Dioscorea spp.: Bioactive Compounds and Potential for the Treatment of Inflammatory and Metabolic Diseases
Abstract
:1. Introduction
2. Methodology
3. Bioactive Compounds
3.1. Polysaccharides
3.2. Steroidal Saponins
3.3. Polyphenols
3.4. Allantoin
3.5. Alkaloids
3.6. Phenanthrene Derivatives
4. Anti-Inflammatory Activity
4.1. Enteritis
4.2. Arthritis
4.3. Dermatitis
4.4. Acute Pancreatitis
4.5. Neuroinflammation
5. Prevention and Treatment of Metabolic Diseases
5.1. Obesity
5.2. Dyslipidemia
5.3. Diabetes
5.4. Non-Alcoholic Fatty Liver Disease
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Z.; Guo, Y.; Huang, X.; Feng, B.; Tang, L.; Zheng, G.; Zhu, Y. Phytochemicals: Targeting Mitophagy to Treat Metabolic Disorders. Front. Cell Dev. Biol. 2021, 9, 686820. [Google Scholar] [CrossRef]
- Baker, R.G.; Hayden, M.S.; Ghosh, S. NF-κB, Inflammation, and Metabolic Disease. Cell Metab. 2011, 13, 11–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasmi, A.; Mujawdiya, P.K.; Noor, S.; Lysiuk, R.; Darmohray, R.; Piscopo, S.; Lenchyk, L.; Antonyak, H.; Dehtiarova, K.; Shanaida, M.; et al. Polyphenols in Metabolic Diseases. Molecules 2022, 27, 6280. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yi, H.; Wu, J.; Kuang, T.; Zhang, J.; Li, Q.; Du, H.; Xu, T.; Jiang, G.; Fan, G. Therapeutic Effect of Berberine on Metabolic Diseases: Both Pharmacological Data and Clinical Evidence. Biomed. Pharmacother. 2021, 133, 110984. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Gautam, D.N.S.; Radu, A.-F.; Behl, T.; Bungau, S.G.; Vesa, C.M. Reviewing the Traditional/Modern Uses, Phytochemistry, Essential Oils/Extracts and Pharmacology of Embelia ribes Burm. Antioxidants 2022, 11, 1359. [Google Scholar] [CrossRef]
- Khuntia, A.; Martorell, M.; Ilango, K.; Bungau, S.G.; Radu, A.-F.; Behl, T.; Sharifi-Rad, J. Theoretical Evaluation of Cleome Species’ Bioactive Compounds and Therapeutic Potential: A Literature Review. Biomed. Pharmacother. 2022, 151, 113161. [Google Scholar] [CrossRef] [PubMed]
- Behl, T.; Upadhyay, T.; Singh, S.; Chigurupati, S.; Alsubayiel, A.M.; Mani, V.; Vargas-De-La-Cruz, C.; Uivarosan, D.; Bustea, C.; Sava, C.; et al. Polyphenols Targeting MAPK Mediated Oxidative Stress and Inflammation in Rheumatoid Arthritis. Molecules 2021, 26, 6570. [Google Scholar] [CrossRef] [PubMed]
- Behl, T.; Bungau, S.; Kumar, K.; Zengin, G.; Khan, F.; Kumar, A.; Kaur, R.; Venkatachalam, T.; Tit, D.M.; Vesa, C.M.; et al. Pleotropic Effects of Polyphenols in Cardiovascular System. Biomed. Pharmacother. 2020, 130, 110714. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Wang, J. Progress of Basic Research on Dioscorea spp. in China. Econ. For. Res. 1999, 17, 44–48. [Google Scholar]
- Asiedu, R.; Sartie, A. Crops That Feed the World 1. Yams: Yams for Income and Food Security. Food Secur. 2010, 2, 305–315. [Google Scholar] [CrossRef]
- Padhan, B.; Panda, D. Potential of Neglected and Underutilized Yams (Dioscorea spp.) for Improving Nutritional Security and Health Benefits. Front. Pharmacol. 2020, 11, 496. [Google Scholar] [CrossRef] [Green Version]
- Shan, N.; Wang, P.; Zhu, Q.; Sun, J.; Zhang, H.; Liu, X.; Cao, T.; Chen, X.; Huang, Y.; Zhou, Q. Comprehensive Characterization of Yam Tuber Nutrition and Medicinal Quality of Dioscorea opposita and D. alata from Different Geographic Groups in China. J. Integr. Agric. 2020, 19, 2839–2848. [Google Scholar] [CrossRef]
- Epping, J.; Laibach, N. An Underutilized Orphan Tuber Crop—Chinese Yam: A Review. Planta 2020, 252, 58. [Google Scholar] [CrossRef] [PubMed]
- Obidiegwu, J.E.; Lyons, J.B.; Chilaka, C.A. The Dioscorea Genus (Yam)—An Appraisal of Nutritional and Therapeutic Potentials. Foods 2020, 9, 1304. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Das, G.; Shin, H.-S.; Patra, J.K. Dioscorea spp. (A Wild Edible Tuber): A Study on Its Ethnopharmacological Potential and Traditional Use by the Local People of Similipal Biosphere Reserve, India. Front. Pharmacol. 2017, 8, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebot, V.; Lawac, F.; Legendre, L. The Greater Yam (Dioscorea alata L.): A Review of Its Phytochemical Content and Potential for Processed Products and Biofortification. J. Food Compos. Anal. 2023, 115, 104987. [Google Scholar] [CrossRef]
