Targeting HIV-1 Reverse Transcriptase Using a Fragment-Based Approach
Abstract
:1. Introduction
2. Results
2.1. Compound Synthesis
2.2. Inhibition and Binding Affinity of Pyrazolo[1,5-a]pyridine Analogues
2.3. Crystallography
2.4. Combination Assay
3. Discussion
3.1. SAR
3.2. Structural Analysis
4. Conclusions
5. Methods and Materials
5.1. General Chemistry Methods
5.2. General Procedure A: Cyclization of Substituted Pyridines with Ethyl Propriolate for the Formation of Substituted Ethyl Pyrazolo[1,5-a]pyridine-3-carboxylates
5.3. Ethyl 4-Methylpyrazolo[1,5-a]pyridine-3-carboxylate (2) and Ethyl 6-Methylpyrazolo[1,5-a]pyridine-3-carboxylate (4)
5.4. Ethyl 5-Methylpyrazolo[1,5-a]pyridine-3-carboxylate (3)
5.5. Ethyl 7-Methylpyrazolo[1,5-a]pyridine-3-carboxylate (5)
5.6. Ethyl 5-Aminopyrazolo[1,5-a]pyridine-3-carboxylate (8)
5.7. 3-Ethyl 5-Methylpyrazolo[1,5-a]pyridine-3,5-dicarboxylate (15)
5.8. Ethyl 5-((Tert-butoxycarbonyl)amino)pyrazolo[1,5-a]pyridine-3-carboxylate (16)
5.9. General Procedure B: Cyclization of Substituted Pyridine with Ethyl Propriolate for the Formation of Substituted Ethyl Pyrazolo[1,5-a]pyridine-3-carboxylates
5.10. Ethyl 6-Bromopyrazolo[1,5-a]pyridine-3-carboxylate (7) and Ethyl 4-Bromopyrazolo[1,5-a]pyridine-3-carboxylate (6)
5.11. Ethyl 4-Bromo-7-methylpyrazolo[1,5-a]pyridine-3-carboxylate (9)
5.12. Ethyl 6-Bromo-4-methoxypyrazolo[1,5-a]pyridine-3-carboxylate (13) and Ethyl 4-Bromo-6-methoxypyrazolo[1,5-a]pyridine-3-carboxylate (10)
5.13. Ethyl 4-Fluoro-7-methylpyrazolo[1,5-a]pyridine-3-carboxylate (11)
5.14. Ethyl 4-Chloro-7-methylpyrazolo[1,5-a]pyridine-3-carboxylate (12)
5.15. Ethyl 5-Chloro-7-methylpyrazolo[1,5-a]pyridine-3-carboxylate (14)
5.16. 4-Bromopyrazolo[1,5-a]pyridine-3-carboxylic Acid (17)
5.17. Methyl 4-Bromopyrazolo[1,5-a]pyridine-3-carboxylate (18)
5.18. Propyl 4-bromopyrazolo[1,5-a]pyridine-3-carboxylate (19)
5.19. 4-Bromo-N-ethylpyrazolo[1,5-a]pyridine-3-carboxamide (20)
5.20. 4-Bromo-N,N-diethylpyrazolo[1,5-a]pyridine-3-carboxamide (21)
5.21. 4-Bromo-N-(4-hydroxyphenethyl)pyrazolo[1,5-a]pyridine-3-carboxamide (22)
5.22. General Procedure C: Sonogashira Reaction for the Formation of Ethyl 4-Substituted Pyrazolo[1,5-a]pyridine-3-carboxylates
5.23. Ethyl 4-((Trimethylsilyl)ethynyl)pyrazolo[1,5-a]pyridine-3-carboxylate (23)
5.24. Ethyl 4-(3-(Dimethylamino)prop-1-yn-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylate (24)
5.25. Ethyl 4-(4-Hydroxybut-1-yn-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylate (25)
5.26. Ethyl 4-(7-Hydroxyhept-1-yn-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylate (26)
5.27. Ethyl 4-(Cyclopropylethynyl)pyrazolo[1,5-a]pyridine-3-carboxylate (27)
5.28. Ethyl 4-(pent-1-yn-1-yl)pyrazolo[1,5-a]pyridine-3-carboxylate (28)
5.29. Ethyl 4-ethynylpyrazolo[1,5-a]pyridine-3-carboxylate (29)
5.30. Surface Plasmon Resonance
5.31. DNA Dependant DNA Polymerase (DDDP) Activity Assays
5.32. HIV-1 RT Crystallization and Structure Determination
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, A.K.; Das, K. Insights into HIV-1 Reverse Transcriptase (RT) Inhibition and Drug Resistance from Thirty Years of Structural Studies. Viruses 2022, 14, 1027. [Google Scholar] [CrossRef] [PubMed]
