Synergistic Effect of Sophora japonica and Glycyrrhiza glabra Flavonoid-Rich Fractions on Wound Healing: In Vivo and Molecular Docking Studies
Abstract
:1. Introduction
2. Results
2.1. Total Phenolics and Total Flavonoids Contents
2.2. UPLC/MS Analysis of Glycyrrhiza glabra and Sophora japonica Flavonoid-Rich Fractions
2.3. In Vivo Wound Healing Experiment
2.3.1. Effect of Topical Application of Different Treatments on Wound Contraction
2.3.2. Histopathology
2.3.3. Estimation of Thiobarbituric Acid Reactive Substances (TBARS) Level Expressed as Malondialdehyde (MDA)
2.3.4. Estimation of Reduced Glutathione GSH and SOD Activity in the Wound Tissues
2.3.5. Evaluation of CDI for the Combination
2.4. Molecular Docking
2.4.1. Docking of Glycyrrhiza glabra Major Compounds
2.4.2. Docking of Sophora japonica Major Compounds
2.5. Pharmacokinetic Profiling
3. Materials and Methods
3.1. Plant Material Extraction, and Fractionation
3.2. Total Phenolics and Total Flavonoids
3.3. UPLC-ESI-MS Analysis
3.4. Preparation of Topical Extract Gel
3.5. Preparation of Topical Extract Ointment
3.6. In Vivo Wound Healing Experiment
3.6.1. Animals
3.6.2. Wound Induction and Experimental Groups
3.6.3. Wound Contraction Measurements
3.6.4. Histopathology
3.7. Biochemical Analysis
3.7.1. Measurement of Lipid Peroxidation
3.7.2. Estimation of Reduced Glutathione
3.7.3. Estimation of Reduced SOD
3.8. Statistical Analysis
3.9. Molecular Docking
3.10. Evaluation of Drug Interaction by CDI
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shady, N.H.; Soltane, R.; Maher, S.A.; Saber, E.A.; Elrehany, M.A.; Mostafa, Y.A.; Sayed, A.M.; Abdelmohsen, U.R. Wound Healing and Antioxidant Capabilities of Zizyphus mauritiana Fruits: In-Vitro, In-Vivo, and Molecular Modeling Study. Plants 2022, 11, 1392. [Google Scholar] [CrossRef]
- Moeini, A.; Pedram, P.; Makvandi, P.; Malinconico, M.; Gomez d’Ayala, G. Wound Healing and Antimicrobial Effect of Active Secondary Metabolites in Chitosan-Based Wound Dressings: A Review. Carbohydr. Polym. 2020, 233, 115839. [Google Scholar] [CrossRef]
- Elshamy, A.I.; Ammar, N.M.; Hassan, H.A.; El-Kashak, W.A.; Al-Rejaie, S.S.; Abd-ElGawad, A.M.; Farrag, A.R.H. Topical Wound Healing Activity of Myricetin Isolated from Tecomaria capensis v. aurea. Molecules 2020, 25, 4870. [Google Scholar] [CrossRef] [PubMed]
- Labib, R.M.; Ayoub, I.M.; Michel, H.E.; Mehanny, M.; Kamil, V.; Hany, M.; Magdy, M.; Moataz, A.; Maged, B.; Mohamed, A. Appraisal on the Wound Healing Potential of Melaleuca alternifolia and Rosmarinus officinalis L. Essential Oil-Loaded Chitosan Topical Preparations. PLoS ONE 2019, 14, e0219561. [Google Scholar] [CrossRef] [PubMed]
- Aly, S.H.; El-hassab, M.A.; Elhady, S.S.; Gad, H.A. Comparative Metabolic Study of Tamarindus indica L.’ s Various Organs Based on GC/MS Analysis, In Silico and In Vitro Anti-Inflammatory and Wound Healing Activities. Plants 2022, 12, 87. [Google Scholar] [CrossRef]
- Okur, M.E.; Karadağ, A.E.; Okur, N.Ü.; Özhan, Y.; Sipahi, H.; Ayla, Ş.; Daylan, B.; Demirci, B.; Demirci, F. In Vivo Wound Healing and in Vitro Anti-Inflammatory Activity Evaluation of Phlomis russeliana Extract Gel Formulations. Molecules 2020, 25, 2695. [Google Scholar] [CrossRef] [PubMed]
- Alsenani, F.; Ashour, A.M.; Alzubaidi, M.A.; Azmy, A.F.; Hetta, M.H.; Abu-Baih, D.H.; Elrehany, M.A.; Zayed, A.; Sayed, A.M.; Abdelmohsen, U.R.; et al. Wound Healing Metabolites from Peters’ Elephant-Nose Fish Oil: An in Vivo Investigation Supported by in Vitro and in Silico Studies. Mar. Drugs 2021, 19, 605. [Google Scholar] [CrossRef]
- Razia, S.; Park, H.; Shin, E.; Shim, K.S.; Cho, E.; Kang, M.C.; Kim, S.Y. Synergistic Effect of Aloe vera Flower and Aloe Gel on Cutaneous Wound Healing Targeting MFAP4 and Its Associated Signaling Pathway: In-Vitro Study. J. Ethnopharmacol. 2022, 290, 115096. [Google Scholar] [CrossRef]
