Review on Optical Methods Used to Characterize the Linear Birefringence of Polymer Materials for Various Applications
Abstract
:1. Introduction
2. Basic Aspects of Linear Birefringence
3. Optical Methods for Linear Birefringence Evaluation
3.1. Interferometric Method
3.2. Compensatory Method
3.3. Channeled Spectrum Method
- The radiation keeps its linearly polarization state as at the entrance in AL, if is an even number of π;
- Light is also linearly polarized, but has its azimuth changed in –α, if is an odd number of π;
- Light becomes elliptically polarized with the semiaxes of polarization ellipse parallel to the principal axes of AL, if the phase difference satisfies the condition (the emergent light is circularly polarized for azimuth angles with an odd number of );
- Light is elliptically polarized for the case , but the polarization ellipse has its axes rotated relative to the principal axes of the AL.
3.4. Polarizing Ellipse Method
3.5. Refractometric Method
3.6. Polarizing Microscope Method
4. Optically Birefringent Polymer Materials and Their Applications
4.1. Birefringence of Materials Based on Polyvinyl Alcohol
4.2. Birefringence of Materials Based on Polyethylene Terephthalate
4.3. Birefringence of Materials Based on Polyimides
4.4. Birefringence of Materials Based on Cellulose Derivatives
4.5. Birefringence of Other Polymer Materials
5. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tagaya, A.; Ohkita, H.; Koike, Y. Zero-birefringence optical polymers by nano-birefringent crystals for liquid crystal displays. Mater. Sci. Eng. C 2006, 26, 966–970. [Google Scholar] [CrossRef]
- Sultanova, N.G.; Kasarova, S.N.; Nikolov, I.D. Characterization of optical properties of optical polymers. Opt. Quantum Electron. 2013, 45, 221–232. [Google Scholar] [CrossRef]
- Aziz, S.B.; Brza, M.A.; Nofal, M.M.; Abdulwahid, R.T.; Hussen, S.A.; Hussein, A.M.; Karim, W.O. A comprehensive review on optical properties of polymer electrolytes and composites. Materials 2020, 13, 3675. [Google Scholar] [CrossRef] [PubMed]
- Seymour, R.B.; Carraher, C.E. Optical Properties of Polymers. In Structure—Property Relationships in Polymers; Springer: Boston, MA, USA, 1984; pp. 47–55. [Google Scholar]
- Tagaya, A. Birefringence of Polymer. In Encyclopedia of Polymeric Nanomaterials; Springer: Berlin, Germany, 2013; pp. 1–6. [Google Scholar]
- Medhat, M.; El-Zaiat, S.Y.; Ramadan, H.; Abdelghaffar, M. Effect of thermal annealing on the linear birefringence of polystyrene, polypropylene and cellulose acetate polymers. Optik 2017, 131, 490–496. [Google Scholar] [CrossRef]
- Hahn, B.R.; Wendorff, J.H. Compensation method for zero birefringence in oriented polymers. Polymer 1985, 26, 1619–1622. [Google Scholar] [CrossRef]
- Iwata, S.; Tsukahara, H.; Nihei, E.; Koike, Y. Transparent zero-birefringence copolymer and its optical properties. Appl. Opt. 1997, 36, 4549. [Google Scholar] [CrossRef]
- Tagaya, A.; Iwata, S.; Kawanami, E.; Tsukahara, H.; Koike, Y. Zero-birefringence polymer by the anisotropic molecule dope method. Appl. Opt. 2001, 40, 3677. [Google Scholar] [CrossRef]
