An Investigation of a Natural Biosorbent for Removing Methylene Blue Dye from Aqueous Solution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Adsorbent Characterization
2.2. Optimization of the Dye Retention by the Established Extractor
2.3. Sorption Kinetics
2.4. Adsorption Isotherm
2.5. Environmental Samples
3. Experimental
3.1. Chemicals and Materials
3.2. Instrumentation
3.3. Preparation of the Biosorbent
3.4. Recommended Batch Experiments
3.5. Sorption Kinetic Study
3.5.1. The Pseudo-First-Order Model
3.5.2. The Pseudo-Second-Order Model
3.6. Adsorption Isotherm Model
3.6.1. Langmuir Isotherm Model
- An adsorbate monolayer is created on the adsorbent surface when it becomes saturated;
- Adsorbates are adsorbed at a specified number of sites;
- All sites are energetically equivalent;
- All sites hold one adsorbate species;
- No interactions occur between the species of the adsorbate.
3.6.2. Freundlich Isotherm Model
3.6.3. Temkin Isotherm Model
3.7. Study of Environmental Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hassan, M.M.; Carr, C.M. Biomass-derived porous carbonaceous materials and their composites as adsorbents for cationic and anionic dyes: A review. Chemosphere 2021, 265, 129087. [Google Scholar] [CrossRef]
- Tani, A.; Thomson, A.J.; Butt, J.N. Methylene blue as an electrochemical discriminator of single- and double-stranded oligonucleotides immobilised on gold substrates. Analyst 2001, 126, 1756–1759. [Google Scholar] [CrossRef]
- Bożęcka, A.M.; Orlof-Naturalna, M.M.; Kopeć, M. Methods of Dyes Removal from Aqueous Environment. J. Ecol. Eng. 2021, 22, 111–118. [Google Scholar] [CrossRef]
- Allafchian, A.; Mousavi, Z.S.; Hosseini, S.S. Application of cress seed musilage magnetic nanocomposites for removal of methylene blue dye from water. Int. J. Biol. Macromol. 2019, 136, 199–208. [Google Scholar] [CrossRef]
- Hassan, A.; Abdel-Mohsen, A.; Fouda, M.M. Comparative study of calcium alginate, activated carbon, and their composite beads on methylene blue adsorption. Carbohydr. Polym. 2014, 102, 192–198. [Google Scholar] [CrossRef]
- Mulushewa, Z.; Dinbore, W.T.; Ayele, Y. Removal of methylene blue from textile waste water using kaolin and zeolite-x synthesized from Ethiopian kaolin. Environ. Anal. Health Toxicol. 2021, 36, e2021007. [Google Scholar] [CrossRef]
- Quan, X.; Luo, D.; Wu, J.; Li, R.; Cheng, W.; Ge, S. Ozonation of acid red 18 wastewater using O3/Ca(OH)2 system in a micro bubble gas-liquid reactor. J. Environ. Chem. Eng. 2017, 5, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Musz-Pomorska, A.; Widomski, M.K. Variant analysis of the chlorination efficiency of water in a selected water supply network. Proc. ECOpole’19 Conf. 2020, 14, 19–28. [Google Scholar] [CrossRef]
- Tahir, K.; Miran, W.; Jang, J.; Maile, N.; Shahzad, A.; Moztahida, M.; Ghani, A.A.; Kim, B.; Jeon, H.; Lee, D.S. MXene-coated biochar as potential biocathode for improved microbial electrosynthesis system. Sci. Total Environ. 2021, 773, 145677. [Google Scholar] [CrossRef] [PubMed]
- Biedrzycka, A.; Skwarek, E.; Hanna, U.M. Hydroxyapatite with magnetic core: Synthesis methods, properties, adsorption and medical applications. Adv. Colloid Interface Sci. 2021, 291, 102401. [Google Scholar] [CrossRef] [PubMed]
- Babu, J.; Murthy, Z. Treatment of textile dyes containing wastewaters with PES/PVA thin film composite nanofiltration membranes. Sep. Purif. Technol. 2017, 183, 66–72. [Google Scholar] [CrossRef]
- Sarayu, K.; Sandhya, S. Current Technologies for Biological Treatment of Textile Wastewater—A Review. Appl. Biochem. Biotechnol. 2012, 167, 645–661. [Google Scholar] [CrossRef]