- Adomėnienė, A.; Venskutonis, P.R. Dioscorea spp.: Comprehensive Review of Antioxidant Properties and Their Relation to Phytochemicals and Health Benefits. Molecules 2022, 27, 2530. [Google Scholar] [CrossRef] [PubMed]
- Ou-yang, S.; Jiang, T.; Zhu, L.; Yi, T. Dioscorea nipponica Makino: A Systematic Review on Its Ethnobotany, Phytochemical and Pharmacological Profiles. Chem. Cent. J. 2018, 12, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kundu, B.B.; Vanni, K.; Farheen, A.; Jha, P.; Pandey, D.K.; Kumar, V. Dioscorea bulbifera L. (Dioscoreaceae): A Review of Its Ethnobotany, Pharmacology and Conservation Needs. South Afr. J. Bot. 2021, 140, 365–374. [Google Scholar] [CrossRef]
- Chaniad, P.; Tewtrakul, S.; Sudsai, T.; Langyanai, S.; Kaewdana, K. Anti-Inflammatory, Wound Healing and Antioxidant Potential of Compounds from Dioscorea bulbifera L. Bulbils. PLoS ONE 2020, 15, e0243632. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Yin, L.; Xu, L.; Peng, J. Dioscin: A Diverse Acting Natural Compound with Therapeutic Potential in Metabolic Diseases, Cancer, Inflammation and Infections. Pharmacol. Res. 2018, 137, 259–269. [Google Scholar] [CrossRef]
- Semwal, P.; Painuli, S.; Cruz-Martins, N. Dioscorea deltoidea Wall. Ex Griseb: A Review of Traditional Uses, Bioactive Compounds and Biological Activities. Food Biosci. 2021, 41, 100969. [Google Scholar] [CrossRef]
- Padhan, B.; Biswas, M.; Panda, D. Nutritional, Anti-Nutritional and Physico-Functional Properties of Wild Edible Yam (Dioscorea spp.) Tubers from Koraput, India. Food Biosci. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Otegbayo, B.O.; Oguniyan, D.J.; Olunlade, B.A.; Oroniran, O.O.; Atobatele, O.E. Characterizing Genotypic Variation in Biochemical Composition, Anti-Nutritional and Mineral Bioavailability of Some Nigerian Yam (Dioscorea spp.) Land Races. J. Food Sci. Technol. 2018, 55, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.-J.; Choi, S.-H.; Yoo, C.-S.; Choi, H.-Y.; Lee, S.-E.; Park, Y.-D. Development of an Analytical Method for Yam Saponins Using HPLC with Pulsed Amperometric Detection at Different Column Temperatures: Liquid Chromatography. J. Sep. Sci. 2013, 36, 690–698. [Google Scholar] [CrossRef]
- Lebot, V.; Malapa, R.; Molisalé, T. Development of HP-TLC Method for Rapid Quantification of Sugars, Catechins, Phenolic Acids and Saponins to Assess Yam (Dioscorea spp.) Tuber Flour Quality. Plant Genet. Resour. 2019, 17, 62–72. [Google Scholar] [CrossRef]
- Fel, B.; Baudouin, A.; Fache, F.; Czarnes, S.; Lebot, V.; Legendre, L. Caryatin and 3′-O-Methylcaryatin Contents in Edible Yams (Dioscorea spp.). J. Food Compos. Anal. 2021, 102, 104010. [Google Scholar] [CrossRef]
- Lebot, V.; Faloye, B.; Okon, E.; Gueye, B. Simultaneous Quantification of Allantoin and Steroidal Saponins in Yam (Dioscorea spp.) Powders. J. Appl. Res. Med. Aromat. Plants 2019, 13, 100200. [Google Scholar] [CrossRef]
- Poornima, G.N.; Ravishankar, R.V. Evaluation of Phytonutrients and Vitamin Contents in a Wild Yam, Dioscorea belophylla (Prain) Haines. Afr. J. Biotechnol. 2009, 8, 971–973. [Google Scholar]
- Senanayake, S.; Ranaweera, K.; Bamunuarachchi, A.; Gunaratne, A. Proximate Analysis And Phytochemical And Mineral Constituents In Four Cultivars Of Yams And Tuber Crops In Sri Lanka. Trop. Agric. Res. Ext. 2013, 15, 32. [Google Scholar] [CrossRef]
- Kim, H.; Cao, T.Q.; Yeo, C.; Shin, S.H.; Kim, H.; Hong, D.-H.; Hahn, D. Development and Validation of Quantitative Analysis Method for Phenanthrenes in Peels of the Dioscorea Genus. J. Microbiol. Biotechnol. 2022, 32, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-F.; Zhu, Q.; Wu, S. Preparation of Oligosaccharides from Chinese Yam and Their Antioxidant Activity. Food Chem. 2015, 173, 1107–1110. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Wang, L.; Ruan, Y.; Wen, C.; Ge, M.; Qian, Y.; Ma, B. Physicochemical Properties and Biological Activities of Polysaccharides from the Peel of Dioscorea opposita Thunb. Extracted by Four Different Methods. Food Sci. Hum. Wellness 2023, 12, 130–139. [Google Scholar] [CrossRef]