- Spivack, S.; Pagkalinawan, S.; Samuel, R.; Koren, D.E. HIV: How to manage heavily treatment-experienced patients. Drugs Context. 2022, 11, 2021-9-1. [Google Scholar] [CrossRef] [PubMed]
- Cilento, M.E.; Kirby, K.A.; Sarafianos, S.G. Avoiding Drug Resistance in HIV Reverse Transcriptase. Chem. Rev. 2021, 121, 3271–3296. [Google Scholar] [CrossRef] [PubMed]
- Waheed, A.A.; Tachedjian, G. Why Do We Need New Drug Classes for HIV Treatment and Prevention? Curr. Top. Med. Chem. 2016, 16, 1343–1349. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.M.; Aimon, A.; Murray, J.B.; Surgenor, A.E.; Matassova, N.; Roughley, S.D.; Collins, P.M.; Krojer, T.; von Delft, F.; Hubbard, R.E. Rapid optimisation of fragments and hits to lead compounds from screening of crude reaction mixtures. Commun. Chem. 2020, 3, 122. [Google Scholar] [CrossRef]
- Latham, C.F.; La, J.; Tinetti, R.N.; Chalmers, D.K.; Tachedjian, G. Fragment Based Strategies for Discovery of Novel HIV-1 Reverse Transcriptase and Integrase Inhibitors. Curr. Top. Med. Chem. 2016, 16, 1135–1153. [Google Scholar] [CrossRef]
- Bauman, J.D.; Patel, D.; Dharia, C.; Fromer, M.W.; Ahmed, S.; Frenkel, Y.; Vijayan, R.S.K.; Eck, J.T.; Ho, W.C.; Das, K.; et al. Detecting Allosteric Sites of HIV-1 Reverse Transcriptase by X-ray Crystallographic Fragment Screening. J. Med. Chem. 2013, 56, 2738–2746. [Google Scholar] [CrossRef] [Green Version]
- Lai, M.-T.; Feng, M.; Falgueyret, J.-P.; Tawa, P.; Witmer, M.; DiStefano, D.; Li, Y.; Burch, J.; Sachs, N.; Lu, M.; et al. In Vitro Characterization of MK-1439, a Novel HIV-1 Nonnucleoside Reverse Transcriptase Inhibitor. Antimicrob. Agents Chemother. 2014, 58, 1652–1663. [Google Scholar] [CrossRef] [Green Version]
- Kendall, J. Synthesis and Reactions of Pyrazolo[1,5-a]pyridines and Related Heterocycles. Curr. Org. Chem. 2011, 15, 2481–2518. [Google Scholar] [CrossRef]
- Kendall, J.; O’Connor, P.; Marshall, A.; Frederick, R.; Marshall, E.; Lill, C.; Lee, W.-J.; Kolekar, S.; Chao, M.; Malik, A.; et al. Discovery of Pyrazolo[1,5-a]pyridines as p110I+/--Selective PI3 Kinase Inhibitors. Bioorg. Med. Chem. 2012, 20, 69–85. [Google Scholar] [CrossRef]
- Legault, C.; Charette, A.B. Highly Efficient Synthesis of O-(2,4-Dinitrohenyl)hydroxylamine. Application to the Synthesis of Substituted N-Benzoyliminopyridinium Ylides. J. Org. Chem. 2003, 68, 7119–7122. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, F.; Oae, S. Nucleophilic Substitution on Trivalent Nitrogen Atom. Menschutkin Type Reaction of O-2,4-Dinitrophenylhydroxylamine with Uncharged Nucleophiles. Bull. Chem. Soc. Jpn. 1975, 48, 77–79. [Google Scholar] [CrossRef]
- Schilz, M.; Plenio, H. A Guide to Sonogashira Cross-Coupling Reactions: The Influence of Substituents in Aryl Bromides, Acetylenes, and Phosphines. J. Org. Chem. 2012, 77, 2798–2807. [Google Scholar] [CrossRef]
