The Progress of Hard Carbon as an Anode Material in Sodium-Ion Batteries
Abstract
:1. Introduction
2. Mechanism of Sodium Storage by Hard Carbon
2.1. “Embedding-Adsorption” Model
2.2.“Adsorption-Embedding” Model
2.3.“Adsorption-Insertion-Hole Filling” Model
2.4.“Adsorption-Hole Filling” Model
3. Challenges and Solutions of Hard Carbon
3.1. Problems with Hard Carbon
3.2. Improvement Strategy
3.2.1. Morphology and Structure Regulation
3.2.2. Doping by Heteroatom
3.2.3. Electrolyte Optimization
4. Summary and Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ren, J.; Wang, Z.; Xu, P.; Wang, C.; Gao, F.; Zhao, D.; Liu, S.; Yang, H.; Wang, D.; Niu, C.; et al. Porous Co(2)VO(4) nanodisk as a high-energy and fast-charging anode for lithium-ion batteries. Nanomicro Lett. 2021, 14, 5. [Google Scholar] [PubMed]
- Huang, Y.; Yang, H.; Zhang, Y.; Zhang, Y.; Wu, Y.; Tian, M.; Chen, P.; Trout, R.; Ma, Y.; Wu, T.-H.; et al. A safe and fast-charging lithium-ion battery anode using MXene supported Li3VO4. J. Mater. Chem. A 2019, 7, 11250–11256. [Google Scholar] [CrossRef]
- Sun, Y.K. A rising tide of co-free chemistries for li-ion batteries. ACS Energy Lett. 2022, 7, 1774–1775. [Google Scholar] [CrossRef]
- Zeng, L.; Fang, Y.; Xu, L.; Zheng, C.; Yang, M.Q.; He, J.; Xue, H.; Qian, Q.; Wei, M.; Chen, Q. Rational design of few-layer MoSe(2) confined within ZnSe-C hollow porous spheres for high-performance lithium-ion and sodium-ion batteries. Nanoscale 2019, 11, 6766–6775. [Google Scholar] [CrossRef]
- Luo, F.; Feng, X.; Zeng, L.; Lin, L.; Li, X.; Kang, B.; Xiao, L.; Chen, Q.; Wei, M.; Qian, Q. In situ simultaneous encapsulation of defective MoS2 nanolayers and sulfur nanodots into SPAN fibers for high rate sodium-ion batteries. Chem. Eng. J. 2021, 404, 123430. [Google Scholar] [CrossRef]
- Guo, X.; Wang, C.; Wang, W.; Zhou, Q.; Xu, W.; Zhang, P.; Wei, S.; Cao, Y.; Zhu, K.; Liu, Z.; et al. Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries. Nano Res. Energy 2022, 1, e9120026. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, W.; Liu, Q.; Wang, J.; Chou, S.; Liu, H.; Dou, S. Prussian blue analogues for sodium-ion batteries: Past, present, and future. Adv. Mater. 2022, 34, e2108384. [Google Scholar] [CrossRef]
- Lin, C.; Yang, X.; Xiong, P.; Lin, H.; He, L.; Yao, Q.; Wei, M.; Qian, Q.; Chen, Q.; Zeng, L. High-rate, large capacity, and long life dendrite-free zn metal anode enabled by trifunctional electrolyte additive with a wide temperature range. Adv. Sci. 2022, 9, e2201433. [Google Scholar] [CrossRef]
- Yuan, Z.; Xiao, F.; Fang, Y.; Xiong, P.; Sun, X.; Duan, X.; Yang, X.; Fan, H.; Wei, M.; Qian, Q.; et al. Defect engineering on VO2(B) nanoleaves/graphene oxide for the high performance of cathodes of zinc-ion batteries with a wide temperature range. J. Power Sources 2023, 559, e912002617. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, W.; Hu, Z.; Zhao, L.; Wu, C.; Peleckis, G.; Gu, Q.; Wang, J.Z.; Liu, H.K.; Dou, S.X.; et al. Ice-assisted synthesis of highly crystallized prussian blue analogues for all-climate and long-calendar-life sodium ion batteries. Nano Lett. 2022, 22, 1302–1310. [Google Scholar] [CrossRef]
- Kong, N.; Du, H.; Li, Z.; Lu, T.; Xia, S.; Tang, Z.; Song, S. Nano heterojunction of double MOFs for improved CO2 photocatalytic reduction performance. Colloids Surf. A Physicochem. Eng. Asp. 2023, 663, 131005. [Google Scholar] [CrossRef]
