Multi-Dimensional Antioxidant Screening of Selected Australian Native Plants and Putative Annotation of Active Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yield
2.2. Determination of Total Phenolic Content (TPC)
2.3. Screening Antioxidant Activity
2.3.1. 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Assay
2.3.2. Ferric Thiocyanate (FTC) Assay
2.3.3. Thiobarbituric Acid Reactive Substances (TBARS) Assay
2.4. UHPLC-DAD-qTOF-MS
2.4.1. Acacia implexa Bark
* Comp | * RT | * m/z Expt. | * m/z Calc | * MF | * δ in ppm | Putatively Identified Compound | Reference |
---|---|---|---|---|---|---|---|
1 | 0.714 | 169.0146 | 169.0142 | C7H6O5 | 2.08 | gallic acid | * ST |
2 | 1.014 | 153.0192 | 153.0930 | C7H6O4 | 0.86 | protocatechuic acid | [40] |
3 | 1.147 | 305.0671 | 305.0667 | C15H14O7 | 0.08 | gallocatechin/melacacidin | [13,41] |
4 | 2.629 | 305.0670 | 305.0667 | C15H14O7 | 1.06 | isomer of gallocatechin/melacacidin | [13,41] |
5 | 7.418 | 315.0512 | 315.0510 | C16H12O7 | 0.55 | rhamnetin | [41] |
6 | 8.117 | 329.0665 | 329.0667 | C17H14O7 | 0.53 | 3,3′-dimethyl-quercetin | [41] |
7 | 9.524 | 315.0518 | 315.0510 | C16H12O7 | 2.45 | isomer of rhamnetin | [41] |
8 | 12.980 | 471.3483 | 471.3480 | C30H48O4 | 0.67 | hederagenin | [45] |
2.4.2. Acacia implexa Leaves
* Comp | * RT | * m/z Expt | * m/z Calc | * MF | * δ in ppm | Putatively Identified Compound | Reference |
---|---|---|---|---|---|---|---|
4 | 2.629 | 305.0669 | 305.0667 | C15H14O7 | 0.73 | isomer of gallocatechin/melacacidin | [13,41] |
9 | 4.679 | 577.1349 | 577.1351 | C30H26O12 | 0.43 | procyanidin B2 | [48] |
10 | 5.087 | 289.0721 | 289.0718 | C15H14O6 | 1.17 | (−)-epicatechin | * ST, [13,41] |
11 | 6. 652 | 625.1397 | 625.1410 | C27H30O17 | 2.11 | quercetin diglucoside | [41] |
12 | 7.093 | 441.0819 | 441.0827 | C22H18O10 | 1.86 | epicatechin gallate | [13,41] |
13 | 7.360 | 609.1459 | 609.1461 | C27H30O16 | 0.34 | rutin | [41] |
14 | 7.460 | 463.0887 | 463.0882 | C21H20O12 | 1.08 | quercetin-3-galactoside/myricitrin | [41] |
15 | 9.175 | 285.0415 | 285.0405 | C15H10O6 | 3.63 | kaempferol | [41] |
2.4.3. Eucalyptus rossii Leaves
* Comp | * RT | * m/z Expt | * m/z Calc | * MF | * δ in ppm | Tentatively Identified Compound | Reference |
---|---|---|---|---|---|---|---|
1 | 0.730 | 169.0146 | 169.0142 | C7H6O5 | 2.08 | gallic acid | * ST, [38] |
16 | 2.961 | 289.0720 | 289.0718 | C15H14O6 | 0.82 | (+)-catechin | * ST [38] |
17 | 7.208 | 300.9994 | 300.9990 | C14H6O8 | 1.38 | ellagic acid | [38] |
18 | 7.250 | 537.1978 | 537.1978 | C26H34O12 | 0.09 | cypellocarpin B | [38] |
19 | 7.350 | 463.0876 | 463.0882 | C21H20O12 | 1.29 | quercetin-glucoside | [38] |
20 | 7.974 | 447.0920 | 447.0933 | C21H20O11 | 2.87 | quercitrin | [38] |
21 | 8.274 | 315.0150 | 315.0146 | C15H8O8 | 1.14 | 3-methyl ellagic acid | [49] |
22 | 12.613 | 297.0772 | 297. 0768 | C17H14O5 | 1.18 | 5-hydroxy-7,4′-dimethoxy flavone | [38] |
23 | 12.788 | 311.0927 | 311.0925 | C18H16O5 | 0.65 | sideroxylin | [38] |
24 | 13.612 | 325.1846 | 325.1081 | C19H18O5 | 0.11 | eucalyptin | [50] |
2.4.4. Exocarpos cupressiformis Leaves
* Comp | * RT | * m/z Expt | * m/z Calc | * MF | * δ in ppm | Tentatively Identified Compound | Reference |
---|---|---|---|---|---|---|---|
25 | 2.752 | 577.1352 | 577.1563 | C27H30O14 | 0.16 | kaempferol-3-rhamnobioside | [15] |
