Ligand Modulation on the Various Structures of Three Zinc(II)-Based Coordination Polymers for Antibiotics Degradation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure of [Zn(Hbtc)(dip)]n (1)
2.2. Crystal Structure of [Zn4(1,2-bdc)4(dip)4]n (2)
2.3. Crystal Structure of [Zn(1,4-bdc)(dip)]n (3)
2.4. TGAs and PXRD Patterns
2.5. Photocatalytic Degradation of Antibiotics
2.6. Influence of the Dosage of 1
2.7. Influence of the NFZ Concentration
2.8. Research on the Mechanism of Photocatalysis
2.9. Recyclability and Stability
2.10. Hirshfeld Surface Analysis
3. Experimental Method
3.1. Materials
3.2. Sample Preparation
3.2.1. Preparation of [Zn(Hbtc)(dip)]n (1)
3.2.2. Preparation of [Zn4(1,2-bdc)4(dip)4]n (2)
3.2.3. Preparation of [Zn(1,4-bdc)(dip)]n (3)
3.3. Photocatalytic Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zhao, Y.; Wang, Y.J.; Wang, N.; Zheng, P.; Fu, H.R.; Han, M.L.; Wang, L.Y. Tetraphenylethylene-decorated metal-organic frameworks as energy-transfer platform for the detection of nitro-antibiotics and white-light emission. Inorg. Chem. 2019, 58, 12700–12706. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.Y.; Chen, J.Y.; Zhang, L.; Cheng, Y.; Lu, C.Y.; Liu, Y.F.; Singh, A.; Trivedi, M.; Kumar, A.; Liu, J.Q. Metal organic frameworks as efficient adsorbents for drugs from wastewater. Mater. Today Commun. 2022, 31, 103514. [Google Scholar] [CrossRef]
- Dong, X.Y.; Li, Y.Y.; Li, D.Q.C.; Liao, D.H.; Qin, T.R.; Prakash, O.; Kumar, A.; Liu, J.Q. A new 3D 8-connected Cd(II) MOF as a potent photocatalyst for oxytetracycline antibiotic degradation. CrystEngComm 2022, 24, 6933–6943. [Google Scholar] [CrossRef]
- Liu, X.; Steele, J.C.; Meng, X.Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environ. Pollut. 2017, 223, 161–169. [Google Scholar] [CrossRef]
- Li, L.T.; Zou, J.F.; Han, Y.T.; Liao, Z.H.; Lu, P.F.; Nezamzadeh-Ejhieh, A.; Liu, J.Q.; Peng, Y.Q. Recent advances in pollutants detection of the Al(III)/In(III)-based MOFs. New J. Chem. 2022, 46, 19577–19592. [Google Scholar] [CrossRef]
- Dong, X.Y.; Li, D.C.; Sakiyama, H.; Muddassir, M.; Pan, Y.; Srivastave, D.; Kumar, A. A 3,8-connected Cd(II)-based metal-organic framework as an appropriate luminescent sensor for the antibiotic sulfasalazine. CrystEngComm 2022, 24, 7157–7165. [Google Scholar] [CrossRef]
- Weitao, L.; Jiajun, W.; Jiye, Z.; Chen, T.; Minghong, W. Simulated solar driven catalytic degradation of psychiatric drug carbamazepine with binary BiVO4 heterostructures sensitized by graphene quantum dots. Appl. Catal. B 2017, 205, 587–596. [Google Scholar]
- Dong, B.X.; Pan, Y.M.; Liu, W.L.; Teng, Y.L. An Ultrastable Luminescent Metal-Organic Framework for Selective Sensing of Nitroaromatic Compounds and Nitroimidazole-Based Drug Molecules. Cryst. Growth Des. 2018, 18, 431–440. [Google Scholar] [CrossRef]
- Yao, W.; Wang, J.; Lou, Y.; Wu, H.; Qi, X.; Yang, J.; Zhong, A. Chemoselective hydroborative reduction of nitro motifs using a transition-metal-free catalyst. Org. Chem. Front. 2021, 8, 4554–4559. [Google Scholar] [CrossRef]
- Yao, W.; He, L.; Han, D.; Zhong, A. Sodium Triethylborohydride-Catalyzed Controlled Reduction of Unactivated Amides to Secondary or Tertiary Amines. J. Org. Chem. 2019, 84, 14627–14635. [Google Scholar] [CrossRef]
- Yao, W.; Wang, J.; Zhong, A.; Li, J.; Yang, J. Combined KOH/BEt3 Catalyst for Selective Deaminative Hydroboration of Aromatic Carboxamides for Construction of Luminophores. Org. Lett. 2020, 22, 8086–8090. [Google Scholar] [CrossRef]