- La, J.; Latham, C.F.; Tinetti, R.N.; Johnson, A.; Tyssen, D.; Huber, K.D.; Sluis-Cremer, N.; Simpson, J.S.; Headey, S.J.; Chalmers, D.K.; et al. Identification of mechanistically distinct inhibitors of HIV-1 reverse transcriptase through fragment screening. Proc. Natl. Acad. Sci. USA 2015, 112, 6979–6984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, K.; Marchand, B.; Rai, D.K.; Sharma, B.; Michailidis, E.; Ryan, E.M.; Matzek, K.B.; Leslie, M.D.; Hagedorn, A.N.; Li, Z.; et al. Biochemical mechanism of HIV-1 resistance to rilpivirine. J. Biol. Chem. 2012, 287, 38110–38123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, M.A. Optical Biosensors in Drug Discovery. Nat. Rev. Drug. Discov. 2002, 1, 515–528. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, C.A.; Hopkins, A.L.; Navratilova, I. Fragment Screening by SPR and Advanced Application to GPCRs. Prog. Biophys. Mol. Biol. 2014, 116, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Patching, S.G. Surface Plasmon Resonance Spectroscopy for Characterisation of Membrane Protein–ligand Interactions and its Potential for Drug Discovery. BBA Biomembr. 2014, 1838, 43–55. [Google Scholar] [CrossRef] [Green Version]
- Schuck, P. Use of Surface Plasmon Resonance to Probe the Equilibrium and Dynamic Aspects of Interactions Between Biological Macromolecules. Annu. Rev. Biophys. Biomol. Struct. 1997, 26, 541–566. [Google Scholar] [CrossRef]
- Wilson, W.D. Analyzing Biomolecular Interactions. Science 2002, 295, 2103–2105. [Google Scholar] [CrossRef]
- Murray, C.W.; Rees, D.C. The Rise of Fragment-Based Drug Discovery. Nat. Chem. 2009, 1, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A.L.; Groom, C.R.; Alex, A. Ligand Efficiency: A Useful Metric for Lead Selection. Drug. Discov. Today 2004, 9, 430–431. [Google Scholar] [CrossRef] [PubMed]
- Congreve, M.; Chessari, G.; Tisi, D.; Woodhead, A.J. Recent Developments in Fragment-Based Drug Discovery. J. Med. Chem. 2008, 51, 3661–3680. [Google Scholar] [CrossRef] [PubMed]
- Keserű, G.M.; Erlanson, D.A.; Ferenczy, G.G.; Hann, M.M.; Murray, C.W.; Pickett, S.D. Design Principles for Fragment Libraries: Maximizing the Value of Learnings from Pharma Fragment-Based Drug Discovery (FBDD) Programs for Use in Academia. J. Med. Chem. 2016, 59, 8189–8206. [Google Scholar] [CrossRef] [Green Version]
- Erlanson, D.A.; Fesik, S.W.; Hubbard, R.E.; Jahnke, W.; Jhoti, H. Twenty Years on: The Impact of Fragments on Drug Discovery. Nat. Rev. Drug Discov. 2016, 15, 605–619. [Google Scholar] [CrossRef]
- Kuroda, D.G.; Bauman, J.D.; Challa, J.R.; Patel, D.; Troxler, T.; Das, K.; Arnold, E.; Hochstrasser, R.M. Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse transcriptase. Nat. Chem. 2013, 5, 174–181. [Google Scholar] [CrossRef] [Green Version]
- Moss, D.M.; Liptrott, N.J.; Curley, P.; Siccardi, M.; Back, D.J.; Owen, A. Rilpivirine inhibits drug transporters ABCB1, SLC22A1, and SLC22A2 in vitro. Antimicrob. Agents Chemother. 2013, 57, 5612–5618. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; Ruiz, F.X.; Sun, Y.; Feng, D.; Jing, L.; Wang, Z.; Zhang, T.; Gao, S.; Sun, L.; De Clercq, E.; et al. 2,4,5-Trisubstituted Pyrimidines as Potent HIV-1 NNRTIs: Rational Design, Synthesis, Activity Evaluation, and Crystallographic Studies. J. Med. Chem. 2021, 64, 4239–4256. [Google Scholar] [CrossRef]
- Geitmann, M.; Elinder, M.; Seeger, C.; Brandt, P.; de Esch, I.J.; Danielson, U.H. Identification of a novel scaffold for allosteric inhibition of wild type and drug resistant HIV-1 reverse transcriptase by fragment library screening. J. Med. Chem. 2011, 54, 699–708. [Google Scholar] [CrossRef]