- Zhi, F.; Yang, T.-L.; Wang, Q.; Jiang, B.; Wang, Z.-P.; Zhang, J.; Chen, Y.-Z. Isolation, Structure and Activity of a Novel Water-Soluble Polysaccharide from Dioscorea opposita Thunb. Int. J. Biol. Macromol. 2019, 133, 1201–1209. [Google Scholar] [CrossRef]
- Huang, R.; Xie, J.; Yu, Y.; Shen, M. Recent Progress in the Research of Yam Mucilage Polysaccharides: Isolation, Structure and Bioactivities. Int. J. Biol. Macromol. 2020, 155, 1262–1269. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Huang, G.; Chen, G. Extraction, Structural Analysis, Derivatization and Antioxidant Activity of Polysaccharide from Chinese Yam. Food Chem. 2021, 361, 130089. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, L.; Zhang, C.; Tian, Y.; Zhang, F.; Li, X. Structural and Functional Analyses of Three Purified Polysaccharides Isolated from Chinese Huaishan-Yams. Int. J. Biol. Macromol. 2018, 120, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Estiasih, T.; Sunarharum, W.B.; Rahmawati, A. Hypoglycemic Activity of Water Soluble Polysaccharides of Yam (Dioscorea hispida Dents) Prepared by Aqueous, Papain, and Tempeh Inoculum Assisted Extractions. Int. J. Nutr. Food Eng. 2012, 6, 878–884. [Google Scholar]
- Xue, H.Y.; Li, J.R.; Liu, Y.G.; Gao, Q.; Wang, X.W.; Zhang, J.W.; Tanokura, M.; Xue, Y.L. Optimization of the Ultrafiltration-Assisted Extraction of Chinese Yam Polysaccharide Using Response Surface Methodology and Its Biological Activity. Int. J. Biol. Macromol. 2019, 121, 1186–1193. [Google Scholar] [CrossRef] [PubMed]
- Bu, W.; Dai, W.; Liu, H.; Bu, H.; Ju, X.; Li, R.; Yuan, B. Structural Characterization of a Polysaccharide from Dioscorea opposita and Assessment of Its Hepatoprotective Activity. Process Biochem. 2022, 120, 156–168. [Google Scholar] [CrossRef]
- Salehi, B.; Sener, B.; Kilic, M.; Sharifi-Rad, J.; Naz, R.; Mudau, F.N.; Fokou, P.V.T.; Ezzat, S.M.; Bishbishy, M.H.E.; Taheri, Y.; et al. Dioscorea Plants: A Genus Rich in Vital Nutra- Pharmaceuticals—A Review. Iran. J. Pharm. Res. 2019, 18, 68–89. [Google Scholar] [PubMed]
- Yoon, K.D.; Kim, J. Preparative Separation of Dioscin Derivatives from Dioscorea villosa by Centrifugal Partition Chromatography Coupled with Evaporative Light Scattering Detection. J. Sep. Sci. 2008, 31, 2486–2491. [Google Scholar] [CrossRef]
- Sautour, M.; Mitaine-Offer, A.C.; Lacaille-Dubois, M.A. The Dioscorea Genus: A Review of Bioactive Steroid Saponins. J. Nat. Med. 2007, 61, 91–101. [Google Scholar] [CrossRef]
- Shen, L.; Xu, J.; Luo, L.; Hu, H.; Meng, X.; Li, X.; Chen, S. Predicting the Potential Global Distribution of Diosgenin-Contained Dioscorea Species. Chin. Med. 2018, 13, 58. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.T.; Park, K.S.; Ryuk, J.A.; Kim, H.J.; Ko, B.S. Development of an Oriental Medicine Discrimination Method through Analysis of Steroidal Saponins in Dioscorea nipponica Makino and Their Anti-Osteosarcoma Effects. Molecules 2019, 24, 4022. [Google Scholar] [CrossRef] [Green Version]
- Okubo, S.; Ohta, T.; Shoyama, Y.; Uto, T. Steroidal Saponins Isolated from the Rhizome of Dioscorea tokoro Inhibit Cell Growth and Autophagy in Hepatocellular Carcinoma Cells. Life 2021, 11, 749. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, X.; Zhuang, X.; Feng, X.; Zhong, L.; Ma, T. Antifungal Effects of Saponin Extract from Rhizomes of Dioscorea panthaica Prain et Burk against Candida albicans. Evid. Based Complement. Alternat. Med. 2018, 2018, 6095307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, Z.; Cao, Z.; Jin, M.; Zhang, X.; Wang, X.; Dou, J.; Zhu, Y.; Ito, Y.; Guo, Z. New Steroid Saponins from Dioscorea zingiberensis Yam and Their Medicinal Use against I/R via Anti-Inflammatory Effect. Food Funct. 2021, 12, 8314–8325. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, B.; Miao, J.; Li, X.; Jing, S.; Zhang, D.; Yijia Wang, J.; Li, X.; Huang, L.; Gao, W. Multicomponent Analysis and Activities for Evaluation of Dioscorea oppositifolia and Dioscorea hamiltonii. Food Agric. Immunol. 2019, 30, 1148–1161. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Choi, R.; Li, J.; Li, J.; Bi, C.; Zang, L.; Liu, Z.; Dong, T.; Bi, K.; Tsim, K. Antihyperlipidemic Effect of Protodioscin, an Active Ingredient Isolated from the Rhizomes of Dioscorea nipponica. Planta Med. 2010, 76, 1642–1646. [Google Scholar] [CrossRef]