- Isosaari, P.; Srivastava, V.; Sillanpää, M. Ionic liquid-based water treatment technologies for organic pollutants: Current status and future prospects of ionic liquid mediated technologies. Sci. Total Environ. 2019, 690, 604–619. [Google Scholar] [CrossRef] [PubMed]
- Zuloaga, O.; Navarro, P.; Bizkarguenaga, E.; Iparraguirre, A.; Vallejo, A.; Olivares, M.; Prieto, A. Overview of extraction, clean-up and detection techniques for the determination of organic pollutants in sewage sludge: A review. Anal. Chim. Acta 2012, 736, 7–29. [Google Scholar] [CrossRef]
- Luo, X.L.; Yin, Z.; Zeng, M.H.; Kurmoo, M. The construction, structures, and functions of pillared layer metal-organic frameworks. Inorg. Chem. Front. 2016, 3, 1208–1226. [Google Scholar] [CrossRef]
- Qin, L.; Liang, F.L.; Li, Y.; Wu, J.N.; Guan, S.Y.; Wu, M.Y.; Xie, S.L.; Luo, M.S.; Ma, D.Y. A 2D Porous Zinc-Organic Framework Platform for Loading of 5-Fluorouracil. Inorganics 2022, 10, 202. [Google Scholar] [CrossRef]
- Dong, X.; Shi, Z.; Li, D.; Li, Y.; An, N.; Shang, Y.; Sakiyama, H.; Muddassir, M.; Si, C. The regulation research of topology and magnetic exchange models of CPs through Co(II) concentration adjustment. J. Solid State Chem. 2023, 318, 123713. [Google Scholar] [CrossRef]
- Manna, B.; Desai, A.V.; Ghosh, S.K. Neutral N-donor ligand based flexible metal-organic frameworks. Dalton Trans. 2016, 45, 4060–4072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, T.; Shi, Z.; Zhang, W.; Dong, X.; An, N.; Sakiyama, H.; Muddassir, M.; Srivastava, D.; Kumar, A. 2D isostructural Ln(III)-based coordination polymer derived from Imidazole carboxylic acid: Synthesis, structure and magnetic behavior. J. Mol. Struct. 2023, 1282, 135220. [Google Scholar] [CrossRef]
- Jing, T.; Chen, L.; Jiang, F.; Yang, Y.; Zhou, K.; Yu, M.; Cao, Z.; Li, S.; Hong, M. Fabrication of a Robust Lanthanide Metal-Organic Framework as a Multifunctional Material for Fe(III) Detection, CO2 Capture, and Utilization. Cryst. Growth Des. 2018, 18, 2956–2963. [Google Scholar] [CrossRef]
- Wu, X.X.; Fu, H.R.; Han, M.L.; Zhou, Z.; Ma, L.F. Tetraphenylethylene Immobilized Metal-Organic Frameworks: Highly Sensitive Fluorescent Sensor for the Detection of Cr2O72- and Nitroaromatic Explosives. Cryst. Growth Des. 2017, 17, 6041–6048. [Google Scholar] [CrossRef]
- Li, Y.; Li, D.; Qin, T.; Shi, Z.; Fu, P.; Xiong, D.; Dong, X. A comparative study of proton conduction between two new Cd(II) and Co(II) complexes and in vitro antibacterial study of the Cd(II) complex. Appl. Organomet. Chem. 2023, 37, e6920. [Google Scholar] [CrossRef]
- Chen, D.M.; Tian, J.Y.; Wang, Z.W.; Liu, C.S.; Chen, M.; Du, M. An Anionic Na(I)-Organic Framework Platform: Separation of Organic Dyes and Post-Modification for Highly Sensitive Detection of Picric Acid. Chem. Commun. 2017, 53, 10668–10671. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.D.; Jiang, H.L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 2018, 52, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, H.; Ouyang, S.; Ye, J. Metal-organic frameworks for photocatalysis. Phys. Chem. Chem. Phys. 2016, 18, 7563–7572. [Google Scholar] [CrossRef]
- Zhang, H.; Li, C.; Li, Y.; Pang, J.; Bu, X. The advanced synthesis of MOFs-based materials in photocatalytic HER in recent three years. Catalysts 2022, 12, 1350. [Google Scholar] [CrossRef]