16 | 2.936 | 289.0722 | 289.0707 | C15H12O6 | 0.06 | (+)-catechin | * ST standard |
26 | 7. 432 | 433.1137 | 433.1140 | C21H22O10 | 0.74 | dihydro-kaempferol-7-rhamnoside | [15] |
20 | 7.974 | 447.0929 | 447.0933 | C21H20O11 | 0.86 | quercitrin | [38] |
27 | 8.523 | 431.0986 | 431.0984 | C21H20O10 | 0.53 | kaempferol-7-rhamnoside | [15] |
28 | 10.488 | 593.1292 | 593.1512 | C27H30O15 | 0.15 | quercetin-3-rhamnobioside | [15] |
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Species and Materials
3.3. Preparation and Fractionation of Plant Extracts
3.4. Determination of Total Phenolic Content
3.5. Free Radical Scavenging 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Assay
3.6. Lipid-Based Ferric Thiocyanate (FTC) and Thiobarbituric Acid Reactive Substances (TBARS) Assays
3.6.1. Oxidation of a Linoleic Acid (LA) Nano-Emulsion
3.6.2. Ferric Thiocyanate (FTC) Assay
3.6.3. Thiobarbituric Acid Reactive Substances (TBARS) Assay
3.7. Ultra High Pressure Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (UHPLC-qTOF-MS) Analysis
3.7.1. Crude Extracts and Fractions Sample Preparation
3.7.2. Instrumentation
3.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghani, M.A.; Barril, C.; Bedgood, D.R.; Prenzler, P.D. Measurement of antioxidant activity with the thiobarbituric acid reactive substances assay. Food Chem. 2017, 230, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Pardo, P.S.; Boriek, A.M. Sirt1 regulation in ageing and obesity. Mech. Ageing Dev. 2020, 188, 111249. [Google Scholar] [CrossRef] [PubMed]
- Villeneuve, P.; Bourlieu-Lacanal, C.; Durand, E.; Lecomte, J.; McClements, D.J.; Decker, E.A. Lipid oxidation in emulsions and bulk oils: A review of the importance of micelles. Crit. Rev. Food Sci. Nutr. 2021. [Google Scholar] [CrossRef]
- Ortega-Ramirez, L.A.; Rodriguez-Garcia, I.; Leyva, J.M.; Cruz-Valenzuela, M.R.; Silva-Espinoza, B.A.; Gonzalez-Aguilar, G.A.; Siddiqui, M.W.; Ayala-Zavala, J.F. Potential of medicinal plants as antimicrobial and antioxidant agents in food industry: A hypothesis. J. Food Sci. 2014, 79, R129–R137. [Google Scholar] [CrossRef]
- Wu, X. Free radical inhibition mechanisms—Implications for measurement. In Handbook of Antioxidant Methodology: Approaches to Activity Determination; The Royal Society of Chemistry: Cambridge, UK, 2021; pp. 142–177. [Google Scholar]
- Ghani, M.A.; Barril, C.; Bedgood, D.R.; Prenzler, P.D. Development of a method suitable for high-throughput screening to measure antioxidant activity in a linoleic acid emulsion. Antioxidants 2019, 8, 366. [Google Scholar] [CrossRef] [PubMed]
- Frankel, E.N.; Meyer, A.S. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J. Sci. Food Agric. 2000, 80, 1925–1941. [Google Scholar] [CrossRef]
- McDonald, S.; Prenzler, P.D.; Antolovich, M.; Robards, K. Phenolic content and antioxidant activity of olive extracts. Food Chem. 2001, 73, 73–84. [Google Scholar] [CrossRef]
- Packer, J.; Brouwer, N.; Harrington, D.; Gaikwad, J.; Heron, R.; Elders, Y.C.; Ranganathan, S.; Vemulpad, S.; Jamie, J. An ethnobotanical study of medicinal plants used by the Yaegl aboriginal community in northern New South Wales, Australia. J. Ethnopharmacol. 2012, 139, 244–255. [Google Scholar] [CrossRef]
- Australian Flora Statistics. Available online: https://www.anbg.gov.au/aust-veg/australian-flora-statistics.html (accessed on 8 February 2023).
