Chiral Phosphine Catalyzed Allylic Alkylation of Benzylidene Succinimides with Morita–Baylis–Hillman Carbonates
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Procedure for the Synthesis of α-Benzylidene Succinimide 1
3.2. General Procedure for the Synthesis of MBH Carbonate 2
3.3. General Procedure for the Phosphine-Catalyzed Allylic Alkylation
3.4. Scale-Up of the Allylic Alkylation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fredenhagen, A.; Tamura, S.Y.; Kenny, P.T.M.; Komura, H.; Naya, Y.; Nakanishi, K.; Nishiyama, K.; Sugiura, M.; Kita, H. Andrimid, a new peptide antibiotic produced by an intracellular bacterial symbiont isolated from a brown planthopper. J. Am. Chem. Soc. 1987, 109, 4409–4411. [Google Scholar] [CrossRef]
- Isaka, M.; Rugseree, N.; Maithip, P.; Kongsaeree, P.; Prabpai, S.; Thebtaranonth, Y. Hirsutellones A–E, antimycobacterial alkaloids from the insect pathogenic fungus Hirsutella nivea BCC 2594. Tetrahedron 2005, 61, 5577–5583. [Google Scholar] [CrossRef]
- Wróbel, M.Z.; Chodkowski, A.; Herold, F.; Gomoółka, A.; Kleps, J.; Mazurek, A.P.; Plucinński, F.; Mazurek, A.; Nowak, G.; Siwek, A.; et al. Synthesis and biological evaluation of novel pyrrolidine-2,5-dione derivatives as potential antidepressant agents. Part 1. Eur. J. Med. Chem. 2013, 63, 484–500. [Google Scholar] [CrossRef]
- Lin, S.; Leow, D.; Huang, K.-W.; Tan, C.-H. Enantioselective protonation of itaconimides with thiols and the rotational kinetics of the axially chiral C-N bond. Chem. Asian J. 2009, 4, 1741–1744. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W. Iridium-catalyzed asymmetric hydrogenation of α-alkylidene succinimides. Angew. Chem. Int. Ed. 2013, 52, 2203–2206. [Google Scholar] [CrossRef] [PubMed]
- Haddad, S.; Boudriga, S.; Porzio, F.; Soldera, A.; Askri, M.; Sriram, D.; Yogeeswari, P.; Knorr, M.; Rousselin, Y.; Kubicki, M.M. Synthesis of novel dispiropyrrolothiazoles by three component 1,3-dipolar cycloaddition and evaluation of their antimycobacterial activity. RSC Adv. 2014, 4, 59462–59471. [Google Scholar] [CrossRef]
- Haddad, S.; Boudriga, S.; Akhaja, T.N.; Raval, J.P.; Porzio, F.; Soldera, A.; Askri, M.; Knorr, M.; Rousselin, Y.; Kubicki, M.M.; et al. A strategic approach to the synthesis of functionalized spirooxindole pyrrolidine derivatives: In Vitro antibacterial, antifungal, antimalarial and antitubercular studies. New J. Chem. 2015, 39, 520–528. [Google Scholar] [CrossRef]
- Haddad, S.; Boudriga, S.; Porzio, F.; Soldera, A.; Askri, M.; Knorr, M.; Rousselin, Y.; Kubicki, M.M.; Golz, C.; Strohmann, C. Regio- and stereoselective synthesis of spiropyrrolizidines and piperazines through azomethine ylide cycloaddition reaction. J. Org. Chem. 2015, 80, 9064–9075. [Google Scholar] [CrossRef]