- Bavykina, A.; Kolobov, N.; Khan, I.S.; Bau, J.A.; Ramirez, A.; Gascon, J. Metal-organic frameworks in heterogeneous catalysis: Recent progress, new trends, and future perspectives. Chem. Rev. 2020, 120, 8468–8535. [Google Scholar] [CrossRef] [Green Version]
- Gangu, K.K.; Jonnalagadda, S.B. A review on metal-organic frameworks as congenial heterogeneous catalysts for potential organic transformations. Front. Chem. 2021, 9, 747615. [Google Scholar] [CrossRef]
- Lázaro, I.A.; Forgan, R.S.; Cirujano, F.G. MOF nanoparticles as heterogeneous catalysts for direct amide bond formations. Dalton Trans. 2022, 51, 8368–8376. [Google Scholar] [CrossRef]
- Qin, L.; Li, Y.; Liang, F.L.; Li, L.J.; Lan, Y.W.; Li, Z.Y.; Lu, X.T.; Yang, M.Q.; Ma, D.Y. A microporous 2D cobalt-based MOF with pyridyl sites and open metal sites for selective adsorption of CO2. Microporous Mesoporous Mater. 2022, 341, 112098. [Google Scholar] [CrossRef]
- Li, B.; Wen, H.M.; Zhou, W.; Chen, B. Porous metal-organic frameworks for gas storage and separation: What, how, and why? J. Phys. Chem. Lett. 2014, 5, 3468–3479. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Fan, W.; Sun, D. Flexible metal-organic frameworks for gas storage and separation. Dalton Trans. 2022, 51, 4608–4618. [Google Scholar] [CrossRef]
- Ma, S.; Zhou, H.C. Gas storage in porous metal-organic frameworks for clean energy applications. Chem. Commun. 2010, 46, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Lawson, H.D.; Walton, S.P.; Chan, C. Metal-organic frameworks for drug delivery: A design perspective. ACS Appl. Mater. Interfaces 2021, 13, 7004–7020. [Google Scholar] [CrossRef]
- Zheng, R.Q.; Guo, J.R.; Cai, X.Y.; Bin, L.J.; Lu, C.Y.; Singh, A.; Trivedi, M.; Kumar, A.; Liu, J.Q. Manganese complexes and manganese-based metal-organic frameworks as contrast agents in MRI and chemotherapeutics agents: Applications and prospects. Colloids Surf. B 2022, 213, 112432. [Google Scholar] [CrossRef]
- Li, M.M.; Yin, S.H.; Lin, M.Z.; Chen, X.L.; Pan, Y.; Peng, Y.Q.; Sun, J.B.; Kumar, A.; Liu, J.Q. Current status and prospects of metal-organic frameworks for bone therapy and bone repair. J. Mater. Chem. B. 2022, 10, 5105–5128. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.C.; Wang, J.; Guo, J.; Yan, M.H.; Wang, J.; Srivastava, D.; Kumar, A.; Sakiyama, H.; Muddassir, M.; Pan, Y. A 3D rare cubane-like tetramer Cu(II)-based MOF with 4-fold dia topology as an efficient photocatalyst for dye degradation. Colloids Surf. A 2023, 656, 130475. [Google Scholar] [CrossRef]
- Deng, K.; Gu, Y.; Gao, T.; Liao, Z.; Feng, Y.; Zhou, S.; Lyu, L. Carbonized MOF-coated zero-valent Cu driving an efficient dual-reaction-center Fenton-like water treatment process through utilizing pollutants and natural dissolved oxygen. ACS EST Water 2021, 2, 174–183. [Google Scholar] [CrossRef]
- Xie, L.; Yang, Z.; Xiong, W.; Zhou, Y.; Cao, J.; Peng, Y.; Zhang, Y. Construction of MIL-53 (Fe) metal-organic framework modified by silver phosphate nanoparticles as a novel Z-scheme photocatalyst: Visible-light photocatalytic performance and mechanism investigation. Appl. Surf. Sci. 2019, 465, 103–115. [Google Scholar] [CrossRef]
- Subudhi, S.; Mansingh, S.; Tripathy, S.P.; Mohanty, A.; Mohapatra, P.; Rath, D.; Parida, K. The fabrication of Au/Pd plasmonic alloys on UiO-66-NH2: An efficient visible light-induced photocatalyst towards the Suzuki Miyaura coupling reaction under ambient conditions. Catal. Sci. Technol. 2019, 9, 6585–6597. [Google Scholar] [CrossRef]