- Williams, A.; Sides, T. Wiradjuri Plant Use in the Murrumbidgee Catchment; Murrumbidgee Catchment Management Authority: Wagga Wagga, NSW, Australia, 2008; pp. 1–106.
- Akter, K.; Barnes, E.C.; Brophy, J.J.; Harrington, D.; Yaegl Community, E.; Vemulpad, S.R.; Jamie, J.F. Phytochemical profile and antibacterial and antioxidant activities of medicinal plants used by Aboriginal people of New South Wales, Australia. Evid. Based Complement. Altern. Med. 2016, 2016, 4683059. [Google Scholar] [CrossRef]
- Tindale, M.D.; Roux, D.G. A phytochemical survey of the Australian species of Acacia. Phytochemistry 1969, 8, 1713–1727. [Google Scholar] [CrossRef]
- Saraf, I.; Marsh, K.J.; Vir, S.; Foley, W.J.; Singh, I.P. Quantitative analysis of various b-ring unsubstituted and substituted flavonoids in ten Australian species of Eucalyptus. Nat. Prod. Commun. 2017, 12, 1695–1699. [Google Scholar] [CrossRef]
- Cooke, R.; Haynes, H. Colouring matters of Australian plants. Vii. Flavonoid glycosides from Exocarpus cupressiformis labill. Aust. J. Chem. 1960, 13, 150–155. [Google Scholar] [CrossRef]
- Yasir, M.; Sultana, B.; Nigam, P.S.; Owusu-Apenten, R. Antioxidant and genoprotective activity of selected Cucurbitaceae seed extracts and LC-ESIMS/MS identification of phenolic components. Food Chem. 2016, 199, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Bourais, I.; Elmarrkechy, S.; Taha, D.; Badaoui, B.; Mourabit, Y.; Salhi, N.; Alshahrani, M.M.; Al Awadh, A.A.; Bouyahya, A.; Goh, K.W.; et al. Comparative investigation of chemical constituents of kernels, leaves, husk, and bark of Juglans regia L. using HPLC-DADESI-MS/MS analysis and evaluation of their antioxidant, antidiabetic, and anti-inflammatory activities. Molecules 2022, 27, 8989. [Google Scholar] [CrossRef] [PubMed]
- Obied, H.K.; Bedgood, D.R.; Prenzler, P.D.; Robards, K. Effect of processing conditions, prestorage treatment, and storage conditions on the phenol content and antioxidant activity of olive mill waste. J. Agric. Food Chem. 2008, 56, 3925–3932. [Google Scholar] [CrossRef]
- Mani, J.S.; Johnson, J.B.; Hosking, H.; Ashwath, N.; Walsh, K.B.; Neilsen, P.M.; Broszczak, D.A.; Naiker, M. Antioxidative and therapeutic potential of selected Australian plants: A review. J. Ethnopharmacol. 2021, 268, 113580. [Google Scholar] [CrossRef]
- Tung, Y.T.; Wu, J.H.; Kuo, Y.H.; Chang, S.T. Antioxidant activities of natural phenolic compounds from Acacia confusa bark. Bioresour. Technol. 2007, 98, 1120–1123. [Google Scholar] [CrossRef]
- Chua, M.T.; Tung, Y.T.; Chang, S.T. Antioxidant activities of ethanolic extracts from the twigs of Cinnamomum osmophloeum. Bioresour. Technol. 2008, 99, 1918–1925. [Google Scholar] [CrossRef]
- Barapatre, A.; Meena, A.S.; Mekala, S.; Das, A.; Jha, H. In vitro evaluation of antioxidant and cytotoxic activities of lignin fractions extracted from Acacia nilotica. Int. J. Biol. Macromol. 2016, 86, 443–453. [Google Scholar] [CrossRef]
- Guenaou, I.; Irahal, I.N.; Errami, A.; Lahlou, F.A.; Hmimid, F.; Bourhim, N. Bioactive compounds from Ephedra fragilis: Extraction optimization, chemical characterization, antioxidant and antiglycation activities. Molecules 2021, 26, 5998. [Google Scholar] [CrossRef]