- Feng, J.F.; Tang, Y.N.; Ji, H.; Xiao, Z.G.; Zhu, L.; Yi, T. Biotransformation of Dioscorea nipponica by Rat Intestinal Microflora and Cardioprotective Effects of Diosgenin. Oxid. Med. Cell. Longev. 2017, 2017, 4176518. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Watanabe, B.; Nakayasu, M.; Onjo, M.; Sugimoto, Y.; Mizutani, M. Novel Steroidal Saponins from Dioscorea esculenta (Togedokoro). Biosci. Biotechnol. Biochem. 2017, 81, 2253–2260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazir, R.; Kumar, V.; Dey, A.; Pandey, D.K. HPTLC Quantification of Diosgenin in Dioscorea deltoidea: Evaluation of Extraction Efficacy, Organ Selection, Drying Method and Seasonal Variation. South Afr. J. Bot. 2021, 138, 386–393. [Google Scholar] [CrossRef]
- Hou, L.; Li, S.; Tong, Z.; Yuan, X.; Xu, J.; Li, J. Geographical Variations in Fatty Acid and Steroid Saponin Biosynthesis in Dioscorea zingiberensis Rhizomes. Ind. Crops Prod. 2021, 170, 113779. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tian, H.; Zhan, P.; Du, F.; Zong, A.; Xu, T. Isolation and Identification of Phenolic Compounds in Chinese Purple Yam and Evaluation of Antioxidant Activity. LWT 2018, 96, 161–165. [Google Scholar] [CrossRef]
- Mondal, M.; Hossain, M.M.; Das, N.; Rahman, M.A.; Uddin, N.; Hasan, M.R.; Alam, M.J.; Islam, M.N.; Wahed, T.B.; Kundu, S.K. Investigation of Bioactivities of Methanolic and Ethyl Acetate Extracts of Dioscorea pentaphylla Leaf along with Its Phenolic Composition. J. Food Meas. Charact. 2019, 13, 622–633. [Google Scholar] [CrossRef]
- Jing, S.S.; Wang, Y.; Li, X.J.; Li, X.; Zhao, W.S.; Zhou, B.; Zhao, C.C.; Huang, L.Q.; Gao, W.Y. Phytochemical and Chemotaxonomic Studies on Dioscorea collettii. Biochem. Syst. Ecol. 2017, 71, 10–15. [Google Scholar] [CrossRef]
- Du, D.; Jin, T.; Zhang, R.; Hu, L.; Xing, Z.; Shi, N.; Shen, Y.; Gong, M. Phenolic Compounds Isolated from Dioscorea zingiberensis Protect against Pancreatic Acinar Cells Necrosis Induced by Sodium Taurocholate. Bioorg. Med. Chem. Lett. 2017, 27, 1467–1470. [Google Scholar] [CrossRef]
- Zhou, L.; Shi, X.; Ren, X.; Qin, Z. Chemical Composition and Antioxidant Activity of Phenolic Compounds from Dioscorea [Yam] Leaves. Pak. J. Pharm. Sci. 2018, 31, 1031–1038. [Google Scholar]
- Yu, Y.; Guo, X.; Li, X.; Dai, D.; Xu, X.; Ge, X.; Li, Y.; Yang, T. Organ- and Age-Specific Differences of Dioscorea polystachya Compounds Measured by UPLC-QTOF/MS. Chem. Biodivers. 2021, 18, e2000856. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Meng, X.; Liu, Y.; Yin, C.; Zhang, T.; Wang, P.; Park, Y.-K.; Jung, H.W. Effects of a Rhizome Aqueous Extract of Dioscorea Batatas and Its Bioactive Compound, Allantoin in High Fat Diet and Streptozotocin-Induced Diabetic Mice and the Regulation of Liver, Pancreas and Skeletal Muscle Dysfunction. J. Ethnopharmacol. 2020, 259, 112926. [Google Scholar] [CrossRef] [PubMed]
- Nimenibo-Uadia, R.; Oriakhi, A. Proximate, Mineral and Phytochemical Composition of Dioscorea dumetorum Pax. J. Appl. Sci. Environ. Manag. 2017, 21, 771. [Google Scholar] [CrossRef] [Green Version]
- Corley, D.G.; Tempesta, S.; Iwu, M. Convulsant Alkaloids from Dioscorea dumetorum. Tetrahedron Lett. 1985, 26, 1615–1618. [Google Scholar] [CrossRef]
- Kamaruddin, Z.H.; Sapuan, S.M.; Yusoff, M.Z.M.; Jumaidin, R. Rapid Detection and Identification of Dioscorine Compounds in Dioscorea hispida Tuber Plants by LC-ESI-MS. BioResources 2020, 15, 5999–6011. Available online: https://jtatm.textiles.ncsu.edu/index.php/BioRes/article/view/BioRes_15_3_5999_Kamaruddin_Rapid_Detection_Identification_Discorine (accessed on 12 March 2023). [CrossRef]
- Haji, R.; Mohd, H.; Mohd, N.; Noordin, A.; Anuar, M.F. Development of Automatic Alkaloid Removal System for Dioscorea hispida. Front. Sci. 2011, 16–20. Available online: http://eprints.unisza.edu.my/id/eprint/3049 (accessed on 12 March 2023).