- Belal, A.; Elanany, M.A.; Raafat, M.; Hamza, H.T.; Mehany, A.B.M. Calendula officinalis Phytochemicals for the Treatment of Wounds Through Matrix Metalloproteinases-8 and 9 (MMP-8 and MMP-9): In Silico Approach. Nat. Prod. Commun. 2022, 17, 1934578X2210988. [Google Scholar] [CrossRef]
- Heydari, P.; Zargar Kharazi, A.; Asgary, S.; Parham, S. Comparing the Wound Healing Effect of a Controlled Release Wound Dressing Containing Curcumin/Ciprofloxacin and Simvastatin/Ciprofloxacin in a Rat Model: A Preclinical Study. J. Biomed. Mater. Res. Part A 2022, 110, 341–352. [Google Scholar] [CrossRef]
- Sayed, U.; Deshmukh, I. Application of Herbs for Wound Dressings—Review. Int. J. Adv. Sci. Eng. 2021, 7, 1843–1848. [Google Scholar] [CrossRef]
- Ads, E.N.; Hassan, S.I.; Rajendrasozhan, S.; Hetta, M.H.; Aly, S.H.; Ali, M.A. Isolation, Structure Elucidation and Antimicrobial Evaluation of Natural Pentacyclic Triterpenoids and Phytochemical Investigation of Different Fractions of Ziziphus spina-christi (L.) Stem Bark Using LCHRMS Analysis. Molecules 2022, 27, 1805. [Google Scholar] [CrossRef]
- El-Nashar, H.A.S.; Eldehna, W.M.; Al-Rashood, S.T.; Alharbi, A.; Eskandrani, R.O.; Aly, S.H. GC / MS Analysis of Essential Oil and Enzyme Inhibitory Activities of Syzygium cumini (Pamposia) Grown in Docking Studies. Molecules 2021, 26, 6984. [Google Scholar] [CrossRef]
- Sychrová, A.; Škovranová, G.; Čulenová, M.; Bittner Fialová, S. Prenylated Flavonoids in Topical Infections and Wound Healing. Molecules 2022, 27, 4491. [Google Scholar] [CrossRef] [PubMed]
- Saber, F.R.; Aly, S.H.; Khallaf, M.A.; El-Nashar, H.A.S.; Fahmy, N.M.; El-Shazly, M.; Radha, R.; Prakash, S.; Kumar, M.; Taha, D.; et al. Hyphaene thebaica (Areceaeae) as a Promising Functional Food: Extraction, Analytical Techniques, Bioactivity, Food, and Industrial Applications. Food Anal. Methods 2022, 1–21. [Google Scholar] [CrossRef]
- Aly, S.H.; Elissawy, A.M.; Eldahshan, O.A.; Elshanawany, M.A.; Singab, A.N.B. Phytochemical Investigation Using GC/MS Analysis and Evaluation of Antimicrobial and Cytotoxic Activities of the Lipoidal Matter of Leaves of Sophora secundiflora and Sophora tomentosa. Arch. Pharm. Sci. Ain Shams Univ. 2020, 4, 207–214. [Google Scholar] [CrossRef]
- Aly, S.H.; Elissawy, A.M.; Eldahshan, O.A.; Elshanawany, M.A.; Singab, A.N.B. Variability of the Chemical Composition of the Essential Oils of Flowers and the Alkaloid Contents of Leaves of Sophora secundiflora and Sophora tomentosa. J. Essent. Oil-Bearing Plants 2020, 23, 442–452. [Google Scholar] [CrossRef]
- Aly, S.H.; Eldahshan, O.A.; Al-rashood, S.T.; Binjubair, F.A.; El Hassab, M.A.; Eldehna, W.M.; Acqua, S.D.; Zengin, G. Chemical Constituents, Antioxidant, and Enzyme Inhibitory Activities Supported by In-Silico Study of n-Hexane Extract and Essential Oil of Guava Leaves. Molecules 2022, 27, 8979. [Google Scholar] [CrossRef]
- Saber, F.R.; Munekata, P.E.S.; Rizwan, K.; El-nashar, H.A.S.; Fahmy, N.M.; Aly, S.H.; El-shazly, M.; Bouyahya, A.; Lorenzo, J.M. Family Myrtaceae: The Treasure Hidden in the Complex/Diverse Composition. Crit. Rev. Food Sci. Nutr. 2023, 1–19. [Google Scholar] [CrossRef]
- Aly, S.H.; Kandil, N.H.; Hemdan, R.M.; Kotb, S.S.; Zaki, S.S.; Abdelaziz, O.M.; AbdelRazek, M.M.M.; Almahli, H.; El Hassab, M.A.; Al-Rashood, S.T.; et al. GC/MS Profiling of the Essential Oil and Lipophilic Extract of Moricandia sinaica Boiss. and Evaluation of Their Cytotoxic and Antioxidant Activities. Molecules 2023, 28, 2193. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; Porzel, A.; Wessjohann, L.A. Comparative Metabolite Profiling and Fingerprinting of Medicinal Licorice Roots Using a Multiplex Approach of GC-MS, LC-MS and 1D NMR Techniques. Phytochemistry 2012, 76, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Armanini, D.; Fiore, C.; Mattarello, M.J.; Bielenberg, J.; Palermo, M. History of the Endocrine Effects of Licorice. Exp. Clin. Endocrinol. Diabetes Off. J. Ger. Soc. Endocrinol. Ger. Diabetes Assoc. 2002, 110, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; Wessjohann, L.A. Volatiles Profiling in Medicinal licorice Roots Using Steam Distillation and Solid-Phase Microextraction (SPME) Coupled to Chemometrics. J. Food Sci. 2012, 77, C1179–C1184. [Google Scholar] [CrossRef] [PubMed]