- Choi, B.; Song, S.; Jeong, S.M.; Chung, S.-H.; Glushchenko, A. Electrically tunable birefringence of a polymer composite with long-range orientational ordering of liquid crystals. Opt. Express 2014, 22, 18027. [Google Scholar] [CrossRef] [PubMed]
- Barzic, A.I.; Sava, I.; Albu, R.M.; Ursu, C.; Lisa, G.; Stoica, I. Polyimide-Derived Supramolecular Systems Containing Various Amounts of Azochromophore for Optical Storage Uses. Polymers 2023, 15, 1056. [Google Scholar] [CrossRef]
- Yang, L.; Fan, F.; Chen, M.; Zhang, X.; Bai, J.; Chang, S. Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field. Opt. Mater. Express 2016, 6, 2803. [Google Scholar] [CrossRef]
- Pan, L.; Yang, Q.; Jin, M.; Sun, G.; Jiang, Z. Temperature dependence of photo-induced birefringence in azo-doped polymers containing different substitutions. J. Phys. D. Appl. Phys. 2004, 37, 1002–1006. [Google Scholar] [CrossRef]
- Kouderis, C.; Tsigoias, S.; Siafarika, P.; Kalampounias, A.G. Acoustically induced birefringence in polymer aqueous solutions: The case of polyvinyl alcohol. Phys. B Condens. Matter 2022, 643, 414189. [Google Scholar] [CrossRef]
- Inoue, T. Strain-Induced Birefringence of Amorphous Polymers and Molecular Design of Optical Polymers. ACS Appl. Polym. Mater. 2021, 3, 2264–2273. [Google Scholar] [CrossRef]
- Uzawa, K.; Tozaki, T.; Yano, K.; Nihei, E.; Furukawa, R. Stress-induced absorption of a birefringence-reduced polymer optical fiber with doped core. Jpn. J. Appl. Phys. 2020, 59, SDDF06. [Google Scholar] [CrossRef]
- Ohmi, M.; Akatsuka, M.; Ishikawa, K.; Naito, K.; Yonezawa, Y.; Nishida, Y.; Yamanaka, M.; Izawa, Y.; Nakai, S. High-sensitivity two-dimensional thermal- and mechanical-stress-induced birefringence measurements in a Nd:YAG rod. Appl. Opt. 1994, 33, 6368. [Google Scholar] [CrossRef]
- Tarjanyi, N.; Uhricik, M.; Kacik, D.; Palcek, P. High load-induced birefringence of PMMA investigated in VIS/NIR spectral range. Adv. Electr. Electron. Eng. 2019, 17, 360–366. [Google Scholar] [CrossRef]
- Szukalski, A.; Haupa, K.; Miniewicz, A.; Mysliwiec, J. Photoinduced Birefringence in PMMA Polymer Doped with Photoisomerizable Pyrazoline Derivative. J. Phys. Chem. C 2015, 119, 10007–10014. [Google Scholar] [CrossRef]
- Qi, S.; Zhang, C.; Yang, X.; Chen, K.; Zhang, L.; Wang, X.; Xu, T.; Tian, J.; Zhang, G. Experimental study of photoinduced birefringence in azo-dye-doped polymer. Optik 2004, 115, 253–256. [Google Scholar] [CrossRef]
- Nishizono, T.; Kondo, M.; Kawatsuki, N. Photoinduced Molecular Reorientation of a Liquid Crystalline Polymer with a High Birefringence. Chem. Lett. 2021, 50, 912–915. [Google Scholar] [CrossRef]
- Kojo, T.; Tagaya, A.; Koike, Y. Mechanism of generation of birefringence in poly(methyl methacrylate/styrene). Polym. J. 2012, 44, 167–173. [Google Scholar] [CrossRef]
- Li, F.; Kim, K.-H.; Savitski, E.P.; Chen, J.-C.; Harris, F.W.; Cheng, S.Z.D. Molecular weight and film thickness effects on linear optical anisotropy of 6FDA-PFMB polyimides. Polymer 1997, 38, 3223–3227. [Google Scholar] [CrossRef]
