Evaluation of Inhibitory Effect and Mechanism of Euphorbia Factor L3 against Phytophthora capsici
Abstract
:1. Introduction
2. Results
2.1. Baseline Sensitivity of P. capsici to EFL3 by Mycelial Growth and Spore Germination
2.2. EFL3 Altered P. capsici Morphology and Ultrastructure
2.3. EFL3 Affected the Cell Membrane Permeability of P. capsici
2.4. EFL3 Destroyed the Cell Membrane and Cell Wall Integrity of P. capsici
2.5. EFL3 Affected the Phospholipid and Cellulose Contents of P. capsici
2.6. Curative and Protective Activities of EFL3 against P. capsici
3. Discussion
4. Materials and Methods
4.1. General Experimental Procedures
4.2. Chemicals
4.3. P. capsici Isolates and Culture Conditions
4.4. Determination of Baseline Sensitivity of P. capsici to EFL3
4.5. OM and TEM Observations
4.6. Effect of EFL3 on Cell Membrane Permeability of P. capsici
4.7. Effect of EFL3 on P. capsici Cell Wall and Cell Membrane Integrity
4.8. Effect of EFL3 on P. capsici Phospholipid and Cellulose Contents
4.9. Control Efficacy of EFL3 against P. capsici
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lamour, K.H.; Stam, R.; Jupe, J.; Huitema, E. The oomycete broad-host-range pathogen Phytophthora capsici. Mol. Plant Pathol. 2012, 13, 329–337. [Google Scholar] [CrossRef]
- Kamoun, S.; Furzer, O.; Jones, J.D.; Judelson, H.S.; Ali, G.S.; Dalio, R.J.; Roy, S.G.; Schena, L.; Zambounis, A.; Panabières, F.; et al. The Top 10 oomycete pathogens in molecular plant pathology. Mol. Plant Pathol. 2015, 16, 413–434. [Google Scholar] [CrossRef]
- Li, Q.; Ai, G.; Shen, D.; Zou, F.; Wang, J.; Bai, T.; Chen, Y.; Li, S.; Zhang, M.; Jing, M.; et al. A Phytophthora capsici effector targets acd11 binding partners that regulate ROS-mediated defense response in Arabidopsis. Mol. Plant 2019, 12, 565–581. [Google Scholar] [CrossRef] [Green Version]
- Hausbeck, M.K.; Lamour, K.H. Phytophthora capsici on vegetable crops: Research progress and management challenges. Plant Dis. 2004, 88, 1292–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ro, N.; Haile, M.; Hur, O.; Geum, B.; Rhee, J.; Hwang, A.; Kim, B.; Lee, J.; Hahn, B.S.; Lee, J.; et al. Genome-wide association study of resistance to Phytophthora capsici in the pepper (Capsicum spp.) collection. Front. Plant Sci. 2022, 20, 902464. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data (accessed on 20 May 2022).
- Lamour, K.H.; Hausbeck, M.K. Mefenoxam insensitivity and the sexual stage of Phytophthora capsici in Michigan cucurbit fields. Phytopathology 2000, 90, 396–400. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.S.; Han, X.Y.; Wang, W.Q.; Zhang, X.F. Advance on fungicides resistance of Phytophthora capsici. Agrochemicals 2010, 49, 86–89. [Google Scholar]
- Miao, G.; Han, J.; Ye, T.; Chen, Z.; Zhang, K. Efficiency and safety assurance of six fungicides applied on postharvest cabbages stored in a natural environment. J. Agric. Food Chem. 2018, 66, 10864–10870. [Google Scholar] [CrossRef] [PubMed]
- Piotrowski, J.S.; Okada, H.; Lu, F.; Li, S.C.; Hinchman, L.; Ranjan, A.; Smith, D.L.; Higbee, A.J.; Ulbrich, A.; Coon, J.J.; et al. Plant-derived antifungal agent poacic acid targets β-1,3-glucan. Proc. Natl. Acad. Sci. USA 2015, 112, 1490–1497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, X.; Xu, D.; Yang, C.; Xing, X.; Song, J. Antagonism of three kinds of hinokitiol clathrates against eleven kinds of plant pathogenic fungi. Plant Prot. 2016, 4, 242–247. [Google Scholar] [CrossRef]
- Wang, B.; Xu, S.; Cao, Y.; Liu, F.; Zhao, X.; Feng, X. Fungicidal activity of 10-deacetylbacatin III against Phytophthora capsici via inhibiting lysine biosynthesis. Pestic. Biochem. Physiol. 2018, 152, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, P.; Röhrl, M.; Zechmeister, K.; Engel, D.W.; Hoppe, W. Structure of 7-hydroxy-lathyrol a further diterpene from Euphorbia lathyris L. Tetrahedron Lett. 1971, 12, 1325–1328. [Google Scholar] [CrossRef]