- Zhou, W.; Cao, G.; Yuan, M.; Zhong, S.; Wang, Y.; Liu, X.; Cao, D.; Peng, W.; Liu, J.; Wang, G.; et al. Core-shell engineering of conductive fillers toward enhanced dielectric properties: A universal polarization mechanism in polymer conductor composites. Adv. Mater. 2023, 35, e2207829. [Google Scholar] [CrossRef]
- Gao, F.; Mei, B.; Xu, X.; Ren, J.; Zhao, D.; Zhang, Z.; Wang, Z.; Wu, Y.; Liu, X.; Zhang, Y. Rational design of ZnMn2O4 nanoparticles on carbon nanotubes for high-rate and durable aqueous zinc-ion batteries. Chem. Eng. J. 2022, 448, 1377742. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, W.; Xia, G.; Wang, L.; Wang, K. Self-powered electronic skin for remote human–machine synchronization. ACS Appl. Electron. Mater. 2023, 5, 498–508. [Google Scholar] [CrossRef]
- Wang, J.; Xin, S.; Xiao, Y.; Zhang, Z.; Li, Z.; Zhang, W.; Li, C.; Bao, R.; Peng, J.; Yi, J.; et al. Manipulating the water dissociation electrocatalytic sites of bimetallic nickel-based alloys for highly efficient alkaline hydrogen evolution. Angew. Chem. Int. Ed. Engl. 2022, 61, e202202518. [Google Scholar]
- Tian, Y.; Chen, S.; He, Y.; Chen, Q.; Zhang, L.; Zhang, J. A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries. Nano Res. Energy 2022, 1, e9120025. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, B.; Hua, W.; Liang, Y.; Zhang, W.; Du, Y.; Peleckis, G.; Indris, S.; Gu, Q.; Cheng, Z.; et al. A disordered rubik’s cube-inspired framework for sodium-ion batteries with ultralong cycle lifespan. Angew. Chem. Int. Ed. Engl. 2023, 62, e202215865. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, Z.; Ren, J.; Xu, Y.; Xu, X.; Zhou, J.; Gao, F.; Tang, H.; Liu, S.; Wang, Z.; et al. Fe2VO4 nanoparticles on rGO as anode material for high-rate and durable lithium and sodium ion batteries. Chem. Eng. J. 2023, 451, 138882. [Google Scholar] [CrossRef]
- Li, X.; Liang, H.; Qin, B.; Wang, M.; Zhang, Y.; Fan, H. Rational design of heterostructured bimetallic sulfides (CoS(2)/NC@VS(4)) with VS(4) nanodots decorated on CoS(2) dodecahedron for high-performance sodium and potassium ion batteries. J. Colloid Interface Sci. 2022, 625, 41–49. [Google Scholar] [CrossRef]
- Peng, J.; Ou, M.; Yi, H.; Sun, X.; Zhang, Y.; Zhang, B.; Ding, Y.; Wang, F.; Gu, S.; López, C.A.; et al. Defect-free-induced Na+ disordering in electrode materials. Energy Environ. Sci. 2021, 14, 3130–3140. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, M.; Liu, X.; Fan, H.; Zhang, Y.; Yang, H.Y. Ultrathin cobalt nickel selenides (Co(0.5)Ni(0.5)Se(2)) nanosheet arrays anchoring on Ti(3)C(2) MXene for high-performance Na(+)/K(+) batteries. J. Colloid Interface Sci. 2022, 626, 700–709. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Wang, J.; Yi, H.; Hu, W.; Yu, Y.; Yin, J.; Shen, Y.; Liu, Y.; Luo, J.; Xu, Y.W.; et al. A dual-insertion type sodium-ion full cell based on high-quality ternary-metal prussian blue analogs. Adv. Energy Mater. 2018, 8, 1702856. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Z.; Yang, W.; Wang, M.; Qin, B.; Zhang, Y.; Liu, Z.; Fan, H. In situ fragmented and confined CoP nanocrystals into sandwich-structure MXene@CoP@NPC heterostructure for superior sodium-ion storage. Mater. Today Chem. 2022, 26, 101002. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Myung, S.T.; Sun, Y.K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef] [Green Version]