- Senkevich, J.J.; Desu, S.B.; Simkovic, V. Temperature studies of optical birefringence and X-ray diffraction with poly(p-xylylene), poly(chloro-p-xylylene) and poly(tetrafluoro-p-xylylene) CVD thin films. Polymer 2000, 41, 2379–2390. [Google Scholar] [CrossRef]
- Li, B.; Zhao, Y.; Chen, X.; Wang, Z.; Xu, J.; Shi, W. Polymer Crystallization with Configurable Birefringence in Double Emulsion Droplets. Macromolecules 2022, 55, 3974–3985. [Google Scholar] [CrossRef]
- Lavrenko, P.N.; Rjumtsev, E.I.; Shtennikova, I.N.; Andreeva, L.N.; Pogodina, N.V.; Tsvetkov, V.N. Electric birefringence, conformation, and rigidity of the molecules of cellulose esters in solutions. J. Polym. Sci. Polym. Symp. 2007, 44, 217–235. [Google Scholar] [CrossRef]
- Jacobsson, S.; Hård, S.; Boldizar, A. Birefringence of high-pressure injection-molded high-density polyethylene at 70.5 μm wavelength. J. Polym. Sci. Polym. Phys. Ed. 1984, 22, 471–474. [Google Scholar] [CrossRef]
- Andrews, R.D.; Hammack, T.J. Temperature dependence of orientation birefringence of polymers in the glassy and rubbery states. J. Polym. Sci. Part C Polym. Symp. 1964, 5, 101–112. [Google Scholar] [CrossRef]
- Shimada, H.; Nobukawa, S.; Hattori, T.; Yamaguchi, M. Wavelength dispersion of birefringence of oriented polyethylene films. Appl. Opt. 2017, 56, 3806. [Google Scholar] [CrossRef]
- Inoue, T.; Kuwada, S.; Ryu, D.-S.; Osaki, K. Effects of Wavelength on Strain-Induced Birefringence of Polymers. Polym. J. 1998, 30, 929–934. [Google Scholar] [CrossRef] [Green Version]
- Nobukawa, S. Design of birefringence and its wavelength dispersion for cellulose derivatives using substitution, low-mass additives, and porous structures. Polym. J. 2019, 51, 835–843. [Google Scholar] [CrossRef]
- Raymond, C.; Ronca, S. Relation of Structure to Electrical and Optical Properties. In Brydson’s Plastics Materials: Eighth Edition; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Volume 1, pp. 103–125. ISBN 9780323358248. [Google Scholar]
- Born, M.; Wolf, E.; Bhatia, A.B.; Clemmow, P.C.; Gabor, D.; Stokes, A.R.; Taylor, A.M.; Wayman, P.A.; Wilcock, W.L. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed.; Cambridge University Press: Cambridge, UK, 1999; ISBN 9780521642224. [Google Scholar]
- Dorohoi, D.O.; Dumitrascu, I.; Dumitrascu, L.; Benchea, A.C. External electric fields action on liquid crystalline layers, modifying their degree of order. UPB Sci. Bull. Ser. A Appl. Math. Phys. 2017, 79, 275–284. [Google Scholar]
- Androne, D.A.M.; Dorohoi, D.O.; Dimitriu, D.G.; Kasper, H.U. Optical and chemical study of quartz from granitic pegmatites. Rev. Chim. 2018, 69, 1846–1850. [Google Scholar] [CrossRef]
- Postolache, M.; Dimitriu, D.G.; Nechifor, C.D.; Condurache Bota, S.; Closca, V.; Dorohoi, D.O. Birefringence of Thin Uniaxial Polymer Films Estimated Using the Light Polarization Ellipse. Polymers 2022, 14, 1063. [Google Scholar] [CrossRef] [PubMed]
- Epure, E.-L.; Stoica, I.; Albu, R.M.; Hulubei, C.; Barzic, A.I. New Strategy for Inducing Surface Anisotropy in Polyimide Films for Nematics Orientation in Display Applications. Nanomaterials 2021, 11, 3107. [Google Scholar] [CrossRef] [PubMed]
