Analysis of Milk Microstructure Using Raman Hyperspectral Imaging
Abstract
:1. Introduction
2. Results and Discussion
2.1. Interpretation of Spectral Signals
2.2. Exploratory Analysis of Hyperspectral Images
2.3. Principal Component Analysis and Spectral Unmixing
2.4. Multivariate Curve Resolution
2.5. Spectral Clustering
3. Materials and Methods
3.1. Milk Samples
3.2. Spectra Acquisition and Preprocessing
3.3. Representation of Hyperspectral Images
3.4. Data Analysis
3.4.1. Principal Component Analysis
3.4.2. Multivariate Curve Resolution (Spectral Unmixing)
3.4.3. Clustering of Spectra
- (1)
- Assign K-mean points (centroids of clusters) in the spectral space randomly.
- (2)
- Calculate distances from each spectrum to each mean point.
- (3)
- Assign each spectrum to the proper cluster by selecting a minimal distance.
- (4)
- Calculate a new mean for each cluster by averaging the assigned spectra.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kalinin, A.V.; Krasheninnikov, V.N.; Krivtsun, V.M. Short-wave near infrared spectrometry of back scattering and transmission of light by milk for multi-component analysis. J. Near Infrared Spectrosc. 2013, 21, 35–41. [Google Scholar] [CrossRef]
- Aernouts, B.; Polshin, E.; Lammertyn, J.; Saeys, W. Visible and near-infrared spectroscopic analysis of raw milk for cow health monitoring: Reflectance or transmittance? J. Dairy Sci. 2011, 94, 5315–5329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muncan, J.; Kovacs, Z.; Pollner, B.; Ikuta, K.; Ohtani, Y.; Terada, F.; Tsenkova, R. Near infrared aquaphotomics study on common dietary fatty acids in cow’s liquid, thawed milk. Food Control 2021, 122, 107805. [Google Scholar] [CrossRef]
- Tsenkova, R.; Atanassova, S.; Itoh, K.; Ozaki, Y.; Toyoda, K. Near infrared spectroscopy for biomonitoring: Cow milk composition measurement in a spectral region from 1100 to 2400 nanometers. J. Anim. Sci. 2000, 78, 515–522. [Google Scholar] [CrossRef] [Green Version]
- Šašić, S.; Ozaki, Y. Short-wave near-infrared spectroscopy of biological fluids. 1. Quantitative analysis of fat, protein and lactose in raw milk by partial least-squares regression and band assignment. Anal. Chem. 2001, 73, 64–71. [Google Scholar] [CrossRef]
- Zhao, X.; Song, Y.; Zhang, Y.; Cai, G.; Xue, G.; Liu, Y.; Chen, K.; Zhang, F.; Wang, K.; Zhang, M.; et al. Predictions of milk fatty acid contents by mid-infrared spectroscopy in Chinese Holstein cows. Molecules 2023, 28, 666. [Google Scholar] [CrossRef]
- Walstra, P.; Geurts, T.J.; Noomen, A.; Jellema, A.; van Boekel, M.A.J.S. Dairy Technology: Principles of Milk Properties and Processes; Marcel Dekker, Inc.: New York, NY, USA, 1999; 752p. [Google Scholar] [CrossRef]
- Postelmans, A.; Aernouts, B.; Jordens, J.; Gerven, T.V.; Saeys, W. Milk homogenization monitoring: Fat globule size estimation from scattering spectra of milk. Innov. Food Sci. Emerg. Technol. 2020, 60, 102311. [Google Scholar] [CrossRef]
- Bogomolov, A.; Dietrich, S.; Boldini, B.; Kessler, R.W. Quantitative determination of fat and total protein in milk based on visible light scatter. Food Chem. 2012, 134, 412–418. [Google Scholar] [CrossRef]
- Bogomolov, A.; Melenteva, A. Scatter-based quantitative spectroscopic analysis of milk fat and total protein in the region 400–1100 nm in the presence of fat globule size variability. Chemometr. Intell. Lab. Syst. 2013, 126, 129–139. [Google Scholar] [CrossRef]