- Gong, C.; Pu, S.D.; Zhang, S.; Yuan, Y.; Ning, Z.; Yang, S.; Gao, X.; Chau, C.; Li, Z.; Liu, J.; et al. The role of an elastic interphase in suppressing gas evolution and promoting uniform electroplating in sodium metal anodes. Energy Environ. Sci. 2023, 404, 535–545. [Google Scholar] [CrossRef]
- Zhang, W.; Peng, J.; Hua, W.; Liu, Y.; Wang, J.; Liang, Y.; Lai, W.; Jiang, Y.; Huang, Y.; Zhang, W.; et al. Architecting amorphous vanadium oxide/mxene nanohybrid via tunable anodic oxidation for high-performance sodium-ion batteries. Adv. Energy Mater. 2021, 11, 2100757. [Google Scholar] [CrossRef]
- Lu, T.; Du, H.; Kong, N.; Li, H.; Xu, S.; Li, Z.; Du, X. U-shaped micropores induced dielectric and piezoelectric tunability in bismuth sodium titanate-based ceramics. J. Mater. Sci. Mater. Electron. 2023, 34, 797. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X.; Apostol, P.; Liu, X.; Robeyns, K.; Gence, L.; Morari, C.; Gohy, J.-F.; Vlad, A. High performance Li-, Na-, and K-ion storage in electrically conducting coordination polymers. Energy Environ. Sci. 2022, 15, 3923–3932. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, Y.; Yu, X.; Qin, Y.; Meng, T.; Hu, X. The pursuit of commercial silicon-based microparticle anodes for advanced lithium-ion batteries: A review. Nano Res. Energy 2022, 1, 9120037. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, H.; Lu, J.; Li, Z.; Lu, T.; Hu, Y.; Ma, Y. Enhanced cyclic stability of Ga2O3@PDA-C nanospheres as pseudocapacitive anode materials for lithium-ion batteries. Fuel 2023, 334, 126683. [Google Scholar] [CrossRef]
- Xu, G.-L.; Gong, Y.-D.; Miao, C.; Wang, Q.; Nie, S.-Q.; Xin, Y.; Wen, M.-Y.; Liu, J.; Xiao, W. Sn nanoparticles embedded into porous hydrogel-derived pyrolytic carbon as composite anode materials for lithium-ion batteries. Rare Met. 2022, 41, 3421–3431. [Google Scholar] [CrossRef]
- Yan, W.; Gao, X.; Jin, X.; Liang, S.; Xiong, X.; Liu, Z.; Wang, Z.; Chen, Y.; Fu, L.; Zhang, Y.; et al. Nonporous gel electrolytes enable long cycling at high current density for lithium-metal anodes. ACS Appl. Mater. Interfaces 2021, 13, 14258–14266. [Google Scholar] [CrossRef]
- Li, C.; Liu, B.; Jiang, N.; Ding, Y. Elucidating the charge-transfer and Li-ion-migration mechanisms in commercial lithium-ion batteries with advanced electron microscopy. Nano Res. Energy 2022, 1, e9120031. [Google Scholar] [CrossRef]
- Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2018, 3, 18013. [Google Scholar] [CrossRef]
- Hirsh, H.S.; Li, Y.; Tan, D.H.S.; Zhang, M.; Zhao, E.; Meng, Y.S. Sodium-ion batteries paving the way for grid energy storage. Adv. Energy Mater. 2020, 10, 2001274. [Google Scholar] [CrossRef]
- Yang, C.; Xin, S.; Mai, L.; You, Y. Materials design for high-safety sodium-ion battery. Adv. Energy Mater. 2020, 11, 2000974. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, W.; Wang, J.; Li, L.; Lai, W.; Yang, Q.; Zhang, B.; Li, X.; Du, Y.; Liu, H.; et al. Processing rusty metals into versatile prussian blue for sustainable energy storage. Adv. Energy Mater. 2021, 11, 2102356. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, W.; Wang, S.; Huang, Y.; Wang, J.Z.; Liu, H.K.; Dou, S.X.; Chou, S.L. The emerging electrochemical activation tactic for aqueous energy storage: Fundamentals, applications, and future. Adv. Funct. Mater. 2022, 32, 2111720. [Google Scholar] [CrossRef]
- Yuan, M.; Liu, H.; Ran, F. Fast-charging cathode materials for lithium & sodium ion batteries. Mater. Today 2023, 2, 1361–7021. [Google Scholar]