- Frattaruolo, L.; Carullo, G.; Brindisi, M.; Mazzotta, S.; Bellissimo, L.; Rago, V.; Curcio, R.; Dolce, V.; Aiello, F.; Cappello, A.R. Antioxidant and Anti-Inflammatory Activities of Flavanones from Glycyrrhiza glabra L. (Licorice) Leaf Phytocomplexes: Identification of Licoflavanone as a Modulator of NF-KB/MAPK Pathway. Antioxidants 2019, 8, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazemi, M.; Mohammadifar, M.; Aghadavoud, E.; Vakili, Z.; Aarabi, M.H.; Talaei, S.A. Deep Skin Wound Healing Potential of Lavender Essential Oil and Licorice Extract in a Nanoemulsion Form: Biochemical, Histopathological and Gene Expression Evidences. J. Tissue Viability 2020, 29, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, M.K.; Shim, J.G.; Yeom, S.H.; Kwon, S.H.; Lee, M.W. Anti-Oxidative Phenolic Compounds from Sophorae Fructus. Nat. Prod. Sci. 2004, 10, 330–334. [Google Scholar]
- He, X.; Bai, Y.; Zhao, Z.; Wang, X.; Fang, J.; Huang, L.; Zeng, M.; Zhang, Q.; Zhang, Y.; Zheng, X. Local and Traditional Uses, Phytochemistry, and Pharmacology of Sophora japonica L.: A Review. J. Ethnopharmacol. 2016, 187, 160–182. [Google Scholar] [CrossRef]
- Aly, S.H.; Elissawy, A.M.; Fayez, A.M.; Eldahshan, O.A.; Elshanawany, M.A.; Singab, A.N.B. Neuroprotective Effects of Sophora secundiflora, Sophora tomentosa Leaves and Formononetin on Scopolamine-Induced Dementia. Nat. Prod. Res. 2020, 35, 5848–5852. [Google Scholar] [CrossRef]
- Aly, S.H.; Elissawy, A.M.; Eldahshan, O.A.; Elshanawany, M.A.; Efferth, T.; Singab, A.N.B. The Pharmacology of the Genus sophora (Fabaceae): An Updated Review. Phytomedicine 2019, 64, 153070. [Google Scholar] [CrossRef]
- Aly, S.H.; Elissawy, A.M.; Allam, A.E.; Farag, S.M.; Eldahshan, O.A.; Elshanawany, M.A.; Singab, A.N.B. New Quinolizidine Alkaloid and Insecticidal Activity of Sophora secundiflora and Sophora tomentosa against Culex pipiens (Diptera: Culicidae). Nat. Prod. Res. 2021, 36, 2722–2734. [Google Scholar] [CrossRef]
- Kim, J.M.; Yun-Choi, H.S. Anti-Platelet Effects of Flavonoids and Flavonoid-Glycosides from Sophora japonica. Arch. Pharm. Res. 2008, 31, 886–890. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.H.; Lin, R.D.; Lin, Y.P.; Liu, Y.L.; Lee, M.H. Active Constituents from Sophora japonica Exhibiting Cellular Tyrosinase Inhibition in Human Epidermal Melanocytes. J. Ethnopharmacol. 2009, 124, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Lou, F.C.; Wang, Y.L.; Tang, Y.P. A Flavonol Tetraglycoside from Sophora japonica Seeds. Phytochemistry 2003, 63, 463–465. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, X.; Zhang, L.; Liu, Z.; Pan, Y.; Chen, D.; Bin, D.; Deng, Q.; Sun, Y.; Hoffman, R.M.; et al. Enhancement of Wound Healing by the Traditional Chinese Medicine Herbal Mixture Sophora flavescens in a Rat Model of Perianal Ulceration. In Vivo Brooklyn 2017, 31, 543–549. [Google Scholar] [CrossRef] [Green Version]
- Attard, E. A Rapid Microtitre Plate Folin-Ciocalteu Method for the Assessment of Polyphenols. Cent. Eur. J. Biol. 2013, 8, 48–53. [Google Scholar] [CrossRef]
- Kiranmai, M.; Mahendra Kumar, C.B.; Ibrahim, M. Comparison of Total Flavanoid Content of Azadirachta indica Root Bark Extracts Prepared by Different Methods of Extraction. Res. J. Pharm. Biol. Chem. Sci. 2011, 2, 254–261. [Google Scholar]
- Tang, Y.P.; Zhu, H.X.; Duan, J.A. Two New Isoflavone Triglycosides from the Small Branches of Sophora japonica. J. Asian Nat. Prod. Res. 2008, 10, 65–70. [Google Scholar] [CrossRef]
- Park, H.Y.; Kim, S.H.; Kim, G.B.; Sim, J.Y.; Lim, S.S.; Kim, M.J.; Chun, W.; Kwon, Y.S. A New Isoflavone Glycoside from the Stem Bark of Sophora japonica. Arch. Pharm. Res. 2010, 33, 1165–1168. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, J.; Li, Y.J.; Zheng, Y.F.; Li, P. Antioxidant and Anti-Inflammatory Activities of Six Flavonoids Separated from Licorice. Food Chem. 2013, 141, 1063–1071. [Google Scholar] [CrossRef]
