Bioavailability of Bioactive Compounds from Reconstituted Grapefruit Juice as Affected by the Obtention Process
Abstract
:1. Introduction
2. Results
2.1. Blood Serum Vitamin C Level
2.2. Blood Serum NAG Level
2.3. Serum RSA
3. Discussion
4. Materials and Methods
4.1. Grapefruit Juices
4.2. Selection of Participants in the Study
4.3. Experimental Design and Blood Sample Collection
4.4. Vitamin C Analysis
4.5. Blood Serum Naringenin Analysis
4.6. Radical Scavenging Activity
4.7. Vitamin C Bioavailability
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Pinarli, B.; Karliga, S.; Ozkan, G.; Capanoglu, E. Interaction of phenolics with food matrix: In vitro and in vivo approaches. Med. J. Nutr. Metab. 2020, 13, 63–74. [Google Scholar] [CrossRef]
- Espìn, J.C.; Garcìa-Conesa, M.T.; Tomàs-Barberàn, F.A. Nutraceuticals: Facts and fiction. Phytochemistry 2007, 68, 2986–3008. [Google Scholar] [CrossRef] [PubMed]
- Martins, N.; Barros, L.; Ferreira, I. In vivo antioxidant activity of phenolic compounds: Facts and gaps. Trends Food Sci Technol. 2016, 48, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jakobek, L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Gallier, S. Processing of food structures in the gastrointestinal tract and physiological responses. In Food Structures, Digestion and Health; Boland, M., Golding, M., Singh, H., Eds.; Elsevier: Alpharetta, GA, USA, 2014; pp. 51–81. [Google Scholar] [CrossRef]
- Rocchetti, G.; Gregorio, R.P.; Lorenzo, J.M.; Barba, F.J.; Oliveira, P.G.; Prieto, M.A.; Simal-Gandara, J.; Mosele, J.I.; Motilva, M.-J.; Tomas, M.; et al. Functional implications of bound phenolic compounds and phenolics–food interaction: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 811–842. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, M.; Freitas-Silva, O.; Barros, L.; Junger, A. A review of in vitro methods to evaluate the bioaccessibility of phenolic compounds in tropical fruits. Crit. Rev. Food Sci. Nutr. 2022, 5, 1–11. [Google Scholar] [CrossRef]
- Riedl, J.; Linseisen, J.; Hoffmann, J.; Wolfram, G. Some dietary fibers reduce the absorption of carotenoids in women. J. Nutr. 1999, 129, 2170. [Google Scholar] [CrossRef] [Green Version]
- Bohn, T. Dietary factors affecting polyphenol bioavailability. Nutr. Rev. 2014, 72, 429–452. [Google Scholar] [CrossRef]
- Melse-Boonstra, A. Bioavailability of Micronutrients From Nutrient-Dense Whole Foods: Zooming in on Dairy, Vegetables, and Fruits. Front. Nutr. 2020, 7, 101. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Tomas, M.; Ozdal, T.; Capanoglu, E. Effect of food matrix on the content and bioavailability of flavonoids. Trends. Food Sci. Technol. 2021, 117, 15–33. [Google Scholar] [CrossRef]
- Song, J.; Kwon, O.; Chen, S.; Daruwala, R.; Eck, P.; Park, J.B.; Levine, M. Flavonoid inhibition of sodium-dependent vitamin C transporter 1 (SVCT1) and glucose transporter isoform 2 (GLUT2), intestinal transporters for vitamin C and glucose. J. Biol. Chem. 2002, 277, 15252–15260. [Google Scholar] [CrossRef] [Green Version]
- Park, J.B.; Levine, M. Intracellular accumulation of ascorbic acid is inhibited by flavonoids via blocking of dehydroascorbic acid and ascorbic acid uptakes in HL-60, U937 and jurkat cells. J. Nutrn. 2000, 130, 1297–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Panchon, M.S.; Villano, D.; Troncoso, A.M.; Garcia-Parrilla, M.C. Antioxidant Activity of Phenolic Compounds: From In Vitro Results to In Vivo Evidence. Food Sci. Nutr. 2008, 48, 649–671. [Google Scholar] [CrossRef]