- Lim, J.S.; Hahn, D.; Gu, M.J.; Oh, J.; Lee, J.S.; Kim, J.-S. Anti-Inflammatory and Antioxidant Effects of 2, 7-Dihydroxy-4, 6-Dimethoxy Phenanthrene Isolated from Dioscorea batatas Decne. Appl. Biol. Chem. 2019, 62, 29. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Li, K.; Hu, T.; Liu, F.; Liao, S.; Zou, Y. 6,7-Dihydroxy-2,4-Dimethoxyphenanthrene from Chinese Yam Peels Alleviates DSS-Induced Intestinal Mucosal Injury in Mice via Modulation of the NF-κB/COX-2 Signaling Pathway. J. Agric. Food Chem. 2021, 69, 4720–4731. [Google Scholar] [CrossRef]
- Lim, J.S.; Oh, J.; Yun, H.S.; Lee, J.S.; Hahn, D.; Kim, J.-S. Anti-Neuroinflammatory Activity of 6,7-Dihydroxy-2,4-Dimethoxy Phenanthrene Isolated from Dioscorea batatas Decne Partly through Suppressing the P38 MAPK/NF-κB Pathway in BV2 Microglial Cells. J. Ethnopharmacol. 2022, 282, 114633. [Google Scholar] [CrossRef]
- Boudjada, A.; Touil, A.; Bensouici, C.; Bendif, H.; Rhouati, S. Phenanthrene and Dihydrophenanthrene Derivatives from Dioscorea communis with Anticholinesterase, and Antioxidant Activities. Nat. Prod. Res. 2019, 33, 3278–3282. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic Inflammation in the Etiology of Disease across the Life Span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xue, Z.; Zhu, S.; Guo, Y.; Zhang, Y.; Dou, J.; Zhang, J.; Ito, Y.; Guo, Z. Diosgenin Revealed Potential Effect against Cerebral Ischemia Reperfusion through HIKESHI/HSP70/NF-κB Anti-Inflammatory Axis. Phytomedicine 2022, 99, 153991. [Google Scholar] [CrossRef]
- Bai, Y.; Zhou, Y.; Zhang, R.; Chen, Y.; Wang, F.; Zhang, M. Gut Microbial Fermentation Promotes the Intestinal Anti-Inflammatory Activity of Chinese Yam Polysaccharides. Food Chem. 2023, 402, 134003. [Google Scholar] [CrossRef] [PubMed]
- Gill, P.A.; van Zelm, M.C.; Muir, J.G.; Gibson, P.R. Review Article: Short Chain Fatty Acids as Potential Therapeutic Agents in Human Gastrointestinal and Inflammatory Disorders. Aliment. Pharmacol. Ther. 2018, 48, 15–34. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Hu, S.; Zhang, H.; Guan, Q.; Yang, Y.; Wang, X. Anti-Inflammatory Effects of Dioscorea alata L. Anthocyanins in a TNBS-Induced Colitis Model. Food Funct. 2017, 8, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.S.; Oh, J.; Byeon, S.; Lee, J.S.; Kim, J.-S. Protective Effect of Dioscorea batatas Peel Extract Against Intestinal Inflammation. J. Med. Food 2018, 21, 1204–1217. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, X.; Tian, T.; Zhang, Q.; Wen, Y.; Zhu, J.; Xiao, D.; Cui, W.; Lin, Y. Anti-Inflammatory Activity of Curcumin-Loaded Tetrahedral Framework Nucleic Acids on Acute Gouty Arthritis. Bioact. Mater. 2022, 8, 368–380. [Google Scholar] [CrossRef]
- Biasizzo, M.; Kopitar-Jerala, N. Interplay Between NLRP3 Inflammasome and Autophagy. Front. Immunol. 2020, 11, 591803. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Shi, G.; Li, W.; Xie, Y.; Li, F.; Jiang, D. Preventive Effect of Dioscin against Monosodium Urate-Mediated Gouty Arthritis through Inhibiting Inflammasome NLRP3 and TLR4/NF-kB Signaling Pathway Activation: An In Vivo and In Vitro Study. J. Nat. Med. 2021, 75, 37–47. [Google Scholar] [CrossRef]
- Zhou, Q.; Yu, D.; Zhang, N.; Liu, S. Anti-Inflammatory Effect of Total Saponin Fraction from Dioscorea nipponica Makino on Gouty Arthritis and Its Influence on NALP3 Inflammasome. Chin. J. Integr. Med. 2019, 25, 663–670. [Google Scholar] [CrossRef]
- Zhou, Q.; Yu, D.H.; Zhang, N.; Wang, X.Y.; Zhang, N.; Lin, F.F.; Liu, S.M. Therapeutic Effects of Total Saponins From Dioscorea nipponica Makino on Gouty Arthritis Based on the MAPK-PPARγ Signaling Pathway: An In Vitro Study. Nat. Prod. Commun. 2020, 15, 1934578X2090449. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Wang, Y.; Song, H.; Guo, Y.; Xing, E.; Zhao, X.; Li, W.; Wang, J.; Yu, C. Effect of Diosgenin on T-Helper 17 Cells in Mice with Collagen-Induced Arthritis. Pharmacogn. Mag. 2020, 16, 486. [Google Scholar]
- Jegal, J.; Park, N.J.; Jo, B.G.; Bong, S.K.; Jegal, H.; Yang, M.; Kim, S.N. Anti-Atopic Properties of Gracillin Isolated from Dioscorea quinqueloba on 2,4-Dinitrochlorobenzene-Induced Skin Lesions in Mice. Nutrients 2018, 10, 1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Li, Q.; Zhao, Z.; Liu, Y.; Wang, Y.; Xiong, H.; Mei, Z. Paeonol Ameliorates Chronic Itch and Spinal Astrocytic Activation via CXCR3 in an Experimental Dry Skin Model in Mice. Front. Pharmacol. 2022, 12, 805222. [Google Scholar] [CrossRef] [PubMed]
- Barlass, U.; Dutta, R.; Cheema, H.; George, J.; Sareen, A.; Dixit, A.; Yuan, Z.; Giri, B.; Meng, J.; Banerjee, S.; et al. Morphine Worsens the Severity and Prevents Pancreatic Regeneration in Mouse Models of Acute Pancreatitis. Gut 2017, 67, 600–602. [Google Scholar] [CrossRef]
- Zhang, C.; Niu, H.; Wan, C.; Yu, X.; Xin, G.; Zhu, Y.; Wei, Z.; Li, F.; Wang, Y.; Zhang, K.; et al. Drug D, a Diosgenin Derive, Inhibits L-Arginine-Induced Acute Pancreatitis through Meditating GSDMD in the Endoplasmic Reticulum via the TXNIP/HIF-1α Pathway. Nutrients 2022, 14, 2591. [Google Scholar] [CrossRef]
- Shen, Y.; Wen, L.; Zhang, R.; Wei, Z.; Shi, N.; Xiong, Q.; Xia, Q.; Xing, Z.; Zeng, Z.; Niu, H.; et al. Dihydrodiosgenin Protects against Experimental Acute Pancreatitis and Associated Lung Injury through Mitochondrial Protection and PI3Kγ/Akt Inhibition: Dydio Protects against Acute Pancreatitis. Br. J. Pharmacol. 2018, 175, 1621–1636. [Google Scholar] [CrossRef] [Green Version]