- Ui, S.H.C. Isolation and Identification of Flavonoids in Licorice and a Study of Their Inhibitory Effects on Tyrosinase. J. Agric. Food Chem. 2005, 53, 7408–7414. [Google Scholar]
- Hatano, T.; Kagawa, H.; Yasuhara, T.; Okuda, T. Two New Flavonoids and Other Constituents in Licorice Root: Their Relative Astringency and Radical Scavenging Effects. Chem. Pharm. Bull. 1988, 36, 2090–2097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayoub, I.M.; Korinek, M.; El-shazly, M.; Wetterauer, B.; El-beshbishy, H.A. Activity of Chasmanthe aethiopica Leaf Extract and Its Profiling Using LC/MS and GLC/MS. Plants 2021, 10, 1118. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, H.M.; Al-Abd, A.M.; Asaad, G.F.; Abdel-Naim, A.B.; El-halawany, A.M. Isolation of Antiosteoporotic Compounds from Seeds of Sophora japonica. PLoS ONE 2014, 9, e98559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Lou, F.; Wang, J.; Zhuang, S. Four New Isoflavone Triglycosides from Sophora japonica. J. Nat. Prod. 2001, 64, 1107–1110. [Google Scholar] [CrossRef]
- El-Halawany, A.M.; Chung, M.H.; Abdallah, H.M.; Nishihara, T.; Hattori, M. Estrogenic Activity of a Naringinase-Treated Extract of Sophora japonica Cultivated in Egypt. Pharm. Biol. 2010, 48, 177–181. [Google Scholar] [CrossRef]
- Abdelhady, M.I.S.; Kamal, A.M.; Othman, S.M.; Mubarak, M.S.; Hadda, T. Ben Total Polyphenolic Content, Antioxidant, Cytotoxic, Antidiabetic Activities, and Polyphenolic Compounds of Sophora japonica Grown in Egypt. Med. Chem. Res. 2015, 24, 482–495. [Google Scholar] [CrossRef]
- Piao, X.L.; Piao, X.S.; Kim, S.W.; Park, J.H.; Kim, H.Y.; Cai, S.Q. Identification and Characterization of Antioxidants from Sophora flavescens. Biol. Pharm. Bull. 2006, 29, 1911–1915. [Google Scholar] [CrossRef] [Green Version]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K.; Vasil’Eva, A.G.; Gadimli, A.I.; Isaev, J.I.; Vennos, C. Caffeoylquinic Acids and Flavonoids of Fringed sagewort (Artemisia frigidawilld.): HPLC-DAD-ESI-QQQ-MS Profile, HPLC-DAD Quantification, in Vitro Digestion Stability, and Antioxidant Capacity. Antioxidants 2019, 8, 307. [Google Scholar] [CrossRef] [Green Version]
- Shour, S.; Iranshahy, M.; Pham, N.; Quinn, R.J.; Iranshahi, M. Dereplication of Cytotoxic Compounds from Different Parts of Sophora pachycarpa Using an Integrated Method of HPLC, LC-MS And1H-NMR Techniques. Nat. Prod. Res. 2017, 31, 1270–1276. [Google Scholar] [CrossRef]
- Liu, J.; Mei, W.L.; Wu, J.; Zhao, Y.X.; Peng, M.; Dai, H.F. A New Cytotoxic Homoisoflavonoid from Dracaena cambodiana. J. Asian Nat. Prod. Res. 2009, 11, 192–195. [Google Scholar] [CrossRef]
- Saha, K.; Mukherjee, P.K.; Das, J.; Pal, M.; Saha, B.P. Wound Healing Activity of Leucas lavandulaefolia Rees. J. Ethnopharmacol. 1997, 56, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Zangeneh, A.; Pooyanmehr, M.; Zangeneh, M.M.; Moradi, R.; Rasad, R.; Kazemi, N. Therapeutic Effects of Glycyrrhiza glabra Aqueous Extract Ointment on Cutaneous Wound Healing in Sprague Dawley Male Rats. Comp. Clin. Path. 2019, 28, 1507–1514. [Google Scholar] [CrossRef]
- Halder, R.M.; Richards, G.M. Topical Agents Used in the Management of Hyperpigmentation. Skin Therapy Lett. 2004, 9, 1–3. [Google Scholar] [PubMed]
- Pastorino, G.; Cornara, L.; Soares, S.; Rodrigues, F.; Oliveira, M.B.P.P. Liquorice (Glycyrrhiza glabra): A Phytochemical and Pharmacological Review. Phyther. Res. 2018, 32, 2323–2339. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, M.; Morteza-Semnani, K.; Ghoreishi, M.-R. The Treatment of Atopic Dermatitis with Licorice Gel. J. Dermatolog. Treat. 2003, 14, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Yokota, T.; Nishio, H.; Kubota, Y.; Mizoguchi, M. The Inhibitory Effect of Glabridin from Licorice Extracts on Melanogenesis and Inflammation. Pigment. Cell Res. 1998, 11, 355–361. [Google Scholar] [CrossRef]