- Ali, F.; Jan, A.K.; Khan, N.M.; Ali, R.; Mukhtiar, M.; Khan, S.; Khan, S.A.; Aziz, R. Selective biological activities and phytochemical profiling of two wild plant species, Teucrium polium and Capsicum annum from Sheringal, Pakistan. Chiang Mai J. Sci. 2018, 45, 881–887. [Google Scholar]
- Sultana, B.; Anwar, F.; Przybylski, R. Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. trees. Food Chem. 2007, 104, 1106–1114. [Google Scholar] [CrossRef]
- Singh, R.; Singh, S.; Kumar, S.; Arora, S. Evaluation of antioxidant potential of ethyl acetate extract/fractions of Acacia auriculiformis A. Cunn. Food Chem. Toxicol. 2007, 45, 1216–1223. [Google Scholar] [CrossRef] [PubMed]
- Zin, Z.M.; Hamid, A.A.; Osman, A.; Saari, N. Antioxidative activities of chromatographic fractions obtained from root, fruit and leaf of mengkudu (Morinda citrifolia L.). Food Chem. 2006, 94, 169–178. [Google Scholar] [CrossRef]
- Mo, E.K.; Kim, S.M.; Yang, S.A.; Oh, C.J.; Sung, C.K. Assessment of antioxidant capacity of sedum (Sedum sarmentosum) as a valuable natural antioxidant source. Food Sci. Biotechnol. 2011, 20, 1061–1067. [Google Scholar] [CrossRef]
- Fernández, J.; Pérez-Álvarez, J.A.; Fernández-López, J.A. Thiobarbituric acid test for monitoring lipid oxidation in meat. Food Chem. 1997, 59, 345–353. [Google Scholar] [CrossRef]
- Del Rio, D.; Stewart, A.J.; Pellegrini, N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 316–328. [Google Scholar] [CrossRef]
- Phonsatta, N.; Luangpituksa, P.; Figueroa-Espinoza, M.C.; Lecomte, J.; Durand, E.; Villeneuve, P.; Visessanguan, W.; Deetae, P.; Uawisetwathana, U.; Pongprayoon, W.; et al. Conjugated autoxidizable triene-based (Cat and apoCat) assays: Their practical application for screening of crude plant extracts with antioxidant functions in relevant to oil-in-water emulsions. Eur. J. Lipid Sci. Technol. 2019, 121, 1800239. [Google Scholar] [CrossRef]
- Kim, H.; Chin, K.B. Evaluation of antioxidant activity of Cudrania tricuspidata (ct) leaves, fruit powder and ct fruit in pork patties during storage. Food Sci. Anim. Resour. 2020, 40, 881–895. [Google Scholar] [CrossRef]
- Vhangani, L.N.; Van Wyk, J. Antioxidant activity of Maillard reaction products (MRPs) in a lipid-rich model system. Food Chem. 2016, 208, 301–308. [Google Scholar] [CrossRef]
- Rathahao-Paris, E.; Alves, S.; Junot, C.; Tabet, J.-C. High resolution mass spectrometry for structural identification of metabolites in metabolomics. Metabolomics 2015, 12, 10. [Google Scholar] [CrossRef]
- Feng, S.H.; Cheng, S.N.; Yuan, Z.S.; Leitch, M.; Xu, C.B. Valorization of bark for chemicals and materials: A review. Renew. Sustain. Energy Rev. 2013, 26, 560–578. [Google Scholar] [CrossRef]
- Pizzi, A. Tannins medical/pharmacological and related applications: A critical review. Sustain. Chem. Pharm. 2021, 22, 100481. [Google Scholar] [CrossRef]
- Silva, A.R.; Finimundy, T.C.; Barros, L.; Ferreira, I.C.F.R. Exogenous antioxidants derived from plants, fungi, and other taxa. In Handbook of Antioxidant Methodology: Approaches to Activity Determination; The Royal Society of Chemistry: Cambridge, UK, 2021; pp. 203–245. [Google Scholar]