- Dumitrascu, L.; Dumitrascu, I.; Dorohoi, D.-O.; Toma, M. Interferometric method for birefringence determination with a polarizing microscope. Opt. Express 2008, 16, 20884. [Google Scholar] [CrossRef]
- Nechifor, C.D.; Angheluta, E.; Dorohoi, D.O. Birefringence of etired poly (vinyl alcohol) (PVA) foils. Mater. Plast. 2010, 47, 164–166. [Google Scholar]
- Nechifor, C.D.; Zelinschi, C.B.; Dorohoi, D.O. Influence of UV and Gamma radiations on the induced birefringence of stretched poly(vinyl) alcohol foils. J. Mol. Struct. 2014, 1062, 179–184. [Google Scholar] [CrossRef]
- Nechifor, C.D.; Aflori, M.; Dorohoi, D.O. Anisotropy of thin foils obtained from microwave-irradiated poly(vinyl alcohol) aqueous solutions. Polymers 2019, 11, 1072. [Google Scholar] [CrossRef] [Green Version]
- Dorohoi, D.O.; Dumitrascu, L.; Dumitrascu, I. Order degree of polyvinyl alcohol (PVA) films estimated by a spectral method. Mater. Plast. 2008, 45, 106–108. [Google Scholar]
- Rogojanu, A.; Dascalu, C.F.; Zelinschi, B.C.; Caprosu, M.; Dorohoi, D.O. Birefringence and dichroism of poly(vinyl-alcohol) foils containing phthalazinium ylids. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 81, 334–338. [Google Scholar] [CrossRef]
- Ursu, L.; Postolache, M.; Postolache, M.; Dorohoi, D.O. The stretching effect on the anisotropy of poly (vinyl) alcohol (PVA) foils. Mater. Plast. 2015, 52, 58–61. [Google Scholar]
- Nechifor, C.D.; Zelinschi, C.B.; Stoica, I.; Closca, V.; Dorohoi, D.O. Spectral studies of Donepezil release from streched PVA polymer films. J. Mol. Struct. 2013, 1044, 262–267. [Google Scholar] [CrossRef]
- Zelinschi, C.B.; Stoica, I.; Dorohoi, D.O. Changes in morphology and optical properties of polyvinyl alcohol foils induced by Congo red dye concentration and stretching degree. J. Polym. Eng. 2014, 34, 345–351. [Google Scholar] [CrossRef]
- Scripa (Tudose), A.E.; Dimitriu, D.G.; Dorohoi, D.O. Linear birefringence of polymer foils determined by optical means. J. Mol. Struct. 2017, 1140, 67–70. [Google Scholar] [CrossRef]
- Haji, A.; Rahbar, R.S.; Kalantari, B. The effect of hot multistage drawing on molecular structure and optical properties of polyethylene terephthalate fibers. Mater. Res. 2012, 15, 554–560. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.K.; Cakmak, M. Mechano optical behavior of polyethylene terephthalate films during simultaneous biaxial stretching: Real time measurements with an instrumented system. Polymer 2013, 54, 6463–6470. [Google Scholar] [CrossRef]
- Zhou, Z.; Jiang, H.; Gu, H.; Chen, X.; Peng, H.; Liao, Y.; Liu, S.; Xie, X. Strain-optical behavior of polyethylene terephthalate film during uniaxial stretching investigated by Mueller matrix ellipsometry. Polymer 2019, 182, 121842. [Google Scholar] [CrossRef]
- Wu, Z.; He, J.; Yang, H.; Yang, S. Progress in Aromatic Polyimide Films for Electronic Applications: Preparation, Structure and Properties. Polymers 2022, 14, 1269. [Google Scholar] [CrossRef]