- Smith, R.H.B.; Dar, A.C.; Schlessinger, A. PyVOL: A PyMOL plugin for visualization, comparison, and volume calculation of drug-binding sites. bioRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Thammaporn, R.; Yagi-Utsumi, M.; Yamaguchi, T.; Boonsri, P.; Saparpakorn, P.; Choowongkomon, K.; Techasakul, S.; Kato, K.; Hannongbua, S. NMR characterization of HIV-1 reverse transcriptase binding to various non-nucleoside reverse transcriptase inhibitors with different activities. Sci. Rep. 2015, 5, 15806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huo, Z.; Zhang, H.; Kang, D.; Zhou, Z.; Wu, G.; Desta, S.; Zuo, X.; Wang, Z.; Jing, L.; Ding, X.; et al. Discovery of Novel Diarylpyrimidine Derivatives as Potent HIV-1 NNRTIs Targeting the “NNRTI Adjacent” Binding Site. ACS Med. Chem. Lett. 2018, 9, 334–338. [Google Scholar] [CrossRef]
- Feng, D.; Zuo, X.; Jing, L.; Chen, C.H.; Olotu, F.A.; Lin, H.; Soliman, M.; De Clercq, E.; Pannecouque, C.; Lee, K.H.; et al. Design, synthesis, and evaluation of “dual-site”-binding diarylpyrimidines targeting both NNIBP and the NNRTI adjacent site of the HIV-1 reverse transcriptase. Eur. J. Med. Chem. 2021, 211, 113063. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 145979991. 2023. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/145979991 (accessed on 23 March 2023).
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chopra, A.; Bauman, J.D.; Ruiz, F.X.; Arnold, E. The Halo Library, a Tool for Rapid Identification of Ligand Binding Sites on Proteins Using Crystallographic Fragment Screening. bioRxiv 2022. [Google Scholar] [CrossRef]
- Le Grice, S.F.J.; GrÜNinger-Leitch, F. Rapid purification of homodimer and heterodimer HIV-1 reverse transcriptase by metal chelate affinity chromatography. Eur. J. Biochem. 1990, 187, 307–314. [Google Scholar] [CrossRef]
- Shi, C.; Mellors, J.W. A recombinant retroviral system for rapid in vivo analysis of human immunodeficiency virus type 1 susceptibility to reverse transcriptase inhibitors. Antimicrob. Agents Chemother. 1997, 41, 2781–2785. [Google Scholar] [CrossRef] [Green Version]
- Mellors, J.W.; Bazmi, H.Z.; Schinazi, R.F.; Roy, B.M.; Hsiou, Y.; Arnold, E.; Weir, J.; Mayers, D.L. Novel mutations in reverse transcriptase of human immunodeficiency virus type 1 reduce susceptibility to foscarnet in laboratory and clinical isolates. Antimicrob. Agents Chemother. 1995, 39, 1087–1092. [Google Scholar] [CrossRef] [Green Version]
- Peden, K.; Emerman, M.; Montagnier, L. Changes in growth properties on passage in tissue culture of viruses derived from infectious molecular clones of HIV-1LAI, HIV-1MAL, and HIV-1ELI. Virology 1991, 185, 661–672. [Google Scholar] [CrossRef]
- Yap, S.-H.; Sheen, C.-W.; Fahey, J.; Zanin, M.; Tyssen, D.; Lima, V.D.; Wynhoven, B.; Kuiper, M.; Sluis-Cremer, N.; Harrigan, P.R.; et al. N348I in the Connection Domain of HIV-1 Reverse Transcriptase Confers Zidovudine and Nevirapine Resistance. PLoS Med. 2007, 4, e335. [Google Scholar] [CrossRef] [Green Version]