- Azam, S.; Kim, Y.-S.; Jakaria, M.; Yu, Y.-J.; Ahn, J.-Y.; Kim, I.-S.; Choi, D.-K. Dioscorea nipponica Makino Rhizome Extract and Its Active Compound Dioscin Protect against Neuroinflammation and Scopolamine-Induced Memory Deficits. Int. J. Mol. Sci. 2022, 23, 9923. [Google Scholar] [CrossRef]
- Giridharan, S.; Srinivasan, M. Mechanisms of NF-κB P65 and Strategies for Therapeutic Manipulation. J. Inflamm. Res. 2018, 11, 407–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, H.Y. Dioscorea batatas Extract Attenuates High-Fat Diet-Induced Obesity in Mice by Decreasing Expression of Inflammatory Cytokines. Med. Sci. Monit. 2015, 21, 489–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinozaki, F.; Kamei, A.; Watanabe, Y.; Yasuoka, A.; Shimada, K.; Kondo, K.; Arai, S.; Kondo, T.; Abe, K. Propagule Powder of Japanese Yam (Dioscorea japonica) Reduces High-Fat Diet-Induced Metabolic Stress in Mice through the Regulation of Hepatic Gene Expression. Mol. Nutr. Food Res. 2020, 64, 2000284. [Google Scholar] [CrossRef]
- Jeong, E.J.; Jegal, J.; Ahn, J.; Kim, J.; Yang, M.H. Anti-Obesity Effect of Dioscorea oppositifolia Extract in High-Fat Diet-Induced Obese Mice and Its Chemical Characterization. Biol. Pharm. Bull. 2016, 39, 409–414. [Google Scholar] [CrossRef] [Green Version]
- Du, D.; Gu, H.; Djukovic, D.; Bettcher, L.; Gong, M.; Zheng, W.; Hu, L.; Zhang, X.; Zhang, R.; Wang, D.; et al. Multiplatform Metabolomics Investigation of Antiadipogenic Effects on 3T3-L1 Adipocytes by a Potent Diarylheptanoid. J. Proteome Res. 2018, 17, 2092–2101. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Teng, H.; An, F.; Huang, Q.; Chen, L.; Song, H. The Beneficial Effects of Purple Yam (Dioscorea alata L.) Resistant Starch on Hyperlipidemia in High-Fat-Fed Hamsters. Food Funct. 2019, 10, 2642–2650. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Hu, M.; Tao, J.; Yang, H.; Yan, P.; An, G.; Wang, H. The Protective Effects of Chinese Yam Polysaccharide against Obesity-Induced Insulin Resistance. J. Funct. Foods 2019, 55, 238–247. [Google Scholar] [CrossRef]
- Sun, B.; Yang, D.; Yin, Y.; Xiao, J. Estrogenic and Anti-Inflammatory Effects of Pseudoprotodioscin in Atherosclerosis-Prone Mice: Insights into Endothelial Cells and Perivascular Adipose Tissues. Eur. J. Pharmacol. 2020, 869, 172887. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, C.; Jin, Y.; Ma, X.; Xie, T.; Wang, J.; Liu, K.; Sun, H. Disocin Prevents Postmenopausal Atherosclerosis in Ovariectomized LDLR-/- Mice through a PGC-1α/ERα Pathway Leading to Promotion of Autophagy and Inhibition of Oxidative Stress, Inflammation and Apoptosis. Pharmacol. Res. 2019, 148, 104414. [Google Scholar] [CrossRef]
- Qu, L.; Li, D.; Gao, X.; Li, Y.; Wu, J.; Zou, W. Di’ao Xinxuekang Capsule, a Chinese Medicinal Product, Decreases Serum Lipids Levels in High-Fat Diet-Fed ApoE–/– Mice by Downregulating PCSK9. Front. Pharmacol. 2018, 9, 1170. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Li, R.; Liu, Y.; Lu, H.; Yu, L.; Zhang, F. Shuangyu Tiaozhi Granule Attenuates Hypercholesterolemia through the Reduction of Cholesterol Synthesis in Rat Fed a High Cholesterol Diet. BioMed Res. Int. 2019, 2019, 4805926. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Fujita, S.; Iemitsu, M. Dioscorea esculenta—Induced Increase in Muscle Sex Steroid Hormones Is Associated with Enhanced Insulin Sensitivity in a Type 2 Diabetes Rat Model. FASEB J. 2017, 31, 793–801. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Khan, M.Z.H.; Yuan, T.; Zhang, Y.; Liu, X.; Du, Z.; Zhao, Y. Preparation and Characterization of D. opposita Thunb Polysaccharide-Zinc Inclusion Complex and Evaluation of Anti-Diabetic Activities. Int. J. Biol. Macromol. 2019, 121, 1029–1036. [Google Scholar] [CrossRef]
- Xu, L.N.; Yin, L.H.; Jin, Y.; Qi, Y.; Han, X.; Xu, Y.W.; Liu, K.-X.; Zhao, Y.Y.; Peng, J.-Y. Effect and Possible Mechanisms of Dioscin on Ameliorating Metabolic Glycolipid Metabolic Disorder in Type-2-Diabetes. Phytomedicine 2020, 67, 153139. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Tao, X.; Xu, L.; Qi, Y.; Yin, L.; Han, X.; Xu, Y.; Zheng, L.; Peng, J. Dioscin Alleviates Non-Alcoholic Fatty Liver Disease through Adjusting Lipid Metabolism via SIRT1/AMPK Signaling Pathway. Pharmacol. Res. 2018, 131, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Liang, S.; Liu, Q.; Deng, Z.; Zhang, Y.; Du, J.; Zhang, Y.; Li, S.; Cheng, B.; Ling, C. Diosgenin Prevents High-Fat Diet-Induced Rat Non-Alcoholic Fatty Liver Disease through the AMPK and LXR Signaling Pathways. Int. J. Mol. Med. 2017, 41, 1089–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Li, R.; Zheng, Y.; Song, M.; Zhang, S.; Sun, Y.; Wei, M.; Fan, X. Diosgenin Ameliorates Non-Alcoholic Fatty Liver Disease by Modulating the Gut Microbiota and Related Lipid/Amino Acid Metabolism in High Fat Diet-Fed Rats. Front. Pharmacol. 2022, 13, 854790. [Google Scholar] [CrossRef]
- Sarma, S.; Sockalingam, S.; Dash, S. Obesity as a Multisystem Disease: Trends in Obesity Rates and Obesity-Related Complications. Diabetes Obes. Metab. 2021, 23, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Blüher, M. Metabolically Healthy Obesity. Endocr. Rev. 2020, 41, bnaa004. [Google Scholar] [CrossRef] [Green Version]
- Pappan, N.; Rehman, A. Dyslipidemia. StatPearls. 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK560891/ (accessed on 13 February 2023).