- Mathews, A.S.; Kim, I.; Ha, C. Synthesis, characterization, and properties of fully aliphatic polyimides and their derivatives for microelectronics and optoelectronics applications. Macromol. Res. 2007, 15, 114–128. [Google Scholar] [CrossRef] [Green Version]
- Uetani, K.; Koga, H.; Nogi, M. Estimation of the Intrinsic Birefringence of Cellulose Using Bacterial Cellulose Nanofiber Films. ACS Macro Lett. 2019, 8, 250–254. [Google Scholar] [CrossRef]
- El-Wakil, N.A.; Fahmy, Y.; Abou-Zeid, R.E.; Dufresne, A.; El-Sherbiny, S. Liquid crystalline behavior of hydroxypropyl cellulose esterified with 4-alkoxybenzoic acid. BioResources 2010, 5, 1834–1845. [Google Scholar]
- Barzic, A.I.; Dimitriu, D.G.; Dorohoi, D.O. Optical Rotatory Dispersion of Poly(propylene oxide) in Benzene Solution Determined from Channeled Spectra. Int. J. Polym. Anal. Charact. 2015, 20, 565–571. [Google Scholar] [CrossRef]
- Ryu, H.J.; Hwang, J.; Kim, J.; Lee, J.-H. Dependence of the birefringence of polystyrene film on the stretching conditions. Appl. Opt. 2018, 57, 268. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.; Kalyar, M.A.; Raza, Z.A. Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polym. Eng. Sci. 2018, 58, 2119–2132. [Google Scholar] [CrossRef]
- Nechifor, C.D.; Zelinschi, C.B.; Dorohoi, D.O. Evaluation of Film forming polymeric solutions for skin wound dressing. Mater. Plast. 2015, 52, 249–253. [Google Scholar]
- Li, X.; Zhang, L.; Guo, X.; Zhu, C.; Yu, Z.-Z.; Zhao, N.; Xu, J. Folding and birefringence behavior of poly(vinyl alcohol) hydrogel film induced by freezing and thawing. RSC Adv. 2014, 4, 49861–49865. [Google Scholar] [CrossRef]
- Hamza, A.A.; Abd el-Kader, H.I. Optical Properties and Birefringence Phenomena in Fibers. Text. Res. J. 1983, 53, 205–209. [Google Scholar] [CrossRef]
- Pluta, M. A Double Refracting Interference Microscope with Continuously Variable Amount and Direction of Wavefront Shear. Opt. Acta Int. J. Opt. 1971, 18, 661–675. [Google Scholar] [CrossRef]
- Nishio, Y.; Suzuki, H.; Sato, K. Molecular orientation and optical anisotropy induced by the stretching of poly(vinyl alcohol) poly(N-vinyl pyrrolidone) blends. Polymer 1994, 35, 1452–1461. [Google Scholar] [CrossRef]
- Uddin, A.J.; Narusawa, T.; Gotoh, Y. Enhancing mechanical properties of gel-spun polyvinyl alcohol fibers by iodine doping. Polym. Eng. Sci. 2011, 51, 647–653. [Google Scholar] [CrossRef]
- Van Gurp, M. Molecular Orientation and Mechanical Properties of Poly (Vinyl Alcohol) Fibers. Int. J. Polym. Mater. Polym. Biomater. 1993, 22, 219–229. [Google Scholar] [CrossRef]
- Sawatari, C.; Yamamoto, Y.; Yanagida, N.; Matsuo, M. Drawability of poly(vinyl alcohol) films prepared by gelation/crystallization from semidilute solutions. Polymer 1993, 34, 956–966. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, A.P.; Kapoor, A.; Tripathi, K.N. Effect of dye doping in poly(vinyl alcohol) waveguides. J. Mod. Opt. 2005, 52, 1471–1483. [Google Scholar] [CrossRef]
- Nechifor, C.D.; Postolache, M.; Albu, R.M.; Barzic, A.I.; Dorohoi, D.O. Induced birefringence of rubbed and stretched polyvinyl alcohol foils as alignment layers for nematic molecules. Polym. Adv. Technol. 2019, 30, 2143–2152. [Google Scholar] [CrossRef]