- Le Grice, S.F.J.; Cameron, C.E.; Benkovic, S.J. Purification and characterization of human immunodeficiency virus type 1 reverse transcriptase. Methods Enzymol. 1995, 262, 130–144. [Google Scholar] [CrossRef] [PubMed]
- Tyssen, D.; Henderson, S.A.; Johnson, A.; Sterjovski, J.; Moore, K.; La, J.; Zanin, M.; Sonza, S.; Karellas, P.; Giannis, M.P.; et al. Structure Activity Relationship of Dendrimer Microbicides with Dual Action Antiviral Activity. PLoS ONE 2010, 5, e12309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yap, S.H.; Herman, B.D.; Radzio, J.; Sluis-Cremer, N.; Tachedjian, G. N348I in HIV-1 Reverse Transcriptase Counteracts the Synergy Between Zidovudine and Nevirapine. JAIDS J. Acquir. Immune Defic. Syndr. 2012, 61, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauman, J.D.; Das, K.; Ho, W.C.; Baweja, M.; Himmel, D.M.; Clark, A.D., Jr.; Oren, D.A.; Boyer, P.L.; Hughes, S.H.; Shatkin, A.J.; et al. Crystal engineering of HIV-1 reverse transcriptase for structure-based drug design. Nucleic Acids Res. 2008, 36, 5083–5092. [Google Scholar] [CrossRef] [Green Version]
- Winter, G.; McAuley, K.E. Automated data collection for macromolecular crystallography. Methods 2011, 55, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Wojdyr, M.; Keegan, R.; Winter, G.; Ashton, A. DIMPLE—A pipeline for the rapid generation of difference maps from protein crystals with putatively bound ligands. Acta Crystallogr. Sect. A 2013, 69, s299. [Google Scholar] [CrossRef] [Green Version]
- Foadi, J.; Aller, P.; Alguel, Y.; Cameron, A.; Axford, D.; Owen, R.L.; Armour, W.; Waterman, D.G.; Iwata, S.; Evans, G. Clustering procedures for the optimal selection of data sets from multiple crystals in macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 2013, 69, 1617–1632. [Google Scholar] [CrossRef] [Green Version]
- Evans, P.R.; Murshudov, G.N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 2013, 69, 1204–1214. [Google Scholar] [CrossRef]
- Smart, O.S.; Sharff, A.; Holstein, J.; Womack, T.O.; Flensburg, C.; Keller, P.; Paciorek, W.; Vonrhein, C.; Bricogne, G. Grade2 Version 1.3.0; Global Phasing Ltd.: Cambridge, UK, 2021. [Google Scholar]
- McCoy, A.J.; Grosse-Kunstleve, R.W.; Adams, P.D.; Winn, M.D.; Storoni, L.C.; Read, R.J. Phaser crystallographic software. J. Appl. Crystallogr. 2007, 40, 658–674. [Google Scholar] [CrossRef] [Green Version]
- Emsley, P.; Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2126–2132. [Google Scholar] [CrossRef] [Green Version]
- Afonine, P.V.; Grosse-Kunstleve, R.W.; Echols, N.; Headd, J.J.; Moriarty, N.W.; Mustyakimov, M.; Terwilliger, T.C.; Urzhumtsev, A.; Zwart, P.H.; Adams, P.D. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 2012, 68, 352–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
# | R1 | RT Inhibition—IC50 ± SEM (µM) a | SPR—KD (µM) b | LE c | ||||
---|---|---|---|---|---|---|---|---|
WT | K103N | Y181C | WT | K103N | Y181C | |||
B-1 | - | >1000 d | - | - | NB | NB | NB | - |
2 | 4-CH3 | 433 ± 166 | - | >333 | 347 ± 23 | - | - | 0.31 |
3 | 5-CH3 | >1000 | - | - | - | - | - | - |
4 | 6-CH3 | >1000 | - | - | - | - | - | - |
5 | 7-CH3 | 470 ± 95 | - | >333 | NB | NB | NB | 0.31 |