- Morais, I.C.P.d.S.; Moura, I.J.L.; Sabino, C.K.B.; Nicolau, L.A.D.; Souza, F.d.M.; Silva-Filho, J.C.d.; Oliveira, R.d.C.M.; Medeiros, J.V.R.; Lima, S.G.d.; Oliveira, A.P.d. Cardiovascular Effect of Diosgenin in Ovariectomized Rats. J. Med. Food 2019, 22, 248–256. [Google Scholar] [CrossRef]
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global Estimates of Diabetes Prevalence for 2017 and Projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Sathyapalan, T.; Atkin, S.L.; Sahebkar, A. Molecular Mechanisms Linking Oxidative Stress and Diabetes Mellitus. Oxid. Med. Cell. Longev. 2020, 2020, 8609213. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Ding, G.; Huang, W.; Wang, Z.; Xiao, W. Total Saponin of Dioscoreae hypoglaucae Rhizoma Ameliorates Streptozotocin-Induced Diabetic Nephropathy. Drug Des. Devel. Ther. 2016, 2016, 799–810. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Xi, Y.; Zhang, J.; Tang, J.; Zhou, X.; Chen, J.; Nie, C.; Zhu, Z.; Ma, B. Protective Effect of Dioscorea zingiberensis Ethanol Extract on the Disruption of Blood–Testes Barrier in High-fat Diet/Streptozotocin-induced Diabetic Mice by Upregulating ZO-1 and Nrf2. Andrologia 2020, 52, e13508. [Google Scholar] [CrossRef] [PubMed]
- Gan, Q.; Wang, J.; Hu, J.; Lou, G.; Xiong, H.; Peng, C.; Zheng, S.; Huang, Q. The Role of Diosgenin in Diabetes and Diabetic Complications. J. Steroid Biochem. Mol. Biol. 2020, 198, 105575. [Google Scholar] [CrossRef] [PubMed]
- Hajiabolhassan, F.; Tavanai, E. Diabetes-Induced Auditory Complications: Are They Preventable? A Comprehensive Review of Interventions. Eur. Arch. Otorhinolaryngol. 2021, 278, 3653–3665. [Google Scholar] [CrossRef]
- Powell, E.E.; Wong, V.W.-S.; Rinella, M. Non-Alcoholic Fatty Liver Disease. Lancet 2021, 397, 2212–2224. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, Q.; Chang, R.; Zhou, X.; Xu, C. Intestinal Barrier Function–Non-Alcoholic Fatty Liver Disease Interactions and Possible Role of Gut Microbiota. J. Agric. Food Chem. 2019, 67, 2754–2762. [Google Scholar] [CrossRef]
Compounds | Content | Specie | Plant Part | Ref. |
---|---|---|---|---|
Protodioscin | 13.5–14.9 mg/g | D. nipponica | [26] | |
Protogracillin | 7.7–8.4 mg/g | Tuber | ||
Dioscin | 2.3–3.8 mg/g | |||
Gracillin | 0.7–1.2 mg/g | |||
Gallic acid | 1.34–2.35 mg/g DW | D. alata | Tubers and bulbils | [17] |
Epicatechin | 0.45–10.71 mg/g DW | D. alata | Tubers and bulbils | [17] |
Catechins | 25.18 mg/g | D. bulbifera | Bulbils | [27] |
6.96 mg/g | D. bulbifera | Tubers | ||
0.32 mg/g | D. esculenta | Tubers | ||
Phenolic acids | 4.33 mg/g | D. bulbifera | Tubers | |
4.87 mg/g | D. alata | Tubers | ||
9.55 mg/g | D. nummularia | Tubers | ||
Caryatin | 1030 µg/g DW | D. alata, D. bulbifera, D. cayenensis, D. dumetorumacc, D. esculentaacc, D. nummularia acc, D. pentaphylla | Tubers | [28] |
3′-O-Methyl caryatin | 457 µg/g DW | |||
Allantoin | 4.23–20.8 mg/g | D. alata, D. bulbifera, D. cayenensis, D. dumetorum, D. esculenta, D. rotundata | Powders | [29] |
0.68 mg/100 g | D. belophylla | Tubers | [30] | |
1.64 mg/100 g | D. alata | Tubers | [31] | |
1.89 mg/100 g | D. esculenta | Tubers | [31] | |
Alkaloid | 7.2–16 mg/100 g DW | D. oppositifolia, D. hamiltonii, D. pubera, D. wallichii, D. hispida, D. pentaphylla, D. bulbifera, D. glabra, D. alata | Tubers | [24] |
2,7-Dihydroxy-4,6-dimethoxyphenanthrene | 9.79–173.69 μg/g | D. batatas, D. polystachya, D. quinqueloba, D. bulbifera | Peels | [32] |
6,7-Dihydroxy-2,4-dimethoxyphenanthrene | 46.65–166.99 μg/g | D. batatas, D. polystachya | ||
Batatasin | 97.19–419.73 μg/g | D. batatas, D. polystachya |
Species | Metabolic Diseases | Study Type | Main Results | Bioactive Compounds | Ref. |
---|---|---|---|---|---|
D. batatas rhizome | Obesity | HFD-induced mice | Downregulated the adipogenic transcription factor and its target gene (CD36) Decreased the expression of proinflammatory cytokines (TNF-α, MCP-1, and IL-6) | - | [91] |
D. Japonica propagules | Obesity | High-fat-loaded mice | Suppressed carbohydrate and fat metabolism disorders | - | [92] |