- Castangia, I.; Caddeo, C.; Manca, M.L.; Casu, L.; Latorre, A.C.; Díez-Sales, O.; Ruiz-Saurí, A.; Bacchetta, G.; Fadda, A.M.; Manconi, M. Delivery of Liquorice Extract by Liposomes and Hyalurosomes to Protect the Skin against Oxidative Stress Injuries. Carbohydr. Polym. 2015, 134, 657–663. [Google Scholar] [CrossRef]
- Ebanks, J.P.; Wickett, R.R.; Boissy, R.E. Mechanisms Regulating Skin Pigmentation: The Rise and Fall of Complexion Coloration. Int. J. Mol. Sci. 2009, 10, 4066–4087. [Google Scholar] [CrossRef] [Green Version]
- Grippaudo, F.R.; Di Russo, P.P. Effects of Topical Application of B-Resorcinol and Glycyrrhetinic Acid Monotherapy and in Combination with Fractional CO(2) Laser Treatment for Benign Hand Hyperpigmentation Treatment. J. Cosmet. Dermatol. 2016, 15, 413–419. [Google Scholar] [CrossRef]
- Singh, V.; Pal, A.; Darokar, M.P. A Polyphenolic Flavonoid Glabridin: Oxidative Stress Response in Multidrug-Resistant Staphylococcus Aureus. Free Radic. Biol. Med. 2015, 87, 48–57. [Google Scholar] [CrossRef]
- Varsha, S.; Agrawal, R.C.; Sonam, P. Phytochemical Screening and Determination of Anti-Bacterial and Anti-Oxidant Potential of Glycyrrhiza glabra Rppt Extracts. J. Environ. Res. Dev. 2013, 7, 1551–1558. [Google Scholar]
- Yin, X.; Gong, X.; Zhang, L.; Jiang, R.; Kuang, G.; Wang, B.; Chen, X.; Wan, J. Glycyrrhetinic Acid Attenuates Lipopolysaccharide-Induced Fulminant Hepatic Failure in d-Galactosamine-Sensitized Mice by up-Regulating Expression of Interleukin-1 Receptor-Associated Kinase-M. Toxicol. Appl. Pharmacol. 2017, 320, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Krishna, P.M.; Rao, K.N.V.; Sandhya, S.; Banji, D. A Review on Phytochemical, Ethnomedical and Pharmacological Studies on Genus sophora, Fabaceae. Rev. Bras. Farmacogn. 2012, 22, 1145–1154. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Oh, Y.; Lee, H.; Yang, B.; Choi, C.-H.; Jeong, H.; Kim, H.; An, W. Prediction of the Therapeutic Mechanism Responsible for the Effects of Sophora japonica Flower Buds on Contact Dermatitis by Network-Based Pharmacological Analysis. J. Ethnopharmacol. 2021, 271, 113843. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.-D.; Moon, S.-E.; Kim, J.-Y.; Jung, E.-K.; Lee, Y.-S. Antibacterial Activity of Sophoraflavanone G Isolated from the Roots of Sophora flavescens against Methicillin-Resistant Staphylococcus aureus. Phytother. Res. 2009, 23, 1326–1331. [Google Scholar] [CrossRef]
- El-Nashar, H.A.S.; Mostafa, N.M.; Eldahshan, O.A.; Singab, A.N.B. A New Antidiabetic and Anti-Inflammatory Biflavonoid from Schinus polygama (Cav.) Cabrera Leaves. Nat. Prod. Res. 2020, 36, 1182–1190. [Google Scholar] [CrossRef]
- Bhargava, S.K. Antiandrogenic Effects of a Flavonoid-Rich Fraction of Vitex negundo Seeds: A Histological and Biochemical Study in Dogs. J. Ethnopharmacol. 1989, 27, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Aly, S.H.; Elissawy, A.M.; Salah, D.; Alfuhaid, N.A.; Zyaan, O.H.; Mohamed, H.I.; Singab, A.N.B.; Farag, S.M. Phytochemical Investigation of Three Cystoseira Species and Their Larvicidal Activity Supported with In Silico Studies. Mar. Drugs 2023, 21, 117. [Google Scholar] [CrossRef]
- Mahmoud, R.A.; Hussein, A.K.; Nasef, G.A.; Mansour, H.F. Oxiconazole Nitrate Solid Lipid Nanoparticles: Formulation, in-Vitro Characterization and Clinical Assessment of an Analogous Loaded Carbopol Gel. Drug Dev. Ind. Pharm. 2020, 46, 706–716. [Google Scholar] [CrossRef]
- Patel, R.; Patel, H.; Baria, A. Formulation and Evaluation of Carbopol Gel Containing Liposomes of Ketoconazole. (Part-II). Int. J. Drug Deliv. Technol. 2009, 1, 42–45. [Google Scholar] [CrossRef]
- Office of the British Pharmacopoeia Commission. British Pharmacopoeia, Department of Health and Social Security Scottish Home and Health Department, 2nd ed.; Office of the British Pharmacopoeia Commission: London, UK, 1988; Volume 2, p. 713. [Google Scholar]
