Structural Evolution and Properties of Praseodymium Antimony Oxochlorides Based on a Chain-like Tertiary Building Unit
Abstract
:1. Introduction
2. Results and Discussions
2.1. Crystal Structure Descriptions
2.2. The Basic Characterizations
2.3. The Photodegradation Characterizations of Compound 1
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cook, T.R.; Zheng, Y.-R.; Stang, P.J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: Comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 2013, 113, 734–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Datta, S.; Saha, M.L.; Stang, P.J. Hierarchical assemblies of supramolecular coordination complexes. Acc. Chem. Res. 2018, 51, 2047–2063. [Google Scholar] [CrossRef] [PubMed]
- Du, M.-H.; Wang, D.-H.; Wu, L.-W.; Jiang, L.-P.; Li, J.-P.; Long, L.-S.; Zheng, L.-S.; Kong, X.-J. Hierarchical assembly of coordination macromolecules with atypical geometries: Gd44Co28 crown and Gd95Co60 cage. Angew. Chem.-Int. Ed. 2022, 61, e202200537. [Google Scholar] [CrossRef]
- Han, H.; Kallakuri, S.; Yao, Y.; Williamson, C.B.; Nevers, D.R.; Savitzky, B.H.; Skye, R.S.; Xu, M.; Voznyy, O.; Dshemuchadse, J.; et al. Multiscale hierarchical structures from a nanocluster mesophase. Nat. Mater. 2022, 21, 518–525. [Google Scholar] [CrossRef]
- Lai, R.-D.; Zhang, J.; Li, X.-X.; Zheng, S.-T.; Yang, G.-Y. Assemblies of increasingly large Ln-containing polyoxoniobates and intermolecular aggregation-disaggregation interconversions. J. Am. Chem. Soc. 2022, 144, 19603–19610. [Google Scholar] [CrossRef]
- Liu, J.-C.; Wang, J.-F.; Han, Q.; Shangguan, P.; Liu, L.-L.; Chen, L.-J.; Zhao, J.-W.; Streb, C.; Song, Y.-F. Multicomponent self-assembly of a giant heterometallic polyoxotungstate supercluster with antitumor activity. Angew. Chem.-Int. Ed. 2021, 60, 11153–11157. [Google Scholar] [CrossRef]
- Oki, O.; Yamagishi, H.; Morisaki, Y.; Inoue, R.; Ogawa, K.; Miki, N.; Norikane, Y.; Sato, H.; Yamamoto, Y. Synchronous assembly of chiral skeletal single-crystalline microvessels. Science 2022, 377, 673–677. [Google Scholar] [CrossRef]
- Hu, B.; Wen, W.-Y.; Sun, H.-Y.; Wang, Y.-Q.; Du, K.-Z.; Ma, W.; Zou, G.-D.; Wu, Z.-F.; Huang, X.-Y. Single-crystal superstructures via hierarchical assemblies of giant rubik’s cubes as tertiary building units. Angew. Chem.-Int. Ed. 2023, 135, e202219025. [Google Scholar] [CrossRef]
- Dearle, A.E.; Cutler, D.J.; Fraser, H.W.L.; Sanz, S.; Lee, E.; Dey, S.; Diaz-Ortega, I.F.; Nichol, G.S.; Nojiri, H.; Evangelisti, M.; et al. An Fe34(III) molecular metal oxide. Angew. Chem.-Int. Ed. 2019, 58, 16903–16906. [Google Scholar] [CrossRef]
- Ma, W.; Hu, B.; Jing, K.; Li, Z.; Jin, J.; Zheng, S.; Huang, X. Proton-conducting layered structures based on transition metal oxo-clusters supported by Sb(III) tartrate scaffolds. Dalton Trans. 2020, 49, 3849–3855. [Google Scholar] [CrossRef]
- Ma, W.; Hu, B.; Li, J.-L.; Zhang, Z.-Z.; Zeng, X.; Jin, J.; Li, Z.; Zheng, S.-T.; Feng, M.-L.; Huang, X.-Y. The uptake of hazardous metal ions into a high-nuclearity cluster-based compound with structural transformation and proton conduction. ACS Appl. Mater. Interfaces 2020, 12, 26222–26231. [Google Scholar] [CrossRef]
- Xiao, H.-P.; Hao, Y.-S.; Li, X.-X.; Xu, P.; Huang, M.-D.; Zheng, S.-T. A water-soluble antimony-rich polyoxometalate with broad-spectrum antitumor activities. Angew. Chem.-Int. Ed. 2022, 61, e202210019. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, D.-S.; Zhang, J.; Zhang, L. Sn6 and Na4 oxo clusters based non-centrosymmetric framework for solution iodine absorption and second harmonic generation response. Inorg. Chem. 2021, 60, 1985–1990. [Google Scholar] [CrossRef]