- Pearson, J.F.; Pullar, J.M.; Wilson, R.; Spittlehouse, J.K.; Vissers, M.C.M.; Skidmore, P.M.L.; Willis, J.; Cameron, V.A.; Carr, A.C. Vitamin C Status Correlates with Markers of Metabolic and Cognitive Health in 50-Year-Olds: Findings of the CHALICE Cohort Study. Nutrients 2017, 9, 831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruno, R.S.; Leonard, S.W.; Atkinson, J.; Montined, T.J.; Ramakrishnane, R.; Bray, T.M.; Trabera, M.G. Faster plasma vitamin E disappearance in smokers is normalized by vitamin C supplementation. Free Radic. Biol. Med. 2006, 40, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.L.; Paris, H.L.; Beals, J.W.; Binns, S.E.; Giordano, G.R.; Scalzo, R.L.; Schweder, M.M.; Blair, E.; Bell, C. Liposomal-encapsulated Ascorbic Acid: Influence on Vitamin C Bioavailability and Capacity to Protect Against Ischemia–Reperfusion Injury. Nutr. Metab. Insights 2016, 9, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Monahan, K.D.; Eskurza, I.; Seals, D.R. Ascorbic acid increases cardiovagal baroreflex sensitivity in healthy older men. American Am. J. Physiol.-Heart Circ. Physiol. 2004, 286, H2113–H2117. [Google Scholar] [CrossRef]
- Ye, Z.; Song, H. Antioxidant vitamins intake and the risk of coronary heart disease: Meta-analysis of cohort studies. Eur. J. Prev. Cardiol. 2008, 15, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Arfaoui, L. Dietary Plant Polyphenols: Effects of Food Processing on Their Content and Bioavailability. Molecules 2021, 26, 2959. [Google Scholar] [CrossRef]
- Igual, M.; García-Martínez, E.; Camacho, M.M.; Martínez-Navarrete, N. Changes in flavonoid content of grapefruit juice caused by thermal treatment and storage. Innov. Food Sci. Emerg. Technol. 2011, 12, 153–162. [Google Scholar] [CrossRef]
- Manach, C.; Morand, C.; Gil-Izquierdo, A.; Bouteloup-Demange, C.; Rémésy, C. Bioavailability in humans of the flavanones hesperidin and narirutin after the ingestion of two doses of orange juice. Eur. J. Clin. Nutr. 2003, 57, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uscanga, M.A.; Camacho, M.M.; Salgado, M.A.; Martínez-Navarrete, N. Influence of an Orange Product Composition on the Characteristics of the Obtained Freeze-dried Cake and Powder as Related to Their Consumption Pattern. Food Bioprocess Technol. 2020, 13, 1368–1379. [Google Scholar] [CrossRef]
- Goñi, I.; Elena Díaz-Rubio, E.; Pérez-Jiménez, J.; Saura-Calixto, F. Towards an updated methodology for measurement of dietary fiber, including associated polyphenols, in food and beverages. Food Res. Int. 2009, 42, 840–846. [Google Scholar] [CrossRef]
- Tao, B.; Ye, F.; Li, H.; Hu, O.; Xue, S.; Zhao, G. Phenolic Profile and in Vitro Antioxidant Capacity of Insoluble Dietary Fiber Powders from Citrus Pomace as Affected by Ultrafine Grinding. J. Agric. Food Chem. 2014, 62, 7166–7173. [Google Scholar] [CrossRef] [PubMed]
- Camacho, M.M.; Silva-Espinoza, M.A.; Martínez-Navarrete, N. Flowability, Rehydration Behaviour and bioactive Compounds of an Orange Powder Product as Affected by Particle Size. Food Bioprocess Technol. 2022, 15, 683–692. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, R.; Dong, L.; Huang, F.; Tang, X.; Wei, Z.; Zhang, M. Particle size of insoluble dietary fiber from rice bran affects its phenolic profile, bioaccessibility and functional properties. LWT 2018, 87, 450–456. [Google Scholar] [CrossRef]
- Huber, L. Qualification of High-Performance Liquid Chromatography Systems. Biopharm. Int. 1998, 11, 65. [Google Scholar]