- Yang, W.-L.; Liu, Y.-Z.; Luo, S.; Yu, X.; Fossey, J.S.; Deng, W.-P. The copper-catalyzed asymmetric construction of a dispiropyrrolidine skeleton via 1,3-dipolar cycloaddition of azomethine ylides to α-alkylidene succinimides. Chem. Commun. 2015, 51, 9212–9215. [Google Scholar] [CrossRef]
- Luo, W.; Hu, H.; Nian, S.; Qi, L.; Ling, F.; Zhong, W. Phosphine-catalyzed [3 + 2] annulation reaction: Highly regio- and diastereoselective synthesis of 2-azaspiro[4.4]nonene-1,3-diones. Org. Biomol. Chem. 2017, 15, 7523–7526. [Google Scholar] [CrossRef] [Green Version]
- Boudriga, S.; Haddad, S.; Askri, M.; Soldera, A.; Knorr, M.; Strohmann, C.; Golz, C. Highly diastereoselective construction of novel dispiropyrrolo[2,1-a]isoquinoline derivatives via multicomponent 1,3-dipolar cycloaddition of cyclic diketones-based tetrahydroisoquinolinium N-ylides. RSC Adv. 2019, 9, 11082–11091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, Z.; Zhi, M.; Han, R.; Li, E.-Q.; Duan, Z.; Mathey, F. P-Stereogenic phosphines directed copper(I)-catalyzed enantioselective 1,3-dipolar cycloadditions. Org. Lett. 2019, 21, 2782–2785. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.-X.; Liu, Q.; Yu, K.-M.; Zhao, X.-L.; Shi, M. Organocatalyzed asymmetric formal [3+2] cycloaddition of isocyanoacetates with N-itaconimides: Facile access to optically active spiropyrroline succinimide derivatives. Org. Chem. Front. 2019, 6, 3879–3884. [Google Scholar] [CrossRef]
- Yuan, C.; Yang, H.; Gong, Q.; Luo, S.; Gu, J.; Ge, Y.; Guo, H.; Xie, L. Brønsted base-catalyzed tandem [2+4] annulation/tautomerization/aromatization reaction of α-alkylidene succinimides with 5-alkenyl thiazolones. Adv. Synth. Catal. 2021, 363, 3336–3347. [Google Scholar] [CrossRef]
- Zhao, B.-L.; Du, D.-M. Organocatalytic cascade Michael/Michael reaction for the asymmetric synthesis of spirooxindoles containing five contiguous stereocenters. Chem. Commun. 2016, 52, 6162–6165. [Google Scholar] [CrossRef]
- Tehri, P.; Peddinti, R.K. DBU-catalyzed [3+2] cycloaddition and Michael addition reactions of 3-benzylidene succinimides with 3-ylidene oxindoles and chalcones. Org. Biomol. Chem. 2019, 17, 3964–3970. [Google Scholar] [CrossRef]
- Li, C.-Y.; Xiang, M.; Song, X.-J.; Zou, Y.; Huang, Z.-C.; Li, X.; Tian, F.; Wang, L.-X. A base-catalyzed domino reaction between isoindigos and α-alkylidene succinimides—Convenient preparation of highly steric bispirooxindoles. Org. Biomol. Chem. 2020, 18, 9511–9515. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Dou, P.-H.; Lu, W.-Y.; You, Y.; Zhao, J.-Q.; Wang, Z.-H.; Yuan, W.-C. Benzylidene succinimides as 3C synthons for the asymmetric tandem Mannich reaction/ transamidation of cyclic trifluoromethyl ketimines to obtain F3C-containing polycyclic dihydroquinazolinones. Chem. Commun. 2021, 57, 2927–2930. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Fan, Y.; Yang, Y.; Jiang, Z.; Tan, C.-H. Bicyclic guanidine-catalyzed direct asymmetric allylic addition of N-aryl alkylidene-succinimides. Chem. Eur. J. 2010, 16, 12534–12537. [Google Scholar] [CrossRef]