D. oppositifolia rhizomes | Obesity | HFD-induced obese mice | Suppressed feeding efficiency and fat absorption | 3,5-dimethoxy-2,7-phenanthrenediol (3R,5R)-3,5-dihydroxy-1,7-bis(4-hydroxyphenyl)-3,5-heptanediol | [93] |
D. zingiberensis rhizomes | Dyslipidemia | 3T3-L1 cells | Inhibited the differentiation and lipid accumulation of 3T3-L1 cells | Diarylheptanoid | [94] |
D. alata tubers | Dyslipidemia | Hyperlipidemic hamsters | Ameliorated lipid metabolism in association with gut microbiota modulation | Resistant starch | [95] |
Chinese yams rhizomes | Hyperlipidemia Insulin resistance | Obesity-induced insulin resistance and hyperlipidemia in mice | Lowered the levels of LDL, cholesterol, leptin and IL-1β in serum, and down-regulated the expression of MMP-3 in visceral fat tissues | Polysaccharides | [96] |
Shanghai Winherb Medical S & T Development (Shanghai, China) | Atherosclerosis | Ovariectomized ApoE-/- mice Human umbilical vein endothelial cells and Macrophages | Increased the level of ERα and eNOS protein Suppress TNFα expression Antiadipogenic effects | Pseudoprotodioscin | [97] |
Chenguang biotechnology Co. Ltd., (baoji, China | Atherosclerosis | HFD-OVX-treated LDLR-/- mice | Inhibited postmenopausal Atherosclerosis via inhibiting oxidative stress, inflammation, apoptosis and promoting autophagy partly through PGC-1α/ERα pathway | Disocin | [98] |
D. nipponica Makino rhizomes | Lipid disorder Atherosclerosis | High-fat diet-fed ApoE-/- mice | Reduce the levels of three major modifiable lipid risk factors, LDL-C, HDL-C, and TG Inhibited PCSK9/LDLR signaling pathway | - | [99] |
Dioscoreae rhizomes | Hypercholesterolemia | Hypercholesterolemic rat models | Decreased body weight gain, liver weight ratio, serum lipids levels and hepatic lipids accumulation | - | [100] |
D. esculenta tubers | Diabetes | Type 2 diabetes rat model | Increased muscle sex steroid hormone levels and decreased insulin resistance | Diosgenin | [101] |
D. opposita Thunb | Diabetes | STZ-induced diabetic rats | Decreased the glucose and insulin levels and MDA contents | Polysaccharides | [102] |
D. nipponica rhizomes | T2DM | Insulin-induced HepG2 cells Palmitic acid-induced AML12 cells High-fat diet- and streptozotocin-induced T2DM rats | Inhibited miR-125a-5p/STAT3 signaling pathway and alleviate glycolipid metabolic disorder | Dioscin | [103] |
Shanghai Tauto Biochemical Technology Co., Ltd. (Shanghai, China) | NAFLD | Mice models of NAFLD | Alleviated liver lipid accumulation symptoms and improved the levels of serum and hepatic biochemical parameters | Dioscin | [104] |
- | NAFLD | HFD-induced NAFLD rat | Ameliorated the hepatic lipid accumulation and HFD-induced liver function disturbance | Diosgenin | [105] |
Beijing gersion Bio-Technology Co., Ltd. (Beijing, China) | NAFLD | High-fat diet-fed NAFLD rats | Suppressed excessive weight gain, reduced serum levels of total cholesterol and triglycerides, and decreased liver fat accumulation | Diosgenin | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhao, S.; Tao, S.; Hou, G.; Zhao, F.; Tan, S.; Meng, Q. Dioscorea spp.: Bioactive Compounds and Potential for the Treatment of Inflammatory and Metabolic Diseases. Molecules 2023, 28, 2878. https://doi.org/10.3390/molecules28062878
Wang Z, Zhao S, Tao S, Hou G, Zhao F, Tan S, Meng Q. Dioscorea spp.: Bioactive Compounds and Potential for the Treatment of Inflammatory and Metabolic Diseases. Molecules. 2023; 28(6):2878. https://doi.org/10.3390/molecules28062878
Chicago/Turabian StyleWang, Zhen, Shengnan Zhao, Siyu Tao, Guige Hou, Fenglan Zhao, Shenpeng Tan, and Qingguo Meng. 2023. "Dioscorea spp.: Bioactive Compounds and Potential for the Treatment of Inflammatory and Metabolic Diseases" Molecules 28, no. 6: 2878. https://doi.org/10.3390/molecules28062878
APA StyleWang, Z., Zhao, S., Tao, S., Hou, G., Zhao, F., Tan, S., & Meng, Q. (2023). Dioscorea spp.: Bioactive Compounds and Potential for the Treatment of Inflammatory and Metabolic Diseases. Molecules, 28(6), 2878. https://doi.org/10.3390/molecules28062878