- Wang, H.; Ding, F.; Wang, Y.; Han, Z.; Dang, R.; Yu, H.; Yang, Y.; Chen, Z.; Li, Y.; Xie, F.; et al. In situ plastic-crystal-coated cathode toward high-performance na-ion batteries. Acs Energy Lett. 2023, 8, 1434–1444. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, B.; Yang, Y.; Cao, A. Toward high-areal-capacity electrodes for lithium and sodium ion batteries. Adv. Energy Mater. 2022, 12, 2201834. [Google Scholar] [CrossRef]
- Lemoine, K.; Hémon-Ribaud, A.; Leblanc, M.; Lhoste, J.; Tarascon, J.-M.; Maisonneuve, V. Fluorinated materials as positive electrodes for li- and na-ion batteries. Chem. Rev. 2022, 122, 14405–14439. [Google Scholar] [CrossRef] [PubMed]
- Voronina, N.; Shin, M.Y.; Kim, H.J.; Yaqoob, N.; Guillon, O.; Song, S.H.; Kim, H.; Lim, H.D.; Jung, H.G.; Kim, Y.; et al. Hysteresis-suppressed reversible oxygen-redox cathodes for sodium-ion batteries. Adv. Energy Mater. 2022, 12, 2103939. [Google Scholar] [CrossRef]
- Yuan, Y.; Wei, Q.; Yang, S.; Zhang, X.; Jia, M.; Yuan, J.; Yan, X. Towards high-performance phosphate-based polyanion-type materials for sodium-ion batteries. Energy Storage Mater. 2022, 50, 760–782. [Google Scholar] [CrossRef]
- Lin, C.-C.; Liu, H.-Y.; Kang, J.-W.; Yang, C.-C.; Li, C.-H.; Chen, H.-Y.T.; Huang, S.-C.; Ni, C.-S.; Chuang, Y.-C.; Chen, B.-H.; et al. In-situ X-ray studies of high-entropy layered oxide cathode for sodium-ion batteries. Energy Storage Mater. 2022, 51, 159–171. [Google Scholar] [CrossRef]
- Liang, X.; Yu, T.Y.; Ryu, H.H.; Sun, Y.K. Hierarchical O3/P2 heterostructured cathode materials for advanced sodium-ion batteries. Energy Storage Mater. 2022, 47, 515–525. [Google Scholar] [CrossRef]
- Yu, C.-X.; Li, Y.; Wang, Z.-H.; Wang, X.-R.; Bai, Y.; Wu, C. Surface engineering based on in situ electro-polymerization to boost the initial Coulombic efficiency of hard carbon anode for sodium-ion battery. Rare Met. 2022, 41, 1616–1625. [Google Scholar] [CrossRef]
- Fan, M.-P.; Chen, Y.-C.; Chen, Y.-M.; Huang, Z.-X.; Wu, W.-L.; Wang, P.; Ke, X.; Sun, S.-H.; Shi, Z.-C. NiS2 nanosheet arrays on stainless steel foil as binder-free anode for high-power sodium-ion batteries. Rare Met. 2022, 41, 1294–1303. [Google Scholar] [CrossRef]
- Niitani, K.; Ushiroda, S.; Kuwata, H.; Ohata, H.N.; Shimo, Y.; Hozumi, M.; Matsunaga, T.; Nakanishi, S. Hard carbon anode with a sodium carborane electrolyte for fast-charging all-solid-state sodium-ion batteries. Acs Energy Lett. 2022, 7, 145–149. [Google Scholar] [CrossRef]
- Chen, F.; Di, Y.; Su, Q.; Xu, D.; Zhang, Y.; Zhou, S.; Liang, S.; Cao, X.; Pan, A. Vanadium-modified hard carbon spheres with sufficient pseudographitic domains as high-performance anode for sodium-ion batteries. Carbon Energy 2022, 5, e191. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, J.; Zhong, L.; Geng, F.; Tao, Y.; Geng, C.; Li, S.; Hu, B.; Yang, Q.H. Unraveling the key atomic interactions in determining the varying li/na/k storage mechanism of hard carbon anodes. Adv. Energy Mater. 2022, 12, 2201734. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; Wang, Y.; Xu, T.; Chang, P. Research progress on carbon materials as negative electrodes in sodium- and potassium-ion batteries. Carbon Energy 2022, 4, 1182–1213. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Y.; Wu, F.; Bai, Y.; Li, Y.; Gong, Y.; Feng, X.; Li, Y.; Wang, X.; Wu, C. Advances in carbon materials for sodium and potassium storage. Adv. Funct. Mater. 2022, 32, 2203117. [Google Scholar] [CrossRef]