- Moraga, G.; Igual, M.; García-Martínez, E.; Mosquera, L.H.; Martínez-Navarrete, N. Effect of relative humidity and storage time on the bioactive compounds and functional properties of grapefruit poder. J. Food Eng. 2012, 112, 191–199. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; Plaza, L.; de Ancos, B.; Cano, M.P. Quantitative bioactive compounds assessment and their relative contribution to the antioxidant capacity of commercial orange juices. J. Sci. Food Agric. 2003, 83, 430–439. [Google Scholar] [CrossRef]
- Sádecká, J.; Polovka, M.; Kolek, E.; Belajová, E.; Tobolková, B.; Daško, L.; Durec, J. Orange juice with pulp: Impact of pasteurisation and storage on flavour, polyphenols, ascorbic acid and antioxidant activity. J. Food Nutr. Res. 2014, 53, 371–388. [Google Scholar]
- Toh, J.J.; Khoo, H.E.; Azrina, A. Comparison of antioxidant properties of pomelo [Citrus grandis (L.) Osbeck] varieties. Int. Food Res. J. 2013, 20, 1661–1668. [Google Scholar]
- Vinson, J.A.; Al Kharrat, H.; Andreoli, L. Effect of Aloe vera preparations on the human bioavailability of vitamins C and E. Phytomedicine 2005, 12, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Agudelo, C.; Igual, M.; Camacho, M.M.; Martínez-Navarrete, N. Effect of process technology on the nutritional, functional, and physical quality of grapefruit powder. Food Sci. Technol. 2017, 23, 61–74. [Google Scholar] [CrossRef] [Green Version]
- Carr, A.C.; Bozonet, S.M.; Vissers, M.C.M. A Randomised Cross-Over Pharmacokinetic Bioavailability Study of Synthetic versus Kiwifruit-Derived Vitamin C. Nutrients 2013, 5, 4451–4461. [Google Scholar] [CrossRef] [Green Version]
- Galindo, R.G.; Chis, M.S.; Martínez-Navarrete, N.; Camacho, M.M. Dried orange juice waste as a source of bioactive compounds. Br. Food J. 2022, 124, 4653–4665. [Google Scholar] [CrossRef]
- Gironés-Vilaplana, A.; Moreno, D.A.; García-Viguera, C. Phytochemistry and biological activity of Spanish Citrus fruits. Food Funct. 2014, 5, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Martinez, S.; Valek, L.; Rešetić, J.; Ružić, D.F. Cyclic voltammetry study of plasma antioxidant capacity—Comparison with the DPPH and TAS spectrophotometric methods. J. Electroanal. Chem. 2006, 588, 68–73. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camacho, M.d.M.; Martínez-Lahuerta, J.J.; García-Martínez, E.; Igual, M.; Martínez-Navarrete, N. Bioavailability of Bioactive Compounds from Reconstituted Grapefruit Juice as Affected by the Obtention Process. Molecules 2023, 28, 2904. https://doi.org/10.3390/molecules28072904
Camacho MdM, Martínez-Lahuerta JJ, García-Martínez E, Igual M, Martínez-Navarrete N. Bioavailability of Bioactive Compounds from Reconstituted Grapefruit Juice as Affected by the Obtention Process. Molecules. 2023; 28(7):2904. https://doi.org/10.3390/molecules28072904
Chicago/Turabian StyleCamacho, María del Mar, Juan José Martínez-Lahuerta, Eva García-Martínez, Marta Igual, and Nuria Martínez-Navarrete. 2023. "Bioavailability of Bioactive Compounds from Reconstituted Grapefruit Juice as Affected by the Obtention Process" Molecules 28, no. 7: 2904. https://doi.org/10.3390/molecules28072904
APA StyleCamacho, M. d. M., Martínez-Lahuerta, J. J., García-Martínez, E., Igual, M., & Martínez-Navarrete, N. (2023). Bioavailability of Bioactive Compounds from Reconstituted Grapefruit Juice as Affected by the Obtention Process. Molecules, 28(7), 2904. https://doi.org/10.3390/molecules28072904