- Albu, R.M.; Stoica, I.; Barzic, A.I.; Postolache, M.; Angheluta, M.D.; Dorohoi, D.O. Effect of mechanical treatments on orientation behavior and spectral properties of azoderivative dyes incorporated in poly(vinyl alcohol) films. Polym. Eng. Sci. 2021, 61, 2453–2465. [Google Scholar] [CrossRef]
- Ando, S.; Sawada, T.; Sasaki, S. In-plane birefringence of polyimide films prepared on substrates having thermal expansion anisotropy. Jpn. J. Appl. Phys. 1995, 34, L1470–L1471. [Google Scholar] [CrossRef]
- Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 2010, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, S.; Rahimzadeh-Bajgiran, P.; Tajvidi, M.; Shaler, S.M. Birefringence-based orientation mapping of cellulose nanofibrils in thin films. Cellulose 2020, 27, 677–692. [Google Scholar] [CrossRef]
- Cosutchi, A.I.; Hulubei, C.; Stoica, I.; Ioan, S. A new approach for patterning epiclon-based polyimide precursor films using a lyotropic liquid crystal template. J. Polym. Res. 2011, 18, 2389–2402. [Google Scholar] [CrossRef]
- Ogiwara, Y.; Suzuki, T.; Iwata, N.; Furumi, S. Room-Temperature Cholesteric Liquid Crystals of Cellulose Derivatives with Visible Reflection. Polymers 2022, 15, 168. [Google Scholar] [CrossRef]
- Nobukawa, S.; Nakao, A.; Songsurang, K.; Pulkerd, P.; Shimada, H.; Kondo, M.; Yamaguchi, M. Birefringence and strain-induced crystallization of stretched cellulose acetate propionate films. Polymer 2017, 111, 53–60. [Google Scholar] [CrossRef]
- Hamza, A.A.; Fouda, I.M.; El-Farhaty, K.A.; Badawy, Y.K. Production of Polyethylene Fibers and their Optical Properties and Radial Differences in Orientation. Text. Res. J. 1980, 50, 592–596. [Google Scholar] [CrossRef]
- Meredith, R.; Hearle, J.W.S. Physical Methods of Investigating Textiles; Cornell University: New York, NY, USA, 1959. [Google Scholar]
- Barzic, A.I.; Dimitriu, D.G.; Dorohoi, D.O. New method for determining the optical rotatory dispersion of hydroxypropyl cellulose polymer solutions in water. Polym. Eng. Sci. 2015, 55, 1077–1081. [Google Scholar] [CrossRef]
- Cosutchi, A.I.; Dimitriu, D.G.; Zelinschi, C.B.; Breaban, I.; Dorohoi, D.O. Optical activity of transparent polymer layers characterized by spectral means. J. Mol. Struct. 2015, 1090, 39–43. [Google Scholar] [CrossRef]
- Navard, P.; Haudin, J.M. Rheology of hydroxypropylcellulose solutions. J. Polym. Sci. Part B Polym. Phys. 1986, 24, 189–201. [Google Scholar] [CrossRef]
- Raha, S.; Bowden, P.B. Birefringence of plastically deformed poly(methyl methacrylate). Polymer 1972, 13, 174–183. [Google Scholar] [CrossRef]
- Tamura, M.; Kurokawa, N.; Hotta, A. Compensation for Orientation Birefringence of PMMA by Blending Bottlebrush Polymers Composed of Well-Controlled Graft Chains. ACS Macro Lett. 2022, 11, 799–804. [Google Scholar] [CrossRef] [PubMed]
Polymer Material | Δn | Characterization Method | Orientation Technique/Conditions | Reference |
---|---|---|---|---|
Polyvinyl alcohol (PVA) | 0.0311 | Babinet compensator | Stretching | [39] |
0.0262 | Polarizing ellipse method | Stretching degree of 2.6 | [36] | |