- Surkova, A.; Belikova, V.; Kirsanov, D.; Legin, A.; Bogomolov, A. Towards an optical multisensor system for dairy: Global calibration for fat analysis in homogenized milk. Microchem. J. 2019, 149, 104012. [Google Scholar] [CrossRef]
- Kucheryavskiy, S.; Melenteva, A.; Bogomolov, A. Determination of fat and total protein content in milk using conventional digital imaging. Talanta 2014, 121, 144–152. [Google Scholar] [CrossRef]
- Katsumata, T.; Aizawa, H.; Komuro, S.; Ito, S.; Matsumoto, T. Quantitative analysis of fat and protein concentrations of milk based on fibre-optic evaluation of back scattering intensity. Int. Dairy J. 2020, 109, 104743. [Google Scholar] [CrossRef]
- Czaja, T.; Baranowska, M.; Mazurek, S.; Szostak, R. Determination of nutritional parameters of yoghurts by FT Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 196, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Heise, H.M.; Damm, U.; Lampen, P.; Davies, A.N.; Mclntyre, P.S. Spectral variable selection for partial least squares calibration applied to authentication and quantification of extra virgin olive oils using Fourier transform Raman Spectroscopy. Appl. Spectrosc. 2005, 59, 1286–1294. [Google Scholar] [CrossRef]
- El-Abassy, R.M.; Donfack, P.; Materny, A. Assessment of conventional and microwave heating induced degradation of carotenoids in olive oil by VIS Raman spectroscopy and classical methods. Food Res. Int. 2010, 43, 694–700. [Google Scholar] [CrossRef]
- El-Abassy, R.M.; Eravuchira, P.J.; Donfack, P.; von der Kammer, B.; Materny, A. Fast determination of milk fat content using Raman spectroscopy. Vib. Spectrosc. 2011, 56, 3–8. [Google Scholar] [CrossRef]
- McGoverin, C.M.; Clark, A.S.S.; Holroyd, S.E.; Gordon, K.C. Raman spectroscopic quantification of milk powder constituents. Anal. Chim. Acta 2010, 673, 26–32. [Google Scholar] [CrossRef]
- Wang, H.; Xin, Y.; Ma, H.; Fang, P.; Li, C.; Wan, X.; He, Z.; Jia, J.; Ling, Z. Rapid detection of Chinese-specific peony seed oil by using confocal Raman spectroscopy and chemometrics. Food Chem. 2021, 362, 130041. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Mendes, T.; Rodrigues, B.V.M.; Porto, B.L.S.; da Rocha, R.A.; de Oliveira, M.A.L.; de Castro, F.K.; de Carvalho dos Anjos, V.; Bell, M.J.V. Raman Spectroscopy as a fast tool for whey quantification in raw milk. Vib. Spectrosc. 2020, 111, 103150. [Google Scholar] [CrossRef]
- Gallier, S.; Gordon, K.C.; Jiménez-Flores, R.; Everett, D.W. Composition of bovine milk fat globules by confocal Raman microscopy. Int. Dairy J. 2011, 21, 402–412. [Google Scholar] [CrossRef]
- Gallier, S.; Gragson, D.; Jiménez-Flores, R.; Everett, D. Using confocal laser scanning microscopy to probe the milk fat globule membrane and associated proteins. J. Agric. Food Chem. 2010, 58, 4250–4257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yunping, Y.; Guozhong, Z.; Yuanyuan, Y.; Hongyan, M.; Qingzhe, J.; Xiaoqiang, Z.; Xingguo, W. Milk fat globules by confocal Raman microscopy: Differences in human, bovine and caprine milk. Food Res. Int. 2016, 80, 61–69. [Google Scholar] [CrossRef]
- Breuninger, S.; Henrich, M.; Dieing, T. Key elements of confocal Raman microscopy for high-resolution imaging. Spectroscopy 2014, 29, 933897. Available online: https://www.spectroscopyonline.com/view/key-elements-confocal-raman-microscopy-high-resolution-imaging (accessed on 1 March 2023).