- Abdel Mageed, S.S.; Ammar, R.M.; Nassar, N.N.; Moawad, H.; Kamel, A.S. Role of PI3K/Akt Axis in Mitigating Hippocampal Ischemia-Reperfusion Injury via CB1 Receptor Stimulation by Paracetamol and FAAH Inhibitor in Rat. Neuropharmacology 2022, 207, 108935. [Google Scholar] [CrossRef] [PubMed]
- Kant, V.; Gopal, A.; Pathak, N.N.; Kumar, P.; Tandan, S.K.; Kumar, D. Antioxidant and Anti-Inflammatory Potential of Curcumin Accelerated the Cutaneous Wound Healing in Streptozotocin-Induced Diabetic Rats. Int. Immunopharmacol. 2014, 20, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Sardari, K.; Kakhki, E.G.; Mohri, M. Evaluation of Wound Contraction and Epithelialization after Subcutaneous Administration of Theranekron® in Cows. Comp. Clin. Path. 2006, 16, 197–200. [Google Scholar] [CrossRef]
- Bancroft, J.D.; Stevans, A.; Turner, D.R. Theory and Practice of Histological Techniques, 4th ed.; Churchill Livingstone: Edinburgh, UK; London, UK; Melbourne, Australia; New York, NY, USA, 2013; Volume 17. [Google Scholar]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Jollow, D.J.; Mitchell, J.R.; Zampaglione, N.; Gillette, J.R. Bromobenzene-Induced Liver Necrosis. Protective Role of Glutathione and Evidence for 3,4-Bromobenzene Oxide as the Hepatotoxic Metabolite. Pharmacology 1974, 11, 151–169. [Google Scholar] [CrossRef] [PubMed]
- Elsawy, H.; Badr, G.M.; Sedky, A.; Abdallah, B.M.; Alzahrani, A.M.; Abdel-Moneim, A.M. Rutin Ameliorates Carbon Tetrachloride (CCl(4))-Induced Hepatorenal Toxicity and Hypogonadism in Male Rats. PeerJ 2019, 7, e7011. [Google Scholar] [CrossRef] [Green Version]
- Saitoh, M.; Kunitomo, J.; Kimura, E.; Hayase, Y.; Kobayashi, H.; Uchiyama, N.; Kawamoto, T.; Tanaka, T.; Mol, C.D.; Dougan, D.R.; et al. Design, Synthesis and Structure-Activity Relationships of 1,3,4-Oxadiazole Derivatives as Novel Inhibitors of Glycogen Synthase Kinase-3beta. Bioorg. Med. Chem. 2009, 17, 2017–2029. [Google Scholar] [CrossRef]
- Tauro, M.; Laghezza, A.; Loiodice, F.; Piemontese, L.; Caradonna, A.; Capelli, D.; Montanari, R.; Pochetti, G.; Di Pizio, A.; Agamennone, M.; et al. Catechol-Based Matrix Metalloproteinase Inhibitors with Additional Antioxidative Activity. J. Enzyme Inhib. Med. Chem. 2016, 31, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Xue, F.; Huang, J.; Ji, H.; Fang, J.; Li, H.; Martásek, P.; Roman, L.J.; Poulos, T.L.; Silverman, R.B. Structure-Based Design, Synthesis, and Biological Evaluation of Lipophilic-Tailed Monocationic Inhibitors of Neuronal Nitric Oxide Synthase. Bioorg. Med. Chem. 2010, 18, 6526–6537. [Google Scholar] [CrossRef] [Green Version]
- Vilar, S.; Cozza, G.; Moro, S. Medicinal Chemistry and the Molecular Operating Environment (MOE): Application of QSAR and Molecular Docking to Drug Discovery. Curr. Top. Med. Chem. 2008, 8, 1555–1572. [Google Scholar] [CrossRef]
Plant Name | TPC μg GA E/mg | TFC μg Quercetin E/mg |
---|---|---|
G. glabra | 71.608 ± 3.23 | 46.99 ± 2.57 |
S. japonica | 70.288 ± 1.94 | 49.91 ± 2.36 |
No. | tR (min) | Compound Name | [M − H] − (m/z) | [M + H] + (m/z) | Class | Molecular Formula | Ref. |
---|---|---|---|---|---|---|---|
1 | 8.58 | Isoviolanthin | 577.15 | 579.15 | Flavonoid glycoside | C27H30O14 | [21] |
2 | 8.97 | Liquiritin apioside | 549.20 | - | Flavonoid glycoside | C26H30O13 | [21] |
3 | 9.15 | Liquiritin | 417.25 | - | Flavonoid glycoside | C21H22O9 | [21] |
4 | 10.15 | Neolicuroside | 549.20 | - | Chalcone glycoside | C26H30O13 | [21] |
5 | 10.44 | Licorice glycoside D2/D1 | 695.25 | - | Flavonoid glycoside | C35H36O15 | [21] |
6 | 10.55 | Isoliquiritin | 417.15 | 419.15 | Chalcone glycoside | C21H22O9 | [40] |
7 | 10.92 | Liquiritigenin | 255.10 | - | Flavonoid aglycone | C15H12O4 | [40] |
8 | 11.07 | Licorice glycoside E | 692.20 | - | Flavonoid glycoside | C35H35NO14 | [21] |
9 | 11.26 | Licochalcone B | - | 287.15 | Chalcone | C16H14O5 | |
10 | 11.79 | 5,7-Dihydroxyflavanone | 255.10 | 257.10 | Flavonoid aglycone | C15H12O4 | [21] |
11 | 12.14 | Licorice saponin G2 | 837.40 | - | Triterpene | C42H62O17 | [21] |
