Enhanced Intestinal Permeability of Cefixime by Self-Emulsifying Drug Delivery System: In-Vitro and Ex-Vivo Characterization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening of Various Excipients Based on Solubility Studies
2.2. Screening of Various Excipients Based on Emulsification Ability
2.2.1. Screening of Surfactants
2.2.2. Screening of Cosurfactants
2.3. Construction of Pseudo-Ternary Diagram
2.4. Preparation of CFX-Loaded SEDDS
2.5. Analysis of Drug Content
2.6. Self-Emulsification Test
2.7. Cloud Point Measurement
2.8. Robustness of SEDDS to Dilution
2.9. Determination of Droplet Size, Zeta Potential and PDI
2.10. Stability Studies at Accelerated Conditions
2.11. In Vitro Dissolution Studies
2.12. Ex Vivo Permeation Studies
3. Material and Methods
3.1. Material
3.2. Methods
3.2.1. Screening of Various Excipients Based on Solubility
3.2.2. Assortment of Surfactants and Co-Surfactants Based on Emulsifying Ability
3.2.3. Preparation of Pseudo Ternary Phase Diagram
3.2.4. Development of CFX-Loaded SEDDS
3.2.5. Physicochemical Characterization of SEDDS
Drug Content Analysis
Determination of Self-Emulsification Time
3.2.6. Robustness of SEDDS to Dilution
3.2.7. Evaluation of Droplet Size, Zeta-Potential and Polydispersity Index
3.2.8. In Vitro Drug Release Studies
3.2.9. Storage Stability Studies
Thermodynamic Stability Studies
Heating and Cooling Cycle
Centrifugation Study
Freeze Thaw Cycle
Chemical Stability Study
3.2.10. Measurement of Cloud Point of SEDDS
3.2.11. Ex Vivo Permeation Study
3.2.12. Statistical Interpretations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Z.-L.; Zhao, J.; Xu, R. Recent Advances in Oral Nano-Antibiotics for Bacterial Infection Therapy. Int. J. Nanomed. 2020, 15, 9587. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Michniak-Kohn, B. Preparation and characterization of lipid based nanosystems for topical delivery of quercetin. Eur. J. Pharm. Sci. 2013, 48, 442–452. [Google Scholar] [CrossRef]
- Park, K.; Kwon, I.C.; Park, K. Oral protein delivery: Current status and future prospect. React. Funct. Polym. 2011, 71, 280–287. [Google Scholar] [CrossRef]
- Kuentz, M. Lipid-based formulations for oral delivery of lipophilic drugs. Drug Discov. Today Technol. 2012, 9, e97–e104. [Google Scholar] [CrossRef]
- Talebpour, Z.; Pourabdollahi, H.; Rafati, H.; Abdollahpour, A.; Bashour, Y.; Aboul-Enein, H.Y. Determination of cefixime by a validated stability-indicating HPLC method and identification of its related substances by LC-MS/MS studies. Sci. Pharm. 2013, 81, 493–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arshad, H.M.; Mohiuddin, O.A.; Azmi, M.B. Comparative in vitro antibacterial analysis of different brands of cefixime against clinical isolates of Staphylococcus aureus and Escherichia coli. J. Appl. Pharm. Sci. 2012, 2, 109–113. [Google Scholar]
- Moffat, A.C.; Osselton, M.D.; Widdop, B.; Watts, J. Clarke’s Analysis of Drugs and Poisons; Pharmaceutical Press: London, UK, 2011. [Google Scholar]
- Mastiholimath, V.S.; Bhagat Ankita, R.; Mannur, V.S.; Dandagi, P.M.; Gadad, A.P.; Khanal, P. Formulation and evaluation of cefixime nanosuspension for the enhancement of oral bioavailability by solvent-antisolvent method and its suitable method development. Indian. J. Pharm. Educ. Res. 2020, 54, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Saifullah, S.; Kanwal, T.; Ullah, S.; Kawish, M.; Habib, S.M.; Ali, I.; Munir, A.; Imran, M.; Shah, M.R. Design and development of lipid modified chitosan containing muco-adhesive self-emulsifying drug delivery systems for cefixime oral delivery. Chem. Phys. Lipids 2021, 235, 105052. [Google Scholar] [CrossRef] [PubMed]