- Sinclair, Z.L.; Bell, N.L.; Bame, J.R.R.; Long, D.-L.; Cronin, L. Water-soluble self-assembled {Pd84}(Ac) polyoxopalladate nano-wheel as a supramolecular host. Angew. Chem.-Int. Ed. 2023, 135, e202214203. [Google Scholar] [CrossRef]
- Gonzalez, M.I.; Turkiewicz, A.B.; Darago, L.E.; Oktawiec, J.; Bustillo, K.; Grandjean, F.; Long, G.J.; Long, J.R. Confinement of atomically defined metal halide sheets in a metal-organic framework. Nature 2020, 577, 64–68. [Google Scholar] [CrossRef]
- Li, H.; Xu, X.; Tang, Z.; Zhao, J.; Chen, L.; Yang, G.-Y. Three lanthanide-functionalized antimonotungstate clusters with a {Sb4O4Ln3(H2O)8} core: Syntheses, structures, and properties. Inorg. Chem. 2021, 60, 18065–18074. [Google Scholar] [CrossRef]
- Liu, Q.; Yu, H.; Zhang, Q.; Wang, D.; Wang, X. Temperature-responsive self-assembly of single polyoxometalates clusters driven by hydrogen bonds. Adv. Funct. Mater. 2021, 31, 2103561. [Google Scholar] [CrossRef]
- Sun, J.-J.; Wang, W.-D.; Li, X.-Y.; Yang, B.-F.; Yang, G.-Y. {Cu8} cluster-sandwiched polyoxotungstates and their polymers: Syntheses, structures, and properties. Inorg. Chem. 2021, 60, 10459–10467. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Du, M.-H.; Xu, H.; Long, L.-S.; Kong, X.-J.; Zheng, L.-S. Cocrystallization of chiral 3d-4f clusters {Mn10Ln6} and {Mn6Ln2}. Inorg. Chem. 2021, 60, 5925–5930. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, S.-Q.; Chen, J.-N.; Jia, J.-H.; Wang, C.; Paillot, K.; Breslavetz, I.; Long, L.-S.; Zheng, L.; Rikken, G.L.J.A.; et al. Magnetic 3d-4f chiral clusters showing multimetal site magneto-chiral dichroism. J. Am. Chem. Soc. 2022, 144, 8837–8847. [Google Scholar] [CrossRef]
- Zheng, X.-Y.; Jiang, Y.-H.; Zhuang, G.-L.; Liu, D.-P.; Liao, H.-G.; Kong, X.-J.; Long, L.-S.; Zheng, L.-S. A gigantic molecular wheel of {Gd140}: A new member of the molecular wheel family. J. Am. Chem. Soc. 2017, 139, 18178–18181. [Google Scholar] [CrossRef]
- Pan, Z.-T.; Wu, X.-L.; He, C.; Tao, Y.; Hu, Z.-R.; Zhang, H.-D.; Li, H.-Y.; Huang, F.-P. The stepwise formation of {Gd4} clusters with magnetocaloric effect, accompanied by in situ condensation cyclization reactions. Cryst. Growth Des. 2023, 23, 989–996. [Google Scholar] [CrossRef]
- Hu, B.; Feng, M.-L.; Li, J.-R.; Lin, Q.-P.; Huang, X.-Y. Lanthanide antimony oxohalides: From discrete nanoclusters to inorganic-organic hybrid chains and layers. Angew. Chem.-Int. Ed. 2011, 50, 8110–8113. [Google Scholar] [CrossRef]
- Hu, B.; Zou, G.-D.; Feng, M.-L.; Huang, X.-Y. Inorganic-organic hybrid compounds based on novel lanthanide-antimony oxohalide nanoclusters. Dalton Trans. 2012, 41, 9879–9881. [Google Scholar] [CrossRef]
- Zou, G.-D.; Wang, Z.-P.; Song, Y.; Hu, B.; Huang, X.-Y. Syntheses, structures and photocatalytic properties of five new praseodymium-antimony oxochlorides: From discrete clusters to 3D inorganic-organic hybrid racemic compounds. Dalton Trans. 2014, 43, 10064–10073. [Google Scholar] [CrossRef]
- Zou, G.-D.; Zhang, G.-G.; Hu, B.; Li, J.-R.; Feng, M.-L.; Wang, X.-C.; Huang, X.-Y. A 3D hybrid praseodymium-antimony-oxochloride compound: Single-crystal-to-single-crystal transformation and photocatalytic properties. Chem.-Eur. J. 2013, 19, 15396–15403. [Google Scholar] [CrossRef] [PubMed]
- Becker, R.; Berger, H.; Johnsson, M. Monoclinic Cu3(SeO3)2Cl2: An oxohalide with an unusual CuO4Cl trigonal-bipyramidal coordination. Acta Cryst. C 2007, 63, I4–I6. [Google Scholar] [CrossRef] [PubMed]