- Jiao, W.; Wan, Z.; Chen, S.; Lu, R.; Chen, X.; Fang, D.; Wang, J.; Pu, S.; Huang, X.; Gao, H.; et al. Lathyrol diterpenes as modulators of P-glycoprotein dependent multidrug resistance: Structure-activity relationship studies on Euphorbia factor L3 derivatives. J. Med. Chem. 2015, 58, 3720–3738. [Google Scholar] [CrossRef] [PubMed]
- Vasas, A.; Hohmann, J. Euphorbia diterpenes: Isolation, structure, biological activity, and synthesis (2008–2012). Chem. Rev. 2014, 114, 8579–8612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bicchi, C.; Appendino, G.; Cordero, C.; Rubiolo, P.; Ortelli, D.; Veuthey, J.L. HPLC-UV and HPLC-positive-ESI-MS analysis of the diterpenoid fraction from caper spurge (Euphorbia lathyris) seed oil. Phytochem. Anal. 2001, 12, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Wang, S.; Li, H.; Zhao, Q.; Yan, S.; Dong, M.; Liu, D.; Chen, X.; Li, R. Lathyrane diterpenes from Euphorbia lathyris and the potential mechanism to reverse the multi-drug resistance in HepG2/ADR cells. Biomed. Pharmacother. 2020, 121, 109663. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Wu, Y.L.; Zhang, P.; Chen, Z.Z.; Li, H.; Chen, L.X. Anti-inflammatory lathyrane diterpenoids from Euphorbia lathyris. J. Nat. Prod. 2019, 82, 756–764. [Google Scholar] [CrossRef]
- Yang, S.; Sun, J.; Hong, L.; Hong MZhang, Y. Bioactivity-guided isolation of anticancer compounds from Euphorbia lathyris. Anal. Methods 2015, 7, 9568–9576. [Google Scholar] [CrossRef]
- Firstencel, H.; Butt, T.M.; Carruthers, R.I. A fluorescence microscopy method for determining the viability of entomophthoralean fungal spores. J. Invertebr. Pathol. 1990, 55, 258–264. [Google Scholar] [CrossRef]
- Puig, M.; Moragrega, C.; Ruz, L.; Calderón, C.E.; Cazorla, F.M.; Montesinos, E.; Llorente, I. Interaction of antifungal peptide BP15 with Stemphylium vesicarium, the causal agent of brown spot of pear. Fungal Biol. 2016, 120, 61–71. [Google Scholar] [CrossRef]
- Asamov, D.K.; Tursunkulova, R.K.; Isaev, P.I.; Stepanichenko, O. The action of phytotoxic substances of the fungus Verticillium dahliae on the permeability of a synthetic phospholipid membrane. Chem. Nat. Compd. 1975, 11, 713–714. [Google Scholar] [CrossRef]
- Stenbæk, J.; Löf, D.; Falkman, P.; Jensen, B.; Cárdenas, M. An alternative anionic bio-sustainable anti-fungal agent: Investigation of its mode of action on the fungal cell membrane. J. Colloid Interface Sci. 2017, 1, 242–248. [Google Scholar] [CrossRef]
- Geoghegan, I.; Steinberg, G.; Gurr, S. The role of the fungal cell wall in the infection of plants. Trends Microbiol. 2017, 25, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Russel, P.E. Sensitivity Baselines in Fungicide Resistance Research and Management; Crop Life International: Brussels, Belgium, 2004. [Google Scholar]
- Wang, B.; Li, P.; Xu, S.; Liu, L.; Xu, Y.; Feng, X.; Zhao, X.; Chen, Y. Inhibitory effects of the natural product esculetin on Phytophthora capsici and its possible mechanism. Plant Dis. 2021, 105, 1814–1822. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Hu, L.B.; Wang, D.D.; Chen, J.; Xue, Y.F.; Shi, Z.Q. Inhibition of Phytophthora capsici by cinnamaldehyde. Jiangsu J. Agric. Sci. 2014, 2, 282–288. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, S.; Du, S.; Chen, S.; Sun, H. Antifungal activity of thymol and carvacrol against postharvest pathogens Botrytis cinerea. J. Food Sci. Technol. 2019, 56, 2611–2620. [Google Scholar] [CrossRef]
- Sheehan, D.J.; Hitchcock, C.A.; Sibley, C.M. Current and emerging azole antifungal agents. Clin. Microbiol. Rev. 1999, 12, 40–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatsumi, Y.; Nagashima, M.; Shibanushi, T.; Iwata, A.; Kangawa, Y.; Inui, F.; Siu, W.J.; Pillai, R.; Nishiyama, Y. Mechanism of action of efinaconazole, a novel triazole antifungal agent. Antimicrob. Agents Chemother. 2013, 57, 2405–2409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Fu, S.; Fan, G.; Li, D.; Yang, S.; Peng, L.; Pan, S. Active compound identification by screening 33 essential oil monomers against Botryosphaeria dothidea from postharvest kiwifruit and its potential action mode. Pestic. Biochem. Physiol. 2021, 179, 104957. [Google Scholar] [CrossRef]