- Paul, Y.; Kumar, M. Singh BJIJoDD, Research. Formulation and in Vitro evaluation of Gastroretentive drug delivery system of Cefixime Trihydrate. Int. J. Drug Dev. Res. 2011, 3, 148–161. [Google Scholar]
- Imran, M.; Shah, M.R.; Ullah, F.; Ullah, S.; Sadiq, A.; Ali, I.; Ahmed, F.; Nawaz, W. Double-tailed acyl glycoside niosomal nanocarrier for enhanced oral bioavailability of Cefixime. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1440–1451. [Google Scholar] [CrossRef]
- Ata, S.; Rasool, A.; Islam, A.; Bibi, I.; Rizwan, M.; Azeem, M.K.; Qureshi, A.U.R.; Iqbal, M. Loading of Cefixime to pH sensitive chitosan based hydrogel and investigation of controlled release kinetics. Int. J. Biol. Macromol. 2020, 155, 1236–1244. [Google Scholar] [CrossRef] [PubMed]
- Czajkowska-Kośnik, A.; Szekalska, M.; Amelian, A.; Szymańska, E.; Winnicka, K. Development and evaluation of liquid and solid self-emulsifying drug delivery systems for atorvastatin. Molecules 2015, 20, 21010–21022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gursoy, R.N.; Benita, S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed. Pharmacother. 2004, 58, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Quan, G.; Niu, B.; Singh, V.; Zhou, Y.; Wu, C.-Y.; Pan, X.; Wu, C. Supersaturable solid self-microemulsifying drug delivery system: Precipitation inhibition and bioavailability enhancement. Int. J. Nanomed. 2017, 12, 8801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinka, D.; Doma, E.; Szendi, N.; Páll, J.; Kósa, D.; Pető, Á.; Fehér, P.; Ujhelyi, Z.; Fenyvesi, F.; Váradi, J.; et al. Formulation, characterization and permeability studies of fenugreek (Trigonella foenum-graecum) containing self-emulsifying drug delivery system (SEDDS). Molecules 2022, 27, 2846. [Google Scholar] [CrossRef]
- Knaub, K.; Sartorius, T.; Dharsono, T.; Wacker, R.; Wilhelm, M.; Schön, C. A novel self-emulsifying drug delivery system (SEDDS) based on VESIsorb® formulation technology improving the oral bioavailability of cannabidiol in healthy subjects. Molecules 2019, 24, 2967. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T. Self-Nanoemulsifying Drug Delivery Systems (Snedds) for the Oral Delivery of Lipophilic Drugs; University of Trento: Trent, Italy, 2015. [Google Scholar]
- Pouton, C.W.; Porter, C.J. Formulation of lipid-based delivery systems for oral administration: Materials, methods and strategies. Adv. Drug Deliv. Rev. 2008, 60, 625–637. [Google Scholar] [CrossRef]
- Tran, T.H.; Guo, Y.; Song, D.; Bruno, R.S.; Lu, X. Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability. J. Pharm. Sci. 2014, 103, 840–852. [Google Scholar] [CrossRef]
- Montes, C.; Villaseñor, M.J.; Ríos, Á. Analytical control of nanodelivery lipid-based systems for encapsulation of nutraceuticals: Achievements and challenges. Trends Food Sci. Technol. 2019, 90, 47–62. [Google Scholar] [CrossRef]
- Müllertz, A.; Ogbonna, A.; Ren, S.; Rades, T. New perspectives on lipid and surfactant based drug delivery systems for oral delivery of poorly soluble drugs. J. Pharm. Pharmacol. 2010, 62, 1622–1636. [Google Scholar] [CrossRef]