- Belachew, N.; Hinsene, H. Preparation of Zeolite 4A for Adsorptive Removal of Methylene Blue: Optimization, Kinetics, Isotherm, and Mechanism Study. Silicon 2022, 14, 1629–1641. [Google Scholar] [CrossRef]
- Neolaka, Y.A.; Riwu, A.A.; Aigbe, U.O.; Ukhurebor, K.E.; Onyancha, R.B.; Darmokoesoemo, H.; Kusuma, H.S. Potential of activated carbon from various sources as a low-cost adsorbent to remove heavy metals and synthetic dyes. Results Chem. 2023, 5, 100711. [Google Scholar] [CrossRef]
- Xue, H.; Gao, X.; Seliem, M.K.; Mobarak, M.; Dong, R.; Wang, X.; Fu, K.; Li, Q.; Li, Z. Efficient adsorption of anionic azo dyes on porous heterostructured MXene/biomass activated carbon composites: Experiments, characterization, and theoretical analysis via advanced statistical physics models. Chem. Eng. J. 2023, 451, 138735. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, J.; Zhou, Y.; Liu, Y. Recent advances for dyes removal using novel adsorbents: A review. Environ. Pollut. 2019, 252, 352–365. [Google Scholar] [CrossRef]
- El Bardiji, N.; Ziat, K.; Naji, A.; Saidi, M. Fractal-Like Kinetics of Adsorption Applied to the Solid/Solution Interface. ACS Omega 2020, 5, 5105–5115. [Google Scholar] [CrossRef]
- Łach, M.; Grela, A.; Pławecka, K.; Guigou, M.D.; Mikuła, J.; Komar, N.; Bajda, T.; Korniejenko, K. Surface Modification of Synthetic Zeolites with Ca and HDTMA Compounds with Determination of Their Phytoavailability and Comparison of CEC and AEC Parameters. Materials 2022, 15, 4083. [Google Scholar] [CrossRef] [PubMed]
- Neolaka, Y.A.; Lawa, Y.; Riwu, M.; Darmokoesoemo, H.; Setyawati, H.; Naat, J.; Widyaningrum, B.A.; Aigbe, U.O.; Ukhurebor, K.E.; Onyancha, R.B.; et al. Synthesis of Zinc(II)-natural zeolite mordenite type as a drug carrier for ibuprofen: Drug release kinetic modeling and cytotoxicity study. Results Chem. 2022, 4, 100578. [Google Scholar] [CrossRef]
- Dosa, M.; Grifasi, N.; Galletti, C.; Fino, D.; Piumetti, M. Natural Zeolite Clinoptilolite Application in Wastewater Treatment: Methylene Blue, Zinc and Cadmium Abatement Tests and Kinetic Studies. Materials 2022, 15, 8191. [Google Scholar] [CrossRef]
- Mohamed, F.; Shaban, M.; Zaki, S.K.; Abd-Elsamie, M.S.; Sayed, R.; Zayed, M.; Khalid, N.; Saad, S.; Omar, S.; Ahmed, A.M.; et al. Activated carbon derived from sugarcane and modified with natural zeolite for efficient adsorption of methylene blue dye: Experimentally and theoretically approaches. Sci. Rep. 2022, 12, 18031. [Google Scholar] [CrossRef] [PubMed]
- Van Dang, L.; Nguyen, T.T.M.; Van Do, D.; Le, S.T.; Pham, T.D.; Le, A.T.M. Study on the Synthesis of Chabazite Zeolites via Interzeolite Conversion of Faujasites. J. Anal. Methods Chem. 2021, 2021, 5554568. [Google Scholar] [CrossRef]
- Kadja, G.T.; Culsum, N.T.; Mardiana, S.; Azhari, N.J.; Fajar, A.T. Recent advances in the enhanced sensing performance of zeolite-based materials. Mater. Today Commun. 2022, 33, 104331. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L.; Shabani, F. Climate change impacts on date palm cultivation in Saudi Arabia. J. Agric. Sci. 2017, 155, 1203–1218. [Google Scholar] [CrossRef]
- Chowdhury, S.; Pan, S.; Balasubramanian, R.; Das, P. Date palm based activated carbon for the efficient removal of organic dyes from aqueous environment. Sustain. Agric. Rev. 2019, 34, 247–263. [Google Scholar] [CrossRef]
- Elseify, L.A.; Midani, M.; Shihata, L.A.; El-Mously, H. Review on cellulosic fibers extracted from date palms (Phoenix dactylifera L.) and their applications. Cellulose 2019, 26, 2209–2232. [Google Scholar] [CrossRef]