- Liu, P.; Cai, Y.; Zhang, J.; Wang, R.; Li, B.; Weng, Q.; Chen, Q. Antifungal activity of liquiritin in Phytophthora capsici comprises not only membrane-damage-mediated autophagy, apoptosis, and Ca2+ reduction but also an induced defense responses in pepper. Ecotoxicol. Environ. Saf. 2021, 209, 111813. [Google Scholar] [CrossRef]
- Sietsma, J.H.; Eveleigh, D.E.; Haskins, R.H. Cell wall composition and protoplast formation of some Oomycete species. Biochim. Biophys. Acta 1969, 184, 306–317. [Google Scholar] [CrossRef] [PubMed]
- Wise, C.; Falardeau, J.; Hagberg, I.; Avis, T.J. Cellular lipid composition affects sensitivity of plant pathogens to fengycin, an antifungal compound produced by Bacillus subtilis strain CU12. Phytopathology 2014, 104, 1036–1041. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Huang, J.; Lyu, H.; Guan, F.; Li, P.; Tian, M.; Xu, S.; Zhao, X.; Liu, F.; Paetz, C.; et al. Two lathyrane diterpenoid stereoisomers containing an unusual trans-gem-dimethylcyclopropane from the seeds of Euphorbia lathyris. RSC Adv. 2021, 11, 3183–3189. [Google Scholar] [CrossRef]
- Zhao, W.; Li, W.; Chi, Y.; Cao, S.; Dong, L.; Qi, R. Occurrence of stem blight and fruit rot caused by Phytophthora capsici on Chinese cucumber (Trichosanthes kirilowii) in China. Plant Dis. 2020, 105, 232. [Google Scholar] [CrossRef]
- Thomulka, K.W.; Abbas, C.G.; Young, D.A.; Lange, J.H. Evaluating median effective concentrations of chemicals with bioluminescent bacteria. Bull. Environ. Contam. Toxicol. 1996, 56, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Xu, L.; Li, X.; Xue, J.; Li, T.; Duan, X. A combined analysis of transcriptome and proteome reveals the inhibitory mechanism of a novel oligosaccharide ester against Penicillium italicum. J. Fungi 2022, 8, 111. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; He, B.; Chen, T.; Li, H.; Chen, L.; Chen, Y.; Tian, K.; Yang, K.; Shen, D.; Yan, W.; et al. Discovery of tropolone stipitaldehyde as a potential agent for controlling phytophthora blight and its action mechanism research. J. Agric. Food Chem. 2022, 70, 8693–8703. [Google Scholar] [CrossRef]
- Yang, C.; Xie, L.; Ma, Y.; Cai, X.; Yue, G.; Qin, G.; Zhang, M.; Gong, G.; Chang, X.; Qiu, X.; et al. Study on the fungicidal mechanism of glabridin against Fusarium graminearum. Pestic. Biochem. Physiol. 2021, 179, 104963. [Google Scholar] [CrossRef]
- Wang, B.; Liu, F.; Li, Q.; Xu, S.; Zhao, X.; Xue, P.; Feng, X. Antifungal activity of zedoary turmeric oil against Phytophthora capsici through damaging cell membrane. Pestic. Biochem. Physiol. 2019, 159, 59–67. [Google Scholar] [CrossRef]
- Ouyang, Q.; Okwong, R.O.; Chen, Y.; Tao, N. Synergistic activity of cinnamaldehyde and citronellal against green mold in citrus fruits. Postharvest Biol. Technol. 2020, 162, 111095. [Google Scholar] [CrossRef]
- Li, Q.; Wang, J.; Bai, T.; Zhang, M.; Jia, Y.; Shen, D.; Zhang, M.; Dou, D. A Phytophthora capsici effector suppresses plant immunity via interaction with EDS1. Mol. Plant Pathol. 2020, 21, 502–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Zhang, G.; Yang, J.; Li, L.; Li, P.; Xu, S.; Feng, X.; Chen, Y. Evaluation of Inhibitory Effect and Mechanism of Euphorbia Factor L3 against Phytophthora capsici. Molecules 2023, 28, 2958. https://doi.org/10.3390/molecules28072958
Wang B, Zhang G, Yang J, Li L, Li P, Xu S, Feng X, Chen Y. Evaluation of Inhibitory Effect and Mechanism of Euphorbia Factor L3 against Phytophthora capsici. Molecules. 2023; 28(7):2958. https://doi.org/10.3390/molecules28072958
Chicago/Turabian StyleWang, Bi, Guodong Zhang, Jingjing Yang, Linwei Li, Pirui Li, Shu Xu, Xu Feng, and Yu Chen. 2023. "Evaluation of Inhibitory Effect and Mechanism of Euphorbia Factor L3 against Phytophthora capsici" Molecules 28, no. 7: 2958. https://doi.org/10.3390/molecules28072958
APA StyleWang, B., Zhang, G., Yang, J., Li, L., Li, P., Xu, S., Feng, X., & Chen, Y. (2023). Evaluation of Inhibitory Effect and Mechanism of Euphorbia Factor L3 against Phytophthora capsici. Molecules, 28(7), 2958. https://doi.org/10.3390/molecules28072958