- McConville, C.; Friend, D. Development and characterisation of a self-microemulsifying drug delivery systems (SMEDDSs) for the vaginal administration of the antiretroviral UC-781. Eur. J. Pharm. Biopharm. 2013, 83, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Kommuru, T.; Gurley, B.; Khan, M.; Reddy, I. Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: Formulation development and bioavailability assessment. Int. J. Pharm. 2001, 212, 233–246. [Google Scholar] [CrossRef]
- Date, A.A.; Nagarsenker, M. Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for cefpodoxime proxetil. Int. J. Pharm. 2007, 329, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.-Y.; Kim, J.-K.; Song, Y.-K.; Park, J.-S.; Kim, C.-K. A new self-emulsifying formulation of itraconazole with improved dissolution and oral absorption. J. Control. Release 2006, 110, 332–338. [Google Scholar] [CrossRef]
- Li, P.; Ghosh, A.; Wagner, R.F.; Krill, S.; Joshi, Y.M.; Serajuddin, A.T. Effect of combined use of nonionic surfactant on formation of oil-in-water microemulsions. Int. J. Pharm. 2005, 288, 27–34. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, C.; Chow, A.H.L.; Ren, K.; Gong, T.; Zhang, Z.; Zheng, Y. Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of Zedoary essential oil: Formulation and bioavailability studies. Int. J. Pharm. 2010, 383, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Basalious, E.B.; Shawky, N.; Badr-Eldin, S.M. SNEDDS containing bioenhancers for improvement of dissolution and oral absorption of lacidipine. I: Development and optimization. Int. J. Pharm. 2010, 391, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Gershanik, T.; Benita, S. Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. Eur. J. Pharm. Biopharm. 2000, 50, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.V.R.; Yajurvedi, K.; Shao, J. Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of protein drugs: III. In vivo oral absorption study. Int. J. Pharm. 2008, 362, 16–19. [Google Scholar] [CrossRef]
- Syukri, Y.; Martien, R.; Lukitaningsih, E.; Nugroho, A.E. Novel Self-Nano Emulsifying Drug Delivery System (SNEDDS) of andrographolide isolated from Andrographis paniculata Nees: Characterization, in-vitro and in-vivo assessment. J. Drug Deliv. Sci. Technol. 2018, 47, 514–520. [Google Scholar] [CrossRef]
- Nepal, P.R.; Han, H.-K.; Choi, H.-K. Preparation and in vitro–in vivo evaluation of Witepsol® H35 based self-nanoemulsifying drug delivery systems (SNEDDS) of coenzyme Q10. Eur. J. Pharm. Sci. 2010, 39, 224–232. [Google Scholar] [CrossRef]
- Pouton, C.W. Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying and ‘self-microemulsifying’drug delivery systems. Eur. J. Pharm. Sci. 2000, 11, S93–S98. [Google Scholar] [CrossRef]
- Chime, S.; Kenechukwu, F.; Attama, A. Nanoemulsions—Advances in formulation, characterization and applications in drug delivery. Appl. Nanotechnol. Drug Deliv. 2014, 3, 77–126. [Google Scholar]
- Nazzal, S.; Smalyukh, I.; Lavrentovich, O.; Khan, M.A. Preparation and in vitro characterization of a eutectic based semisolid self-nanoemulsified drug delivery system (SNEDDS) of ubiquinone: Mechanism and progress of emulsion formation. Int. J. Pharm. 2002, 235, 247–265. [Google Scholar] [CrossRef]
- Bösiger, P.; Richard, I.M.; Le Gat, L.; Michen, B.; Schubert, M.; Rossi, R.M.; Fortunato, G. Application of response surface methodology to tailor the surface chemistry of electrospun chitosan-poly (ethylene oxide) fibers. Carbohydr. Polym. 2018, 186, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Madani, F.; Esnaashari, S.S.; Mujokoro, B.; Dorkoosh, F.; Khosravani, M.; Adabi, M. Investigation of effective parameters on size of paclitaxel loaded PLGA nanoparticles. Adv. Pharm. Bull. 2018, 8, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixit, R.; Nagarsenker, M. Self-nanoemulsifying granules of ezetimibe: Design, optimization and evaluation. Eur. J. Pharm. Sci. 2008, 35, 183–192. [Google Scholar] [CrossRef]