- Vuong, Q.V.; Chalmers, A.C.; Jyoti Bhuyan, D.; Bowyer, M.C.; Scarlett, C.J. Botanical, phytochemical, and anticancer properties of the Eucalyptus species. Chem. Biodivers. 2015, 12, 907–924. [Google Scholar] [CrossRef] [PubMed]
- Feregrino-Pérez, A.A.; Torres-Pacheco, I.; Vargas-Hernández, M.; Munguía-Fragozo, P.V.; Loarca-Piña, G.F.; Mendoza-Díaz, S.O.; Ocampo-Velázquez, R.V.; Rico-García, E.; Guevara-Gónzalez, R.G. Antioxidant and antimutagenic activities of Acacia pennatula pods. J. Sci. Ind. Res. India 2011, 70, 859–864. [Google Scholar]
- Rather, L.J.; Shahid ul, I.; Mohammad, F. Acacia nilotica (L.): A review of its traditional uses, phytochemistry, and pharmacology. Sustain. Chem. Pharm. 2015, 2, 12–30. [Google Scholar] [CrossRef]
- Seigler, D.S. Phytochemistry of Acacia—Sensu lato. Biochem. Syst. Ecol. 2003, 31, 845–873. [Google Scholar] [CrossRef]
- Jaeger, D.; O’Leary, M.C.; Weinstein, P.; Moller, B.L.; Semple, S.J. Phytochemistry and bioactivity of Acacia sensu stricto (Fabaceae: Mimosoideae). Phytochem. Rev. 2019, 18, 129–172. [Google Scholar] [CrossRef]
- Meng, X.H.; Liu, C.; Fan, R.; Zhu, L.F.; Yang, S.X.; Zhu, H.T.; Wang, D.; Yang, C.R.; Zhang, Y.J. Antioxidative flavan-3-ol dimers from the leaves of Camellia fangchengensis. J. Agric. Food Chem. 2018, 66, 247–254. [Google Scholar] [CrossRef]
- Elmi, A.; Spina, R.; Risler, A.; Philippot, S.; Mérito, A.; Duval, R.E.; Abdoul-latif, F.M.; Laurain-Mattar, D. Evaluation of antioxidant and antibacterial activities, cytotoxicity of Acacia seyal Del bark extracts and isolated compounds. Molecules 2020, 25, 2392. [Google Scholar] [CrossRef]
- Xin, X.L.; Yang, Y.; Zhong, J.; Aisa, H.A.; Wang, H.Q. Preparative isolation and purification of isobenzofuranone derivatives and saponins from seeds of Nigella glandulifera Freyn by high-speed counter-current chromatography combined with gel filtration. J. Chromatogr. 2009, 1216, 4258–4262. [Google Scholar] [CrossRef]
- Shen, D.; Wu, Q.; Wang, M.; Yang, Y.; Lavoie, E.J.; Simon, J.E. Determination of the predominant catechins in Acacia catechu by liquid chromatography/electrospray ionization-mass spectrometry. J. Agric. Food Chem. 2006, 54, 3219–3224. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.P.; Yang, Y.L.; Cheng, X.X.; Li, W.R.; Cai, J.Y. Synthesis, spectroscopic study and radical scavenging activity of kaempferol derivatives: Enhanced water solubility and antioxidant activity. Int. J. Mol. Sci. 2019, 20, 975. [Google Scholar] [CrossRef] [PubMed]
- Gouveia-Figueira, S.C.; Castilho, P.C. Phenolic screening by HPLC-DAD-ESI/MSn and antioxidant capacity of leaves, flowers and berries of Rubus grandifolius Lowe. Ind. Crops Prod. 2015, 73, 28–40. [Google Scholar] [CrossRef]
- Kasajima, N.; Ito, H.; Hatano, T.; Yoshida, T.; Kaneda, M. Cypellogins a, b and c, acylated flavonol glycosides from Eucalyptus cypellocarpa. Chem. Pharm. Bull. 2005, 53, 1345–1347. [Google Scholar] [CrossRef]
- Wollenweber, E.; Kohorst, G. Epicuticular leaf flavonoids from Eucalyptus species and from Kalmia latifolia. Z. Nat. C—A J. Biosci. 1981, 36, 913–915. [Google Scholar] [CrossRef]
