1.0 | [4] |
2.0 | [54] | |
β-Carotene [μg] | 25.00 ± 0.02 | [54] |
16.00 | [55] | |
E [mg] | 0.01 | [54] |
K [μg] | 13.5 | [54] |
B1 [mg] | 0.024 | [4] |
0.030 | [54] | |
B2 [mg] | 0.06 | [54] |
B3 [mg] | 0.06 | [4] |
0.386 | [54] | |
B4 [mg] | 5.7 | [4] |
B5 [mg] | 0.125 | [4] |
B6 [mg] | 0.047 | [4] |
0.60 | [54] | |
B7 [μg] | 4.0 | [54] |
B9 [μg] | 24 | [4] |
75 | [54] | |
5-methyltetraidrofolic acid [μg] | 23.57 ± 3.832–237.87 ± 18.932 | [56] |
5.286 ± 0.246–6.842 ± 0.317 | [56] | |
Total folate content | 90–118 | [57] |
335–664 | [58] | |
59–153 | [59] | |
20–99 | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Newerli-Guz, J.; Śmiechowska, M.; Drzewiecka, A.; Tylingo, R. Bioactive Ingredients with Health-Promoting Properties of Strawberry Fruit (Fragaria x ananassa Duchesne). Molecules 2023, 28, 2711. https://doi.org/10.3390/molecules28062711
Newerli-Guz J, Śmiechowska M, Drzewiecka A, Tylingo R. Bioactive Ingredients with Health-Promoting Properties of Strawberry Fruit (Fragaria x ananassa Duchesne). Molecules. 2023; 28(6):2711. https://doi.org/10.3390/molecules28062711
Chicago/Turabian StyleNewerli-Guz, Joanna, Maria Śmiechowska, Alicja Drzewiecka, and Robert Tylingo. 2023. "Bioactive Ingredients with Health-Promoting Properties of Strawberry Fruit (Fragaria x ananassa Duchesne)" Molecules 28, no. 6: 2711. https://doi.org/10.3390/molecules28062711
APA StyleNewerli-Guz, J., Śmiechowska, M., Drzewiecka, A., & Tylingo, R. (2023). Bioactive Ingredients with Health-Promoting Properties of Strawberry Fruit (Fragaria x ananassa Duchesne). Molecules, 28(6), 2711. https://doi.org/10.3390/molecules28062711