- Smith, E.; Dent, G. Modern Raman Spectroscopy—A Practical Approach; Smith, E., Dent, G., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2005; 210p. [Google Scholar] [CrossRef]
- Pawley, J.B. Handbook of Biological Confocal Microscopy, 3rd ed.; Springer: Berlin, Germany, 2006; 985p. [Google Scholar] [CrossRef]
- Caponigro, V.; Marini, F.; Scannell, A.G.M.; Gowen, A.A. Single-drop technique for lactose prediction in dry milk on metallic surfaces: Comparison of Raman, FT—NIR, and FT—MIR spectral imaging. Food Control. 2023, 144, 109351. [Google Scholar] [CrossRef]
- Huang, W.; Fan, D.; Li, W.; Meng, Y.; Liu, T.C.-y. Rapid evaluation of milk acidity and identification of milk adulteration by Raman spectroscopy combined with chemometrics analysis. Vib. Spectrosc. 2022, 123, 103440. [Google Scholar] [CrossRef]
- Favre-Bulle, I.A.; Scott, E.K. Optical tweezers across scales in cell biology. Trends Cell Biol. 2022, 32, 932–946. [Google Scholar] [CrossRef]
- Esbensen, K.H. Multivariate Data Analysis—In Practice. An Introduction to Multivariate Data Analysis and Experimental Design, 5th ed.; CAMO Process AS: Oslo, Norway, 2001; pp. 19–29. ISBN 82-993330-2-4. [Google Scholar]
- Kucheryavskiy, S.; Windig, W.; Bogomolov, A. Spectral unmixing using the concept of pure variables. In Data Handling in Science and Technology, V. 30. Resolving Spectral Mixtures; Ruckebusch, C., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 53–99. [Google Scholar] [CrossRef]
- Windig, W.; Bogomolov, A.; Kucheryavskiy, S. Two-Way Data Analysis: Detection of Purest Variables. In Comprehensive Chemometrics: Chemical and Biochemical Data Analysis; Brown, S., Tauler, R., Walczak, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 107–136. [Google Scholar] [CrossRef]
- Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- Zhang, L.; Henson, M.J. A practical algorithm to remove cosmic spikes in Raman imaging data for pharmaceutical applications. Appl. Spectrosc. 2007, 61, 1015–1020. [Google Scholar] [CrossRef]
- Li, S.; Dai, L. An improved algorithm to remove cosmic spikes in Raman spectra for online monitoring. Appl. Spectrosc. 2011, 65, 1300–1306. [Google Scholar] [CrossRef]
- Eilers, P.H.C.; Boelens, H.F.M. Baseline correction with asymmetric least squares smoothing. Leiden Univ. Med. Centre Rep. 2005, 1, 5. [Google Scholar]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Afseth, N.K.; Kohler, A. Extended multiplicative signal correction in vibrational spectroscopy, a tutorial. Chemometr. Intell. Lab. Syst. 2012, 117, 92–99. [Google Scholar] [CrossRef]
- Lasch, P. Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging. Chemometr. Intell. Lab. Syst. 2012, 117, 100–114. [Google Scholar] [CrossRef] [Green Version]
- Tauler, R.; Kowalski, B.; Fleming, S. Multivariate curve resolution applied to spectral data from multiple runs of an industrial process. Anal. Chem. 1993, 65, 2040–2047. [Google Scholar] [CrossRef]
- Windig, W.; Guilment, J. Interactive self-modeling mixture analysis. Anal. Chem. 1991, 63, 1425–1432. [Google Scholar] [CrossRef]
- Tauler, R. Multivariate curve resolution applied to second order data. Chemometr. Intell. Lab. Syst. 1995, 30, 133–146. [Google Scholar] [CrossRef]
- De Juan, A.; Rutan, S.C.; Tauler, R. Two-way data analysis: Multivariate curve resolution, iterative resolution methods. In Comprehensive Chemometrics, 2nd ed.; Brown, S., Tauler, R., Walczak, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 153–171. [Google Scholar] [CrossRef]
Sample | Fat, % | Protein, % | Lactose, % | Data Acquired |
---|---|---|---|---|
F1 milk | 2.3 | 3.4 | 4.9 | HSI of globule area |
F4 high-fat milk | 5.57 | 3.62 | 4.72 | HSI of medium area |
E4 high-protein milk | 4.5 | 4.1 | 5.3 | medium spectra: protein |
MO1 skim milk | 0.1 | 0.5 | 3.6 | medium spectra: lactose |
F8 cream | 16.1 | 3.0 | 23.9 | globule spectra: fat |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surkova, A.; Bogomolov, A. Analysis of Milk Microstructure Using Raman Hyperspectral Imaging. Molecules 2023, 28, 2770. https://doi.org/10.3390/molecules28062770
Surkova A, Bogomolov A. Analysis of Milk Microstructure Using Raman Hyperspectral Imaging. Molecules. 2023; 28(6):2770. https://doi.org/10.3390/molecules28062770
Chicago/Turabian StyleSurkova, Anastasiia, and Andrey Bogomolov. 2023. "Analysis of Milk Microstructure Using Raman Hyperspectral Imaging" Molecules 28, no. 6: 2770. https://doi.org/10.3390/molecules28062770
APA StyleSurkova, A., & Bogomolov, A. (2023). Analysis of Milk Microstructure Using Raman Hyperspectral Imaging. Molecules, 28(6), 2770. https://doi.org/10.3390/molecules28062770