- Weerapol, Y.; Limmatvapirat, S.; Jansakul, C.; Takeuchi, H.; Sriamornsak, P. Enhanced dissolution and oral bioavailability of nifedipine by spontaneous emulsifying powders: Effect of solid carriers and dietary state. Eur. J. Pharm. Biopharm. 2015, 91, 25–34. [Google Scholar] [CrossRef]
- Ghai, D.; Sinha, V.R. Nanoemulsions as self-emulsified drug delivery carriers for enhanced permeability of the poorly water-soluble selective β1-adrenoreceptor blocker Talinolol. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 618–626. [Google Scholar] [CrossRef]
- Chen-Yu, G.; Chun-Fen, Y.; Qi-Lu, L.; Qi, T.; Yan-Wei, X.; Wei-Na, L.; Guang-Xi, Z. Development of a quercetin-loaded nanostructured lipid carrier formulation for topical delivery. Int. J. Pharm. 2012, 430, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Dixit, P.; Jain, D.K.; Dumbwani, J. Standardization of an ex vivo method for determination of intestinal permeability of drugs using everted rat intestine apparatus. J. Pharmacol. Toxicol. Methods 2012, 65, 13–17. [Google Scholar] [CrossRef]
- Wang, L.; Dong, J.; Chen, J.; Eastoe, J.; Li, X. Design and optimization of a new self-nanoemulsifying drug delivery system. J. Colloid Interface Sci. 2009, 330, 443–448. [Google Scholar] [CrossRef]
- ElKasabgy, N.A. Ocular supersaturated self-nanoemulsifying drug delivery systems (S-SNEDDS) to enhance econazole nitrate bioavailability. Int. J. Pharm. 2014, 460, 33–44. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, Y.; Feng, N.; Xu, J. Preparation and evaluation of self-microemulsifying drug delivery system of oridonin. Int. J. Pharm. 2008, 355, 269–276. [Google Scholar] [CrossRef]
- Shafiq, S.; Shakeel, F.; Talegaonkar, S.; Ahmad, F.J.; Khar, R.K.; Ali, M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur. J. Pharm. Biopharm. 2007, 66, 227–243. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, F.; Haq, N.; El-Badry, M.; Alanazi, F.K.; Alsarra, I.A. Ultra fine super self-nanoemulsifying drug delivery system (SNEDDS) enhanced solubility and dissolution of indomethacin. J. Mol. Liq. 2013, 180, 89–94. [Google Scholar] [CrossRef]
- Heshmati, N.; Cheng, X.; Eisenbrand, G.; Fricker, G. Enhancement of oral bioavailability of E804 by self-nanoemulsifying drug delivery system (SNEDDS) in rats. J. Pharm. Sci. 2013, 102, 3792–3799. [Google Scholar] [CrossRef]
- Villar, A.M.S.; Naveros, B.C.; Campmany, A.C.C.; Trenchs, M.A.; Rocabert, C.B.; Bellowa, L.H. Design and optimization of self-nanoemulsifying drug delivery systems (SNEDDS) for enhanced dissolution of gemfibrozil. Int. J. Pharm. 2012, 431, 161–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoud, H. Design and optimization of self-nanoemulsifying drug delivery systems of simvastatin aiming dissolution enhancement. Afr. J. Pharm. Pharmacol. 2013, 7, 1482–1500. [Google Scholar] [CrossRef] [Green Version]
- Parmar, K.; Patel, J.; Sheth, N. Self nano-emulsifying drug delivery system for Embelin: Design, characterization and in-vitro studies. Asian J. Pharm. Sci. 2015, 10, 396–404. [Google Scholar] [CrossRef] [Green Version]