12 | 12.48 | Licorice saponin A3 | 983.45 | - | Triterpene | C48H72O21 | [21] |
13 | 12.90 | Echinatin | 269.10 | 271.10 | Chalcone | C16H14O4 | [39] |
14 | 13.66 | Licorice saponin K2/H2 | 821.40 | 823.40 | Triterpene | C42H62O16 | [21] |
15 | 14.12 | Isoliquiritigenin | 255.10 | - | Chalcone | C15H12O4 | [21] |
16 | 14.40 | Glycyrrhizic acid | 821.35 | - | Triterpene | C42H62O16 | [21] |
17 | 14.87 | Glycyrrhisoflavanone | 369.20 | 371.20 | Isoflavanone | C21H20O6 | [41] |
18 | 15.51 | Glabrene | - | 323.20 | Isoflavene | C20H18O4 | [21] |
19 | 16.08 | Licochalcone D | 353.20 | 355.20 | Chalcone | C21H22O5 | [21] |
20 | 16.26 | Glabranin | 323.20 | - | Flavonoid aglycone | C20H20O4 | [24] |
21 | 16.92 | Licorisoflavan A | - | 439.10 | Isoflavan | C27H34O5 | [21] |
22 | 17.07 | Glycocoumarin | 367.10 | - | Coumarin | C21H20O6 | [21] |
23 | 17.79 | Kanzonol H | 423.15 | - | Isoflavan | C26H32O5 | [21] |
24 | 18.12 | 3-Hydroxyglabrol | 407.20 | 409.20 | Flavonoid aglycone | C25H28O5 | [21] |
25 | 18.54 | Glabridin | 323.20 | 325.20 | Isoflavane | C20H20O4 | [21] |
26 | 19.23 | Kanzonol Y | 409.20 | 411.25 | Dihydrochalcone | C25H30O5 | [21] |
27 | 19.47 | Glabrol | 391.25 | 393.25 | Flavonoid aglycone | C25H28O4 | [21] |
28 | 20.28 | Licoflavanone | 339.10 | - | Flavonoid aglycone | C20H20O5 | [24] |
29 | 20.47 | Isolicoflavonol | - | 355.20 | Flavonoid aglycone | C25H27O4 | [41] |
30 | 21.93 | Hydroxy-oleic acid | 297.30 | - | Fatty acid | C18H34O3 | [42] |
31 | 22.08 | Licochalcone A | - | 339.20 | Chalcone | C21H22O4 | [41] |
32 | 23.56 | Glycyrrhetinic acid | 469.20 | 471.35 | Triterpene | C30H46O4 | [21] |
No. | tR (min) | Compound Name | [M − H] − (m/z) | [M + H] + (m/z) | Class | Molecular Formula | Ref. |
---|---|---|---|---|---|---|---|
1 | 3.57 | 1,3,5-Tri-O-caffeoylquinic acid | 677.25 | - | Phenylpropanoids | C34H30O15 | [48] |
2 | 5.04 | Quercitrin (Quercetin-3-O-L-rhamnoside) | 447.10 | - | Flavonoid glycoside | C21H20O11 | [31] |
3 | 7.50 | Kaempferol 3-O-α-l-rhamnopyranosyl(1→6) -β-d-glucopyranosyl(1→2)-β- D -glucopyranoside-7-O- α -l-rhamnopyranoside | 901.25 | - | Flavonoid tetra glycoside | C39H50O24 | [33] |
4 | 7.91 | Sophoraflavanone G | - | 425.20 | Flavonoid aglycone | C25H28O6 | [47] |
5 | 8.23 | Genistein 7-O-β-D-glucopyranoside-4′-O-[(ꞵ-D-glucopyranosyl)- (1→2)- ꞵ-D-glucopyranoside] | 755.25 | - | Isoflavonoid glycoside | C33H40O20 | [44] |
6 | 8.49 | Genistein 7-O-ꞵ-D-glucopyranoside-4′-O- [(α -L-rhamnopyranosyl)-(1→2)- ꞵ-D-glucopyranoside] | 739.20 | - | Flavonoid glycoside | C33H39O19 | [44] |
7 | 8.81 | Sophoraflavonoloside | 609.20 | 611.20 | Flavonoid glycoside | C27H30O16 | [43] |
8 | 9.13 | Genistein 7,4′-di-O-ꞵ-D-glucopyransoide | 593.10 | - | Isoflavonoid glycoside | C27H30O15 | [43] |
9 | 9.53 | Paratensein-7-O-glucoside | 461.15 | - | Flavonoid glycoside | C22H22O11 | [38] |
10 | 9.69 | Narcissin (Isorhamnetin-3-O-rutinoside) | 463.20 | - | Flavonoid glycoside | C28H32O16 | [28] |
11 | 10.00 | Myricetin-O-coumaroyl- glucoside | 625.35 | - | Flavonoid glycoside | C30H26O15 | [42] |
12 | 10.19 | Kaempferitrin | 577.20 | 579.20 | Flavonoid glycoside | C27H30O14 | [28] |
13 | 10.73 | Quercetin 3-O-ꞵ-D-glucopyranoside | 463.25 | - | Flavonoid glycoside | C21H19O12 | [37] |
14 | 10.96 | Sophorabioside | 577.20 | - | Isoflavonoid glycoside | C27H30O14 | [43] |
15 | 11.16 | Nepetin 4′-glucoside | 477.50 | - | Flavonoid glycoside | C22H22O12 | [48] |
16 | 12.25 | Quercetin | 301.20 | - | Flavonoid | C15H10O7 | [46] |
17 | 12.41 | Alopecurone A | 649.45 | - | Flavonostilbene | C39H38O9 | [49] |
18 | 12.96 | Kurarinone | - | 439.50 | Flavonoid aglycone | C26H30O6 | [47] |
19 | 13.21 | Genistein | 269.45 | - | Isoflavonoid | C15H10O5 | [45] |
20 | 14.57 | Apigenin | 267.50 | 269.50 | Flavonoid aglycone | C15H10O5 | [31] |
21 | 16.67 | Kaempferol | 283.10 | 285.10 | Flavonoid aglycone | C15H10O6 | [45] |
22 | 19.70 | Tamarixetin | - | 317.25 | Flavonoid aglycone | C16H12O7 | [46] |