0.0047 | Babinet compensator | Gamma exposure, Stretching ratio of 1.6 | [40] | |
0.0183 | Babinet compensator | Microwave irradiation, stretching ratio of 3 | [41] | |
PVA/pyridinium ylid | 0.0320 | Polarizing microscope | Uniaxial stretching, stretching degree of 0.35 | [42] |
PVA/phthalazinium ylid | 0.0254 | Babinet compensator | Stretching degree of 5.5, gentile heating | [43] |
PVA/cycloimmonium ylids | 0.0275 | Babinet compensator | Stretching ratio of 5 | [44] |
PVA/donepezil | 0.0250 | Babinet compensator | Stretching degree of 1.4 | [45] |
PVA/Congo red dye | 0.0800 | Babinet compensator | Stretching degree of 3 | [46] |
Polyethylene terephthalate | 0.0550 | Channeled spectra | 589 nm | [47] |
0.2069 | Ziess polarizing microscope | Hot multistage drawing, 130 °C, drawing ratio 6.24 | [48] | |
0.0200 | Lab-made device | Biaxial stretching, 95 °C | [49] | |
0.0450 | Mueller matrix ellipsometry | Biaxial stretching, 23 °C | [50] | |
Polyimides (PIs) | 0.0400 | Polarizing ellipse | Conditions of synthesis, aromatic structure | [51] |
0.0170 | Polarizing ellipse | Semi-aliphatic structure | [52] | |
0.0040 | Polarizing ellipse | Fully aliphatic structure | [52] | |
0.0022 | Refractometry method | Rubbed and stretched | [37] | |
0.0365 | Refractometry method | Azo-dye, UV laser | [11] | |
Cellulose | 0.0900 | Retardation mapping | Ambiental | [53] |
Cellulose triacetate | 0.0005 | Optical birefringence analyzer | Stretching, 500 nm | [31] |
Cellulose acetate propionate | −0.0012 | Optical birefringence analyzer | Stretching, 500 nm | [31] |
Hydroxypropyl cellulose | 0.0061 | Refractometry method | Liquid crystal | [54] |
Poly (propylene oxide) | 0.00017 | Channeled spectra | Solution in benzene, 400 nm | [55] |
Polystyrene | 0.00255 | Optical interference method | Stretching ratio of 8 | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorohoi, D.O.; Postolache, M.; Nechifor, C.D.; Dimitriu, D.G.; Albu, R.M.; Stoica, I.; Barzic, A.I. Review on Optical Methods Used to Characterize the Linear Birefringence of Polymer Materials for Various Applications. Molecules 2023, 28, 2955. https://doi.org/10.3390/molecules28072955
Dorohoi DO, Postolache M, Nechifor CD, Dimitriu DG, Albu RM, Stoica I, Barzic AI. Review on Optical Methods Used to Characterize the Linear Birefringence of Polymer Materials for Various Applications. Molecules. 2023; 28(7):2955. https://doi.org/10.3390/molecules28072955
Chicago/Turabian StyleDorohoi, Dana Ortansa, Mihai Postolache, Cristina Delia Nechifor, Dan Gheorghe Dimitriu, Raluca Marinica Albu, Iuliana Stoica, and Andreea Irina Barzic. 2023. "Review on Optical Methods Used to Characterize the Linear Birefringence of Polymer Materials for Various Applications" Molecules 28, no. 7: 2955. https://doi.org/10.3390/molecules28072955
APA StyleDorohoi, D. O., Postolache, M., Nechifor, C. D., Dimitriu, D. G., Albu, R. M., Stoica, I., & Barzic, A. I. (2023). Review on Optical Methods Used to Characterize the Linear Birefringence of Polymer Materials for Various Applications. Molecules, 28(7), 2955. https://doi.org/10.3390/molecules28072955