- Zhao, B.-L.; Zhang, D.; Liu, L.; Du, D.-M. Organocatalytic asymmetric Michael addition of α-alkylidene succinimides to nitrostyrenes. Org. Biomol. Chem. 2016, 14, 6337–6345. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; You, Y.; Wang, Z.-H.; Zhao, J.-Q.; Yuan, W.-C. Organocatalytic asymmetric tandem α-functionalization/1,3-proton shift reaction of benzylidene succinimides with β-trifluoromethyl enones. Chem. Commun. 2020, 56, 13449–13452. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-Y.; Xiang, M.; Zhang, J.; Li, W.-S.; Zou, Y.; Wan, W.-J.; Wang, L.-X. Enantioselective organocatalyzed Mannich reaction between benzothiazolimines and α-benzylidene succinimides for the preparation of chiral benzothiazol succinimides. Asian J. Org. Chem. 2022, 11, e202200107. [Google Scholar] [CrossRef]
- Liu, T.-Y.; Xie, M.; Chen, Y.-C. Organocatalytic asymmetric transformations of modified Morita-Baylis-Hillman adducts. Chem. Soc. Rev. 2012, 41, 4101–4112. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Tan, D.; Li, L.; Han, Z.; Yan, L.; Huang, K.-W.; Tan, C.-H.; Jiang, Z. Direct asymmetric allylic alkenylation of N-itaconimides with Morita-Baylis-Hillman carbonates. J. Org. Chem. 2012, 77, 6600–6607. [Google Scholar] [CrossRef]
- Kamlar, M.; Hybelbauerová, S.; Císařová, I.; Veselý, J. Organocatalytic enantioselective allylic alkylation of MBH carbonates with β-keto esters. Org. Biomol. Chem. 2014, 12, 5071–5076. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Sibi, M.P. Enantioselective allylic amination of MBH carbonates catalyzed by novel chiral 4-dialkylaminopyridine catalysts. Org. Chem. Front. 2014, 1, 1152–1156. [Google Scholar] [CrossRef]
- Cheng, Y.; Han, Y.; Li, P. Organocatalytic enantioselective [1+4] annulation of Morita-Baylis-Hillman carbonates with electron-deficient olefins: Access to chiral 2,3-dihydrofuran derivatives. Org. Lett. 2017, 19, 4774–4777. [Google Scholar] [CrossRef]
- Cheng, Y.; Fang, Z.; Li, W.; Li, P. Phosphine-mediated enantioselective [4+1]-annulations between ortho-quinone methides and Morita-Baylis-Hillman carbonates. Org. Chem. Front. 2018, 5, 2728–2733. [Google Scholar] [CrossRef]
- Qian, C.; Zhang, P.; Li, W.; Li, P. Phosphine-catalyzed enantioselective [1+4]-annulation of Morita-Baylis-Hillman carbonates with α,β-unsaturated imines. Asian J. Org. Chem. 2019, 8, 242–245. [Google Scholar]
- Zhang, P.; Guo, X.; Liu, C.; Li, W.; Li, P. Enantioselective construction of pyridine N-oxides featuring 2,3-dihydrofuran motifs via phosphine-catalyzed [4+1]-annulations of 2-enoylpyridine N-oxides with Morita-Baylis-Hillman carbonates. Org. Lett. 2019, 21, 152–155. [Google Scholar] [CrossRef]
- Guo, X.; Shen, B.; Liu, C.; Zhao, H.; Li, X.; Yu, P.; Li, P. Rational design and organocatalytic enantioselective [1+4]-annulations of MBH carbonates with modified enones. Org. Chem. Front. 2023, 10, 150–156. [Google Scholar] [CrossRef]