- Inugala, S.; Eedara, B.B.; Sunkavalli, S.; Dhurke, R.; Kandadi, P.; Jukanti, R.; Bandari, S. Solid self-nanoemulsifying drug delivery system (S-SNEDDS) of darunavir for improved dissolution and oral bioavailability: In vitro and in vivo evaluation. Eur. J. Pharm. Sci. 2015, 74, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Freag, M.S.; Elnaggar, Y.S.; Abdallah, O.Y. Lyophilized phytosomal nanocarriers as platforms for enhanced diosmin delivery: Optimization and ex vivo permeation. Int. J. Nanomed. 2013, 8, 2385. [Google Scholar]
Oil/Surfactant | UV Transmittance (%) | No of Inversions | Appearance |
---|---|---|---|
Ethyl oleate/Tween 80 | 98.33 ± 0.27 | 2 | Clear |
Clove oil/Tween 80 | 96.29 ± 0.16 | 4 | Clear |
Ethyl oleate/Span 80 | 62.15 ± 2.32 | >20 | Turbid |
Clove oil/Span 80 | 69.32 ± 0.11 | >20 | Turbid |
Ethyloleate/KolliphorEL | 93.57 ± 0.39 | 3 | Clear |
Clove oil/KolliphorEL | 91.51 ± 0.13 | 4 | Turbid |
Name | CFX (mg) | Clove Oil (%) | Tween 80 (%) | PG (%) |
---|---|---|---|---|
F-1 | 100 | 30 | 50 | 20 |
F-2 | 100 | 10 | 70 | 20 |
F-3 | 100 | 20 | 60 | 20 |
F-4 | 100 | 20 | 50 | 30 |
Formulations | Drug Content (%) |
---|---|
F-1 | 91.21 ± 4.65 |
F-2 | 96.32 ± 5.34 |
F-3 | 95.21 ± 2.56 |
F-4 | 92.54 ± 7.25 |
Formulation Code | Self-Emulsification Test (Sec) | Visual Observation | Cloud Point Measurement (°C) |
---|---|---|---|
F-1 | >1 | No phase change, Clear | 77–79 |
F-2 | 40.37 ± 3.0 | No phase change, Clear | 82–84 |
F-3 | 43.95 ± 2.0 | No phase change, Clear | 79–81 |
F-4 | 47.66 ± 2.0 | No phase change, Clear | 76–78 |
Formulation’s Code | De-Ionized Water | 0.1 N HCL pH (1.2) | PBS pH (6.8) |
---|---|---|---|
F-1 | stable | unstable | unstable |
F-2 | stable | stable | Stable |
F-3 | stable | stable | Stable |
F-4 | stable | stable | Stable |
Formulation Code | Particle Size (nm) | Zeta Potential (mV) | Polydispersity Index (PDI) |
---|---|---|---|
F-1 | 87.33 ± 4.23 | −1.96 ± 3.65 | 0.26 |
F-2 | 19.01 ± 1.12 | −1.77 ± 5.09 | 0.20 |
F-3 | 20.16 ± 2.41 | −2.42 ± 5.54 | 0.36 |
F-4 | 27.68 ± 2.41 | −0.924 ± 6.98 | 0.24 |
Formulations/Control | Apparent Permeability Coefficient (Papp × 10−5 cm/s) | Ratios of Apparent Permeability Enhancement |
---|---|---|
F-2 | 9.02 ± 1.23 | 2.71 |
F-3 | 8.75 ± 1.56 | 2.63 |
F-4 | 8.48 ± 1.05 | 2.55 |
F-5 marketed suspension (control) | 3.32 ± 0.74 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmood, A.; Khan, L.; Ijaz, M.; Nazir, I.; Naseem, M.; Tahir, M.A.; Aamir, M.N.; Rehman, M.U.; Asim, M.H. Enhanced Intestinal Permeability of Cefixime by Self-Emulsifying Drug Delivery System: In-Vitro and Ex-Vivo Characterization. Molecules 2023, 28, 2827. https://doi.org/10.3390/molecules28062827
Mahmood A, Khan L, Ijaz M, Nazir I, Naseem M, Tahir MA, Aamir MN, Rehman MU, Asim MH. Enhanced Intestinal Permeability of Cefixime by Self-Emulsifying Drug Delivery System: In-Vitro and Ex-Vivo Characterization. Molecules. 2023; 28(6):2827. https://doi.org/10.3390/molecules28062827
Chicago/Turabian StyleMahmood, Arshad, Laraib Khan, Muhammad Ijaz, Imran Nazir, Mahrukh Naseem, Muhammad Azam Tahir, Muhammad Naeem Aamir, Masood Ur Rehman, and Mulazim Hussain Asim. 2023. "Enhanced Intestinal Permeability of Cefixime by Self-Emulsifying Drug Delivery System: In-Vitro and Ex-Vivo Characterization" Molecules 28, no. 6: 2827. https://doi.org/10.3390/molecules28062827
APA StyleMahmood, A., Khan, L., Ijaz, M., Nazir, I., Naseem, M., Tahir, M. A., Aamir, M. N., Rehman, M. U., & Asim, M. H. (2023). Enhanced Intestinal Permeability of Cefixime by Self-Emulsifying Drug Delivery System: In-Vitro and Ex-Vivo Characterization. Molecules, 28(6), 2827. https://doi.org/10.3390/molecules28062827