- Domingues, J.A.; Consolin Filho, N.; Souza LA, G.D.; Medeiros, F.V.D.S. Coagulation activity of the seed extract from Zygia cauliflora (WILLD.) KILLIP Applied in Water Treatment. Rev. Ambiente Água 2020, 15, 1–12. [Google Scholar] [CrossRef]
- Shafiq, M.; Alazba, A.A.; Amin, M.T. Removal of heavy metals from wastewater using date palm as a biosorbent: A comparative review. Sains Malays. 2018, 47, 35–49. [Google Scholar] [CrossRef]
- Asim, M.; Jawaid, M.; Khan, A.; Asiri, A.M.; Malik, M.A. Effects of Date Palm fibres loading on mechanical, and thermal properties of Date Palm reinforced phenolic composites. J. Mater. Res. Technol. 2020, 9, 3614–3621. [Google Scholar] [CrossRef]
- Alhogbi, B.G.; Altayeb, S.; Bahaidarah, E.A.; Zawrah, M.F. Removal of Anionic and Cationic Dyes from Wastewater Using Activated Carbon from Fiber of palm tree Waste. Processes 2021, 9, 416. [Google Scholar] [CrossRef]
- El Maksod, I.A.; Elzaharany, E.A.; Kosa, S.A.; Hegazy, E.Z. Simulation program for zeolite A and X with an active carbon composite as an effective adsorbent for organic and inorganic pollutants. Microporous Mesoporous Mater. 2016, 224, 89–94. [Google Scholar] [CrossRef]
- Neto, J.S.S.; de Queiroz, H.F.M.; Aguiar, R.A.A.; Banea, M.D. A Review on the Thermal Characterisation of Natural and Hybrid Fiber Composites. Polymers 2021, 13, 4425. [Google Scholar] [CrossRef] [PubMed]
- Mosai, A.K.; Chimuka, L.; Cukrowska, E.M.; Kotzé, I.A.; Tutu, H. The Recovery of Rare Earth Elements (REEs) from Aqueous Solutions Using Natural Zeolite and Bentonite. Water Air Soil Pollut. 2019, 230, 188. [Google Scholar] [CrossRef]
- Dhiman, V.; Kondal, N. ZnO nanoadsorbents: A potent material for removal of heavy metal ions from wastewater. Colloid Interface Sci. Commun. 2021, 41, 100380. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Dehghan, A.; Alidadi, H.; Dolatabadi, M.; Mehrabpour, M.; Converti, A. Removal of methylene blue dye from aqueous solutions by a new chitosan/zeolite composite from shrimp waste: Kinetic and equilibrium study. Korean J. Chem. Eng. 2017, 34, 1699–1707. [Google Scholar] [CrossRef]
- Gao, W.; Zhao, S.; Wu, H.; Deligeer, W.; Asuha, S. Direct acid activation of kaolinite and its effects on the adsorption of methylene blue. Appl. Clay Sci. 2016, 126, 98–106. [Google Scholar] [CrossRef]
- Li, C.; Zhong, H.; Wang, S.; Xue, J.; Zhang, Z. Removal of basic dye (methylene blue) from aqueous solution using zeolite synthesized from electrolytic manganese residue. J. Ind. Eng. Chem. 2015, 23, 344–352. [Google Scholar] [CrossRef]
- Huang, T.; Yan, M.; He, K.; Huang, Z.; Zeng, G.; Chen, A.; Peng, M.; Li, H.; Yuan, L.; Chen, G. Efficient removal of methylene blue from aqueous solutions using magnetic graphene oxide modified zeolite. J. Colloid Interface Sci. 2019, 543, 43–51. [Google Scholar] [CrossRef]
- Kusuma, H.S.; Aigbe, U.O.; Ukhurebor, K.E.; Onyancha, R.B.; Okundaye, B.; Simbi, I.; Ama, O.M.; Darmokoesoemo, H.; Widyaningrum, B.A.; Osibote, O.A.; et al. Biosorption of Methylene blue using clove leaves waste modified with sodium hydroxide. Results Chem. 2023, 5, 100778. [Google Scholar] [CrossRef]
- Wang, K.; Peng, N.; Sun, J.; Lu, G.; Chen, M.; Deng, F.; Dou, R.; Nie, L.; Zhong, Y. Synthesis of silica-composited biochars from alkali-fused fly ash and agricultural wastes for enhanced adsorption of methylene blue. Sci. Total Environ. 2020, 729, 139055. [Google Scholar] [CrossRef]
- Ibrahim, H.; Jamil, T.S.; Hegazy, E. Application of zeolite prepared from Egyptian kaolin for the removal of heavy metals: II. Isotherm models. J. Hazard. Mater. 2010, 182, 842–847. [Google Scholar] [CrossRef] [PubMed]
- Sandollah, N.A.S.; Ghazali, S.A.I.S.M.; Ibrahim, W.N.W.; Rusmin, R. Adsorption-Desorption Profile of Methylene Blue Dye on Raw and Acid Activated Kaolinite. Indones. J. Chem. 2020, 20, 755–765. [Google Scholar] [CrossRef]