- Pagning, A.L.N.; Tamokou, J.D.D.; Khan, M.L.; Ali, M.I.; Hameed, A.; Ngnokam, D.; Tapondjou, L.A.; Kuiate, J.R.; Ali, M.S. Antimicrobial, antioxidant and butyrylcholinesterase inhibition activities of extracts and isolated compounds from Scadoxus pseudocaulus and semi-synthetic farrerol derivatives. S. Afr. J. Bot. 2016, 102, 166–174. [Google Scholar] [CrossRef]
- Haiyan, Z.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Effect of added caffeic acid and tyrosol on the fatty acid and volatile profiles of camellia oil following heating. J. Agric. Food Chem. 2006, 54, 9551–9558. [Google Scholar] [CrossRef]
- Qawasmeh, A.; Obied, H.K.; Raman, A.; Wheatley, W. Influence of fungal endophyte infection on phenolic content and antioxidant activity in grasses: Interaction between Lolium perenne and different strains of Neotyphodium lolii. J. Agric. Food Chem. 2012, 60, 3381–3388. [Google Scholar] [CrossRef]
Plant Species | Crude Extracts and Fractions | Extraction Yield (% Yield) | Total Phenolic Content (mg GAE/g Dry Extract) |
---|---|---|---|
A. implexa bark (AIB) | Crude (AIB) | 11 | 439.5 ± 19.7 c |
AIB H * | 0.08 | 53.2 ± 2.7 h | |
AIB DCM * | 0.5 | 149.1 ± 2.1 f | |
AIB EtOAc * | 3 | 328.5 ± 11.8 d | |
AIB EtOH * | 34 | 408.8 ± 21.6 c | |
A. implexa leaves (AIL) | Crude (AIL) | 28 | 195.2 ± 10.1 e |
AIL H | 0.5 | 42.4 ± 2.1 h | |
AIL DCM | 0.3 | 98.6 ± 5.0 g | |
AIL EtOAc | 3 | 583.2 ± 32.5 a | |
AIL EtOH | 1 | 118.7 ± 8.5 g | |
E. rossii (EUR) (leaves) | Crude (EUR) | 30 | 419.2 ± 15.7 c |
EUR H | 3 | 106.4 ± 6.2 g | |
EUR DCM | 15 | 159.9 ± 4.4 f | |
EUR EtOAc | 11 | 530.5 ± 30.2 b | |
EUR EtOH | 0.8 | 439.7 ±21.1 c | |
E. cupressiformis (EXOC) (leaves) | Crude (EXOC) | 28 | 437.6 ± 15.5 c |
EXOC H | 1 | 59.6 ±4.1 h | |
EXOC DCM | 5 | 185.8 ± 21.5 e | |
EXOC EtOAc | 30 | 413.8 ± 20.2 c | |
EXOC EtOH | 3 | 417.5 ± 6.2 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghani, M.A.; Barril, C.; Bedgood, D.R., Jr.; Burrows, G.E.; Ryan, D.; Prenzler, P.D. Multi-Dimensional Antioxidant Screening of Selected Australian Native Plants and Putative Annotation of Active Compounds. Molecules 2023, 28, 3106. https://doi.org/10.3390/molecules28073106
Ghani MA, Barril C, Bedgood DR Jr., Burrows GE, Ryan D, Prenzler PD. Multi-Dimensional Antioxidant Screening of Selected Australian Native Plants and Putative Annotation of Active Compounds. Molecules. 2023; 28(7):3106. https://doi.org/10.3390/molecules28073106
Chicago/Turabian StyleGhani, Md. Ahsan, Celia Barril, Danny R. Bedgood, Jr., Geoffrey E. Burrows, Danielle Ryan, and Paul D. Prenzler. 2023. "Multi-Dimensional Antioxidant Screening of Selected Australian Native Plants and Putative Annotation of Active Compounds" Molecules 28, no. 7: 3106. https://doi.org/10.3390/molecules28073106
APA StyleGhani, M. A., Barril, C., Bedgood, D. R., Jr., Burrows, G. E., Ryan, D., & Prenzler, P. D. (2023). Multi-Dimensional Antioxidant Screening of Selected Australian Native Plants and Putative Annotation of Active Compounds. Molecules, 28(7), 3106. https://doi.org/10.3390/molecules28073106