- Liu, D.; Li, M.; Li, X.; Ren, F.; Sun, P.; Zhou, L. Core-shell Zn/Co MOFs derived Co,3O4/CNTs as an efficient magnetic heterogeneous catalyst for persulfate activation and oxytetracycline degradation. Chem. Eng. J. 2020, 387, 124008. [Google Scholar] [CrossRef]
- Zhao, S.; Li, S.; Long, Y.; Shen, X.; Zhao, Z.; Wei, Q.; Zhang, Z. Ce-based heterogeneous catalysts by partial thermal decomposition of Ce-MOFs in activation of peroxymonosulfate for the removal of organic pollutants under visible light. Chemosphere 2021, 280, 130637. [Google Scholar] [CrossRef]
- Mao, W.; Wang, D.; Wang, X.; Hu, X.; Gao, F.; Su, Z. Efficient cobalt-based metalorganic framework derived magnetic Co@ C-600 Nanoreactor for peroxymonosulfate activation and oxytetracycline degradation. Colloids Surf. 2022, 648, 129234. [Google Scholar] [CrossRef]
- Wang, J.; Rao, C.Y.; Lu, L.; Zhang, S.L.; Muddassir, M.; Liu, J.Q. Efficient photocatalytic degradation of methyl violet using two new 3D MOFs directed by different carboxylate spacers. CrystEngComm 2021, 23, 741–747. [Google Scholar] [CrossRef]
- Wang, J.L.; Wang, C.; Lin, W. Metal-organic frameworks for light harvesting and photocatalysis. Acs Catal. 2012, 2, 2630–2640. [Google Scholar] [CrossRef]
- Singh, A.; Singh, A.K.; Liu, J.Q.; Kumar, A. Syntheses, design strategies, and photocatalytic charge dynamics of metal-organic frameworks (MOFs): A catalyzed photo-degradation approach towards organic dyes. Catal. Sci. Technol. 2021, 11, 3946–3989. [Google Scholar] [CrossRef]
- Wang, F.; Xue, R.; Ma, Y.; Ge, Y.; Wang, Z.; Qiao, X.; Zhou, P. Study on the performance of a MOF-808-based photocatalyst prepared by a microwave-assisted method for the degradation of antibiotics. RSC Adv. 2021, 11, 32955–32964. [Google Scholar] [CrossRef]
- Chen, X.; Peng, X.; Jiang, L.; Yuan, X.; Fei, J.; Zhang, W. Photocatalytic removal of antibiotics by MOF-derived Ti3+-and oxygen vacancy-doped anatase/rutile TiO2 distributed in a carbon matrix. Chem. Eng. J. 2022, 427, 130945. [Google Scholar] [CrossRef]
- Zhang, Z.; Du, C.; Zhang, Y.; Yu, G.; Xiong, Y.; Zhou, L.; Zhu, H. Degradation of oxytetracycline by magnetic MOFs heterojunction photocatalyst with persulfate: High stability and wide range. Environ. Sci. Pollut. Res. 2022, 29, 30019–30029. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Wang, P.; Wang, C.; Ao, Y. Efficient degradation of atrazine by BiOBr/UiO-66 composite photocatalyst under visible light irradiation: Environmental factors, mechanisms and degradation pathways. Chemosphere 2018, 203, 497–505. [Google Scholar] [CrossRef]
- Yu, C.; Sun, X.; Zou, L.; Li, G.; Zhang, L.; Liu, Y. A pillar-layered Zn-LMOF with uncoordinated carboxylic acid sites: High performance for luminescence sensing Fe3+ and TNP. Inorg. Chem. 2019, 58, 4026–4032. [Google Scholar] [CrossRef]
- Zhu, Q.Q.; Zhou, Q.S.; Zhang, H.W.; Zhang, W.W.; Lu, D.Q.; Guo, M.T.; He, H. Design and construction of a metal-organic framework as an efficient luminescent sensor for detecting antibiotics. Inorg. Chem. 2020, 59, 1323–1331. [Google Scholar] [CrossRef]
- Ahmad, M.; Siddiqui, K.A. 0D+ 1D= 1D Zn-orotate-Bimb polyrotaxane coordination polymer: Synthesis, structure, thermogravimetric and variable temperature luminescence analysis. Polyherdon 2022, 215, 115693. [Google Scholar]