6 | 4-Br | 159 ± 29 | 846 ± 42 | 850 ± 187 | 598 ± 15 | 1400 ± 45 | 1190 ± 47 | 0.35 |
7 | 5-Br | >1000 | - | - | - | - | - | - |
8 | 5-NH2 | >1000 | - | - | 522 ± 27 | 621 ± 36 | 610 ± 32 | - |
9 | 4-Br, 7-CH3 | 155 ± 19 d | - | - | NB | NB | - | 0.33 |
10 | 4-Br, 6-OCH3 | 315 ± 19 d | - | - | 1570 ± 105 | 757 ± 81 | - | 0.29 |
11 | 4-F, 7-CH3 | >1000 d | - | - | NB | NB | - | - |
12 | 4-Cl, 7-CH3 | >1000 d | - | - | - | - | - | - |
13 | 4-OCH3, 6-Br | >1000 | - | - | - | - | - | - |
14 | 5-Cl, 7-CH3 | >1000 | - | - | NB | NB | - | - |
15 | 5-COOCH3 | >1000 | - | - | - | - | - | - |
16 | 5-NHCOOC(CH3)3 | >1000 | - | - | - | - | - | - |
# | R3 | RT Inhibition—IC50 ± SEM (µM) a | SPR—KD (µM) b | LE c | ||
---|---|---|---|---|---|---|
WT | K103N/Y181C | WT | K103N | |||
24 | CH2N(CH3)2 | >1000 | - | - | - | - |
25 | CH2CH2OH | >1000 | - | - | - | - |
26 | CH2(CH2)4OH | 24 ± 6 | 35 ± 7 d | 173 ± 9 | 233 ± 22 | 0.30 |
27 | cyclopropyl | 11 ± 1 | 34 ± 8 d | 79 ± 7 | 187 ± 15 | 0.37 |
28 | CH2CH2CH3 | 53 ± 4 | 105 ± 6 d | 275 ± 9 | - | 0.32 |
29 | H | 27 ± 26 | 43 ± 14 d | 395 ± 35 | - | 0.40 |
Drug Combinations a | CI ED50 ± SEM b | CI ED75 ± SEM | CI ED90 ± SEM | Description |
---|---|---|---|---|
NVP vs. DOR c | 0.95 ± 0.09 | 0.86 ± 0.16 | 0.92 ± 0.27 | Nearly additive |
NVP vs. B-1 | 1.28 ± 0.04 | 1.38 ± 0.11 | 1.54 ± 0.26 | Moderate antagonism |
NVP vs. 27 | 1.28 ± 0.03 | 1.42 ± 0.15 | 1.64 ± 0.35 | Moderate antagonism |
PDB ID | Ligand | Pocket Volume (Å3) | |
---|---|---|---|
NNRTI Adjacent Site | NNIBP | ||
1IKW | Efavirenz | - | 398 |
4NCG | Doravirine | - | 426 |
3MEC | Etravirine | - | 436 |
8FFX | 27 | - | 436 |
1KLM | Delavirdine | - | 446 |
1VRT | Nevirapine | - | 455 |
4G1Q | Rilpivirine | 416 | 512 |
4KFB | Rilpivirine/compound B-1 | 413 | 527 |
7KWU | K07-15 | 597 | 676 |
6C0J | K-5a2 | 542 | 685 |
6C0N | 25a | 479 | 687 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansouri, M.; Rumrill, S.; Dawson, S.; Johnson, A.; Pinson, J.-A.; Gunzburg, M.J.; Latham, C.F.; Barlow, N.; Mbogo, G.W.; Ellenberg, P.; et al. Targeting HIV-1 Reverse Transcriptase Using a Fragment-Based Approach. Molecules 2023, 28, 3103. https://doi.org/10.3390/molecules28073103
Mansouri M, Rumrill S, Dawson S, Johnson A, Pinson J-A, Gunzburg MJ, Latham CF, Barlow N, Mbogo GW, Ellenberg P, et al. Targeting HIV-1 Reverse Transcriptase Using a Fragment-Based Approach. Molecules. 2023; 28(7):3103. https://doi.org/10.3390/molecules28073103
Chicago/Turabian StyleMansouri, Mahta, Shawn Rumrill, Shane Dawson, Adam Johnson, Jo-Anne Pinson, Menachem J. Gunzburg, Catherine F. Latham, Nicholas Barlow, George W. Mbogo, Paula Ellenberg, and et al. 2023. "Targeting HIV-1 Reverse Transcriptase Using a Fragment-Based Approach" Molecules 28, no. 7: 3103. https://doi.org/10.3390/molecules28073103
APA StyleMansouri, M., Rumrill, S., Dawson, S., Johnson, A., Pinson, J. -A., Gunzburg, M. J., Latham, C. F., Barlow, N., Mbogo, G. W., Ellenberg, P., Headey, S. J., Sluis-Cremer, N., Tyssen, D., Bauman, J. D., Ruiz, F. X., Arnold, E., Chalmers, D. K., & Tachedjian, G. (2023). Targeting HIV-1 Reverse Transcriptase Using a Fragment-Based Approach. Molecules, 28(7), 3103. https://doi.org/10.3390/molecules28073103