- Chen, L.; Li, P. Organocatalytic regio- and enantioselective allylic alkylation of indolin-2-imines with MBH carbonates toward 3-allylindoles. J. Org. Chem. 2023. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Shi, W.; Wang, C.; Liu, H.; Wang, W.; Wu, Y.; Guo, H. Phosphine-catalyzed cascade annulation of MBH carbonates and diazenes: Synthesis of hexahydrocyclopenta[c]pyrazole derivatives. Org. Lett. 2021, 23, 5571–5575. [Google Scholar] [CrossRef] [PubMed]
Entry a | C | R1 | Solvent | T/°C | Time/h | Yield/% b | ee/% c | dr d |
---|---|---|---|---|---|---|---|---|
1 | C1 | Ph | CH2Cl2 | rt | 16 | 3aa, 76 | 29 | 10:1 |
2 | C2 | Ph | CH2Cl2 | rt | 16 | 3aa, 92 | 6 | 11:1 |
3 | C3 | Ph | CH2Cl2 | rt | 16 | 3aa, 85 | 56 | 10:1 |
4 | C4 | Ph | CH2Cl2 | rt | 16 | 3aa, 91 | 62 | 8:1 |
5 | C5 | Ph | CH2Cl2 | rt | 16 | 3aa, 93 | 9 | 12:1 |
6 | C6 | Ph | CH2Cl2 | rt | 16 | 3aa, 95 | 85 | 11:1 |
7 | C7 | Ph | CH2Cl2 | rt | 16 | 3aa, 93 | 79 | 10:1 |
8 | C8 | Ph | CH2Cl2 | rt | 16 | 3aa, 78 | 87 | 9:1 |
9 | C6 | Me | CH2Cl2 | rt | 16 | 3ba, 94 | 77 | 9:1 |
10 | C6 | Bn | CH2Cl2 | rt | 16 | 3ca, 90 | 92 | 10:1 |
11 | C6 | Bn | ClCH2CH2Cl | rt | 16 | 3ca, 86 | 93 | 11:1 |
12 | C6 | Bn | CHCl3 | rt | 16 | 3ca, 79 | 80 | 9:1 |
13 | C6 | Bn | EtOAc | rt | 16 | 3ca, 82 | 88 | 11:1 |
14 | C6 | Bn | PhCl | rt | 16 | 3ca, 82 | 81 | 12:1 |
15 | C6 | Bn | CH2Cl2 (0.25 mL) | rt | 16 | 3ca, 68 | 92 | 10:1 |
16 | C6 | Bn | CH2Cl2 (0.50 mL) | rt | 16 | 3ca, 82 | 91 | 10:1 |
17 | C6 | Bn | CH2Cl2 (0.75 mL) | rt | 16 | 3ca, 92 | 92 | 11:1 |
18 | C6 | Bn | CH2Cl2 (1.25 mL) | rt | 16 | 3ca, 90 | 90 | 11:1 |
19 | C6 | Bn | CH2Cl2 (0.75 mL) | 30 | 16 | 3ca, 92 | 88 | 10:1 |
20 | C6 | Bn | CH2Cl2 (0.75 mL) | 0 | 16 | 3ca, 56 | 95 | 12:1 |
21 | C6 | Bn | CH2Cl2 (0.75 mL) | rt | 36 | 3ca, 96 | 92 | 11:1 |
22 | C6 | Bn | CH2Cl2 (0.75 mL) | rt | 48 | 3ca, 96 | 87 | 11:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Sun, J.; Li, P. Chiral Phosphine Catalyzed Allylic Alkylation of Benzylidene Succinimides with Morita–Baylis–Hillman Carbonates. Molecules 2023, 28, 2825. https://doi.org/10.3390/molecules28062825
Liu C, Sun J, Li P. Chiral Phosphine Catalyzed Allylic Alkylation of Benzylidene Succinimides with Morita–Baylis–Hillman Carbonates. Molecules. 2023; 28(6):2825. https://doi.org/10.3390/molecules28062825
Chicago/Turabian StyleLiu, Chang, Jianwei Sun, and Pengfei Li. 2023. "Chiral Phosphine Catalyzed Allylic Alkylation of Benzylidene Succinimides with Morita–Baylis–Hillman Carbonates" Molecules 28, no. 6: 2825. https://doi.org/10.3390/molecules28062825
APA StyleLiu, C., Sun, J., & Li, P. (2023). Chiral Phosphine Catalyzed Allylic Alkylation of Benzylidene Succinimides with Morita–Baylis–Hillman Carbonates. Molecules, 28(6), 2825. https://doi.org/10.3390/molecules28062825