- Ruthven, D.M. Principles of Adsorption and Adsorption Processes; John Wiley & Sons: New York, NY, USA, 1984; ISBN 978-0-471-86606-0. [Google Scholar]
Sample | a | b | c | α | β | γ | Formula |
---|---|---|---|---|---|---|---|
Zeolite A, reference | 12.144 | 12.144 | 12.144 | 90 | 90 | 90 | (Li, Na)2 Al2 Si1.85 O7.7 × H2 |
Wave Number cm−1 | Stretching | Bending |
---|---|---|
518–478 | stretching of Zeo-FPT vibrations of the bonds inside the TO4 (T = Al, Si) tetrahedrons | weak bands of Zeo-FPT bending vibrations of O–T–O |
670–650 | weak bands of symmetric stretching vibration of the T–O bonds (Si–O–Si bending) | |
1000–952 | Zeo and Zeo-FPT, the internal asymmetric stretching vibration of Si–O–T (T = Si or Al) | C=C bending; strong monosubstituted alkene |
1000 | strong, broad CO–O–CO stretching anhydride | |
1044 | the internal asymmetric stretching vibration of Si–O–T (T = Si or Al) in zeolite | |
1500 | bending vibration bands of strong hydroxyl groups | |
2165–2030 | triple bond region (2000–2500) presence of alkynes C=C=N stretching ketenimine C=C=O stretching ketene | |
3200–2700 cm−1 | weak broad O–H stretching | weak bending vibration bands of hydroxyl groups (H–O–H) |
3740 | stretching vibrations of the OH groups; vibration found for water vapor |
Pseudo-First-Order | Pseudo-Second-Order | ||
---|---|---|---|
Qe,calc (mg g−1) | 0.220 | Qe,calc (mg g−1) Qe,exp (mg g−1) | 0.353 0.438 |
R2 | 0.748 | R2 | 0.998 |
K1 (min−1) | 0.016 | K2 (g mg−1 min−1) | 0.787 |
Isotherm Model | Parameter | Value |
---|---|---|
Langmuir | Qmax (mg g−1) | 27.933 |
KL (L mg−1) | 4.533 × 10−3 | |
R2 | 0.547 | |
Freundlich | Kf (mg1−1/n L1/n g−1) | 0.163 |
1/n | 0.884 | |
R2 | 0.969 | |
Temkin | KT (L g−1) | 1.57 |
R2 | 0.732 | |
B (kJ mol−1) | 9.36 |
Biosorbent | Qmax mgg−1 | Adsorption Time (min) | Kinetic/Isotherm Models | Reference |
---|---|---|---|---|
Zeolite modified by magnetic graphene oxide (Cu-Z-GO-M) (1:1) | 99.2 | 600 | (PSO)/(FRH) | [38] |
Sugarcane waste-activated carbon modified with natural zeolite (AC500/NZ) | 51 | - | (PSO)/(TMK) | [21] |
Zeolite 4A from Ethiopian kaolin | 44.35 | 179.82 | (PSO)/(LNR) | [13] |
Zeolite-X from Ethiopian kaolin | 0.61 | 180 | (PSO)/(FRH) | [6] |
Clove leaves activated with sodium hydroxide (CL-NaOH) | 9.80 | 60 | (PSO)/(LNR) | [39] |
Rice straw biochars | 131.58 | - | (PSO)/(LNR) | [40] |
(Zeo-FPT) (1:1) biosorbent | 0.438 | 40 | (PSO)/(FRH) | this study |
Water | Time | m (g) | C (mg L−1) | V (L) | % | Q (mg g−1) |
---|---|---|---|---|---|---|
min | ||||||
Tap | 70 | 0.2 | 10 | 0.025 | 99.040 | 1.238 |
Well | 70 | 0.2 | 10 | 0.025 | 99.382 | 1.242 |
Bottle | 70 | 0.2 | 10 | 0.025 | 97.856 | 1.223 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhogbi, B.G.; Al Balawi, G.S. An Investigation of a Natural Biosorbent for Removing Methylene Blue Dye from Aqueous Solution. Molecules 2023, 28, 2785. https://doi.org/10.3390/molecules28062785
Alhogbi BG, Al Balawi GS. An Investigation of a Natural Biosorbent for Removing Methylene Blue Dye from Aqueous Solution. Molecules. 2023; 28(6):2785. https://doi.org/10.3390/molecules28062785
Chicago/Turabian StyleAlhogbi, Basma G., and Ghadeer S. Al Balawi. 2023. "An Investigation of a Natural Biosorbent for Removing Methylene Blue Dye from Aqueous Solution" Molecules 28, no. 6: 2785. https://doi.org/10.3390/molecules28062785
APA StyleAlhogbi, B. G., & Al Balawi, G. S. (2023). An Investigation of a Natural Biosorbent for Removing Methylene Blue Dye from Aqueous Solution. Molecules, 28(6), 2785. https://doi.org/10.3390/molecules28062785