- Xie, Y.; Zhu, X.; Sun, Y.; Wang, H.; Qian, H.; Yao, W. Rapid detection method for nitrofuran antibiotic residues by surface-enhanced Raman Spectroscopy. Eur. Food Res. Technol. 2012, 235, 555–561. [Google Scholar] [CrossRef]
- Yue, L.; Ge, C.; Feng, D.; Yu, H.; Deng, H.; Fu, B. Adsorption-desorption behavior of atrazine on agricultural soils in China. J. Environ. Sci. 2017, 57, 180–189. [Google Scholar] [CrossRef]
- Zhou, Y.; Feng, S.; Duan, X.; Zheng, W.; Shao, C.; Wu, W.; Lai, W. MnO2/UIO-66 improves the catalysed degradation of oxytetracycline under UV/H2O2/PMS system. J. Solid State Chem. 2021, 300, 122231. [Google Scholar] [CrossRef]
- Jin, X.; Li, H.; Zhu, X.; Li, N.; Owens, G.; Chen, Z. Enhanced removal of oxytetracycline from wastewater using bimetallic Fe/Ni nanoparticles combined with ZIF-8 nanocomposites. J. Environ. Manag. 2022, 318, 115526. [Google Scholar] [CrossRef]
- Xia, Q.; Yu, X.; Zhao, H.; Wang, S.; Wang, H.; Guo, Z.; Xing, H. Syntheses of novel lanthanide metal–organic frameworks for highly efficient visible-light-driven dye degradation. Cryst. Growth Des. 2017, 17, 4189–4195. [Google Scholar] [CrossRef]
- Mohanty, A.; Singh, U.P.; Ghorai, A.; Banerjee, S.; Butcher, R.J. Metal–organic frameworks derived from a semi-rigid anthracene-based ligand and sulfonates: Proton conductivity and dye degradation studies. CrystEngComm 2021, 23, 684–693. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Abdi, J. Nanoporous metal-organic framework (MOF-199): Synthesis, characterization and photocatalytic degradation of Basic Blue 41. Microchem. J. 2019, 144, 436–442. [Google Scholar] [CrossRef]
- Somnath; Ahmad, M.; Siddiqui, K.A. Synthesis of a Mixed-Ligand H-Bonded Cu Coordination Polymer: Exploring the pH-Dependent High Photocatalytic Degradation of Rhodamine 6G, Methyl Violet, Crystal Violet, and Rose Bengal Dyes under Room Illumination. ACS Omega 2022, 7, 41120–41136. [Google Scholar] [CrossRef]
- Somnath; Waris; Ali, A.; Ahmad, M.; Siddiqui, K.A. Bifunctional Self-Penetrating Co (II)-Based 3D MOF for High-Performance Environmental and Energy Storage Applications. Cryst. Growth Des. 2022, 22, 7374–7394. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, M.; Xia, Y.-G.; Lu, L.; Wang, J.; Mohanty, A.; Wu, Y.; Sakiyama, H.; Muddassir, M.; Pan, Y. Ligand Modulation on the Various Structures of Three Zinc(II)-Based Coordination Polymers for Antibiotics Degradation. Molecules 2023, 28, 2933. https://doi.org/10.3390/molecules28072933
Xiong M, Xia Y-G, Lu L, Wang J, Mohanty A, Wu Y, Sakiyama H, Muddassir M, Pan Y. Ligand Modulation on the Various Structures of Three Zinc(II)-Based Coordination Polymers for Antibiotics Degradation. Molecules. 2023; 28(7):2933. https://doi.org/10.3390/molecules28072933
Chicago/Turabian StyleXiong, Min, Ying-Gui Xia, Lu Lu, Jun Wang, A. Mohanty, Yu Wu, Hiroshi Sakiyama, Mohd. Muddassir, and Ying Pan. 2023. "Ligand Modulation on the Various Structures of Three Zinc(II)-Based Coordination Polymers for Antibiotics Degradation" Molecules 28, no. 7: 2933. https://doi.org/10.3390/molecules28072933
APA StyleXiong, M., Xia, Y. -G., Lu, L., Wang, J., Mohanty, A., Wu, Y., Sakiyama, H., Muddassir, M., & Pan, Y. (2023). Ligand Modulation on the Various Structures of Three Zinc(II)-Based Coordination Polymers for Antibiotics Degradation. Molecules, 28(7), 2933. https://doi.org/10.3390/molecules28072933