23 | 21.16 | Medicagol | 295.25 | - | Coumestans | C16H8O6 | [50] |
Group NO. | Group | Thickness of Epithelial Cells | Inflammatory Cells | Collagen |
---|---|---|---|---|
I | Negative control (Wound) | + + + + + | + + + + + | + |
II | Plain gel | + + + + + | + + + + + | + + |
III | Plain ointment | + + + + | + + + + + | + + + |
IV | Positive control (Nolaver®) | + + | + + | + + + + |
V | Ointment of G. glabra and S. japonica combination (1:1) (ABO) | + | + | + + + + |
VI | Gel of G. glabra and S. japonica combination (1:1) (ABG) | + + | + + + | + + + |
VII | Ointment of G. glabra (AO) | + + | + + + | + + + |
VIII | Ointment of S. japonica (BO) | + + | + | + + + |
IX | Gel of G. glabra (AG) | + + + | + + | + + |
X | Gel of S. japonica (BG) | + + + + | + + + | + + |
Parameter | CDI | Effect of Ointment Combination | CDI | Effect of Gel Combination |
---|---|---|---|---|
Percent of wound contraction on day 7 | 0.32 | Synergistic | 0.30 | Synergistic |
Percent of wound contraction on day 14 | 0.32 | Synergistic | 0.27 | Synergistic |
MDA level | 0.37 | Synergistic | 0.70 | Synergistic |
GSH level | 0.86 | Synergistic | 0.71 | Synergistic |
SOD level | 0.61 | Synergistic | 0.78 | Synergistic |
Major Identified Compounds in G. glabra | |||
---|---|---|---|
Compound | Docking Scores Kcal/mol | ||
GSK-3ꞵ 3F88 | MMP-8 5H8X | iNOS 3N2R | |
Co-crystalized ligand | 3HT (−15.7) | 7FY (−13.2) | XJH (−16.4) |
Isoliquiritigenin | −12.0 | −10.2 | −11.4 |
Liquiritin apioside | −14.1 | −12.8 | −14.5 |
Neolicuroside | −13.6 | −15.4 | −13.5 |
Kanzonol Y | −13.4 | −11.3 | −11.2 |
Glabridin | −12.8 | −10.8 | −10.7 |
Glabrol | −11.9 | −10.3 | −13.2 |
Glycyrrhizic acid | −15.2 | −11.9 | −18.2 |
Glycyrrhetinic acid | −11.3 | −10.5 | −11.1 |
Major identified compounds in Sophora japonica | |||
Compound | Docking scores Kcal/mol | ||
GSK−3ꞵ 3F88 | MMP−8 5H8X | iNOS 3N2R | |
Kaempferol | −13.1 | −13.7 | −11.6 |
Sophoraflavonoloside | −14.3 | −13.4 | −16.1 |
Sophoraflavanone G | −13.5 | −10.4 | −14.6 |
Genistein 7,4′-di-O-ꞵ-D-glucopyransoide | −16.9 | −9.9 | −13.4 |
Genistein | −10.5 | −11.4 | −11.2 |
Tamarixetin | −13.1 | −9.9 | −10.6 |
Kurarinone | −11.6 | −12.3 | −12.3 |
Ingredients | Weight (g) |
---|---|
Wool fat | 50 |
Hard paraffin | 50 |
Cetostearyl alcohol | 50 |
White soft paraffin | 850 |
1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aly, S.H.; Elissawy, A.M.; Mahmoud, A.M.A.; El-Tokhy, F.S.; Mageed, S.S.A.; Almahli, H.; Al-Rashood, S.T.; Binjubair, F.A.; Hassab, M.A.E.; Eldehna, W.M.; et al. Synergistic Effect of Sophora japonica and Glycyrrhiza glabra Flavonoid-Rich Fractions on Wound Healing: In Vivo and Molecular Docking Studies. Molecules 2023, 28, 2994. https://doi.org/10.3390/molecules28072994
Aly SH, Elissawy AM, Mahmoud AMA, El-Tokhy FS, Mageed SSA, Almahli H, Al-Rashood ST, Binjubair FA, Hassab MAE, Eldehna WM, et al. Synergistic Effect of Sophora japonica and Glycyrrhiza glabra Flavonoid-Rich Fractions on Wound Healing: In Vivo and Molecular Docking Studies. Molecules. 2023; 28(7):2994. https://doi.org/10.3390/molecules28072994
Chicago/Turabian StyleAly, Shaza H., Ahmed M. Elissawy, Abdulla M. A. Mahmoud, Fatma Sa’eed El-Tokhy, Sherif S. Abdel Mageed, Hadia Almahli, Sara T. Al-Rashood, Faizah A. Binjubair, Mahmoud A. El Hassab, Wagdy M. Eldehna, and et al. 2023. "Synergistic Effect of Sophora japonica and Glycyrrhiza glabra Flavonoid-Rich Fractions on Wound Healing: In Vivo and Molecular Docking Studies" Molecules 28, no. 7: 2994. https://doi.org/10.3390/molecules28072994
APA StyleAly, S. H., Elissawy, A. M., Mahmoud, A. M. A., El-Tokhy, F. S., Mageed, S. S. A., Almahli, H., Al-Rashood, S. T., Binjubair, F. A., Hassab, M. A. E., Eldehna, W. M., & Singab, A. E. -N. B. (2023). Synergistic Effect of Sophora japonica and Glycyrrhiza glabra Flavonoid-Rich Fractions on Wound Healing: In Vivo and Molecular Docking Studies. Molecules, 28(7), 2994. https://doi.org/10.3390/molecules28072994