- Berdonosov, P.S.; Olenev, A.V.; Kumetsov, A.N.; Dolgikh, V.A. A group of new selenite-chlorides of strontium and d-metals (Co,Ni): Synthesis, thermal behavior and crystal chemistry. J. Solid State Chem. 2009, 182, 77–82. [Google Scholar] [CrossRef]
- Johnsson, M.; Tornroos, K.W.; Lemmens, P.; Millet, P. Crystal structure and magnetic properties of a new two-dimensional S=1 quantum spin system Ni5(TeO3)4X2 (X = Cl, Br). Chem. Mater. 2003, 15, 68–73. [Google Scholar] [CrossRef] [Green Version]
- Krivovichev, S.V.; Mentre, O.; Siidra, O.I.; Colmont, M.; Filatov, S.K. Anion-centered tetrahedra in inorganic compounds. Chem. Rev. 2013, 113, 6459–6535. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.-F.; Hu, B.; Fu, Z.-H.; Wang, H.; Xu, G.; Gong, L.-K.; Zou, G.-D.; Huang, X.-Y.; Li, J. Ba13Sb36Cl34O548-: High-nuclearity cluster for the assembly of nanocluster-based compounds. Chem. Commun. 2019, 55, 7442–7445. [Google Scholar] [CrossRef]
- Akhtar, M.N.; Mantasha, I.; Shahid, M.; AlDamen, M.A.; Khalid, M.; Akram, M. Cationic dye adsorption and separation at discrete molecular level: First example of an iron cluster with rapid and selective adsorption of methylene blue from aqueous system. New J. Chem. 2021, 45, 1415–1422. [Google Scholar] [CrossRef]
- Guo, X.-Y.; Wang, X.-J.; Liu, Z.; Liu, Y.-Y.; Liu, J.; Niu, Y.-Y. Two supramolecular compounds constructed by polyacid anion clusters: Synthesis, characterization and performance research. Main Group Chem. 2021, 20, 601–610. [Google Scholar] [CrossRef]
- Hong, W.-W.; Lu, L.; Yue, M.; Huang, C.; Muddassir, M.; Sakiyama, H.; Wang, J. A 3D 8-connected bcu topological metal-organic framework built by trinuclear Cd(II) units: Photocatalysis and LC-MS studies. Polyhedron 2022, 211, 115571. [Google Scholar] [CrossRef]
- Qasem, K.M.A.; Khan, S.; Fitta, M.; Akhtar, M.N.; AlDamen, M.A.; Shahid, M.; Saleh, H.A.M.; Ahmad, M. A new {Cu3Gd2} cluster as a two-in-one functional material with unique topology acting as a refrigerant and adsorbent for cationic dye. CrystEngComm 2022, 24, 5215–5225. [Google Scholar] [CrossRef]
- Cutler, D.J.; Singh, M.K.; Nichol, G.S.; Evangelisti, M.; Schnack, J.; Cronin, L.; Brechin, E.K. Fe15: A frustrated, centred tetrakis hexahedron. Chem. Commun. 2021, 57, 8925–8928. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Spek, A.L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, W.-Y.; Hu, B.; Pan, T.-Y.; Li, Z.-W.; Hu, Q.-Q.; Huang, X.-Y. Structural Evolution and Properties of Praseodymium Antimony Oxochlorides Based on a Chain-like Tertiary Building Unit. Molecules 2023, 28, 2725. https://doi.org/10.3390/molecules28062725
Wen W-Y, Hu B, Pan T-Y, Li Z-W, Hu Q-Q, Huang X-Y. Structural Evolution and Properties of Praseodymium Antimony Oxochlorides Based on a Chain-like Tertiary Building Unit. Molecules. 2023; 28(6):2725. https://doi.org/10.3390/molecules28062725
Chicago/Turabian StyleWen, Wei-Yang, Bing Hu, Tian-Yu Pan, Zi-Wei Li, Qian-Qian Hu, and Xiao-Ying Huang. 2023. "Structural Evolution and Properties of Praseodymium Antimony Oxochlorides Based on a Chain-like Tertiary Building Unit" Molecules 28, no. 6: 2725. https://doi.org/10.3390/molecules28062725
APA StyleWen, W. -Y., Hu, B., Pan, T. -Y., Li, Z. -W., Hu, Q. -Q., & Huang, X. -Y. (2023). Structural Evolution and Properties of Praseodymium Antimony Oxochlorides Based on a Chain-like Tertiary Building Unit. Molecules, 28(6), 2725. https://doi.org/10.3390/molecules28062725