- Peng, W.; Zhou, W.; Li, T.; Zhou, J.; Yao, T.; Wu, H.; Zhao, X.; Luo, J.; Liu, J.; Zhang, D. Towards inhibiting conductivity of Mo/PVDF composites through building MoO3 shell as an interlayer for enhanced dielectric properties. J. Mater. Sci. Mater. Electron. 2022, 33, 14735–14753. [Google Scholar] [CrossRef]
- Yao, T.; Zhou, W.; Peng, W.; Zhou, J.; Li, T.; Wu, H.; Zheng, J.; Lin, N.; Liu, D.; Hou, C. Insights into concomitant enhancements of dielectric properties and thermal conductivity of PVDF composites filled with core@ double-shell structured Zn@ZnO@PS particles. J. Appl. Polym. Sci. 2022, 139, e53069. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Y.; Wu, F.; Bai, Y.; Wu, C. Boost sodium-ion batteries to commercialization: Strategies to enhance initial Coulombic efficiency of hard carbon anode. Nano Energy 2021, 82, 105738. [Google Scholar] [CrossRef]
- Zhao, L.F.; Hu, Z.; Lai, W.H.; Tao, Y.; Peng, J.; Miao, Z.C.; Wang, Y.X.; Chou, S.L.; Liu, H.K.; Dou, S.X. Hard carbon anodes: Fundamental understanding and commercial perspectives for na-ion batteries beyond li-ion and k-ion counterparts. Adv. Energy Mater. 2020, 11, 2002704. [Google Scholar] [CrossRef]
- Yu, C.; Li, Y.; Ren, H.; Qian, J.; Wang, S.; Feng, X.; Liu, M.; Bai, Y.; Wu, C. Engineering homotype heterojunctions in hard carbon to induce stable solid electrolyte interfaces for sodium-ion batteries. Carbon Energy 2023, 5, e220. [Google Scholar] [CrossRef]
- Lu, Z.; Geng, C.; Yang, H.; He, P.; Wu, S.; Yang, Q.-H.; Zhou, H. Step-by-step desolvation enables high-rate and ultra-stable sodium storage in hard carbon anodes. Proc. Natl. Acad. Sci. USA 2022, 119, e2210203119. [Google Scholar] [CrossRef]
- Zhao, D.; Jiang, S.; Yu, S.; Ren, J.; Zhang, Z.; Liu, S.; Liu, X.; Wang, Z.; Wu, Y.; Zhang, Y. Lychee seed-derived microporous carbon for high-performance sodium-sulfur batteries. Carbon 2023, 201, 864–870. [Google Scholar] [CrossRef]
- Huang, S.; Li, Z.; Wang, B.; Zhang, J.; Peng, Z.; Qi, R.; Wang, J.; Zhao, Y. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv. Funct. Mater. 2018, 28, 1706294. [Google Scholar] [CrossRef]
- Li, X.; Sun, J.; Zhao, W.; Lai, Y.; Yu, X.; Liu, Y. Intergrowth of graphite-like crystals in hard carbon for highly reversible na-ion storage. Adv. Funct. Mater. 2021, 32, 2106980. [Google Scholar] [CrossRef]
- Yu, Z.-L.; Xin, S.; You, Y.; Yu, L.; Lin, Y.; Xu, D.-W.; Qiao, C.; Huang, Z.-H.; Yang, N.; Yu, S.-H.; et al. Ion-Catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage. J. Am. Chem. Soc. 2016, 138, 14915–14922. [Google Scholar] [CrossRef]
- Chen, K.H.; Goel, V.; Namkoong, M.J.; Wied, M.; Müller, S.; Wood, V.; Sakamoto, J.; Thornton, K.; Dasgupta, N.P. Enabling 6C fast charging of li-ion batteries with graphite/hard carbon hybrid anodes. Adv. Energy Mater. 2020, 11, 2003336. [Google Scholar] [CrossRef]
- Zhang, X.; Han, S.; Xiao, P.; Fan, C.; Zhang, W. Thermal reduction of graphene oxide mixed with hard carbon and their high performance as lithium ion battery anode. Carbon 2016, 11, 600–607. [Google Scholar] [CrossRef]
- Alvin, S.; Chandra, C.; Kim, J. Controlling intercalation sites of hard carbon for enhancing Na and K storage performance. Chem. Eng. J. 2021, 411, 128490. [Google Scholar] [CrossRef]
- Zhao, X.; Ding, Y.; Xu, Q.; Yu, X.; Liu, Y.; Shen, H. Low-temperature growth of hard carbon with graphite crystal for sodium-ion storage with high initial coulombic efficiency: A general method. Adv. Energy Mater. 2019, 9, 1803648. [Google Scholar] [CrossRef]
- Zhao, D.; Ge-Zhang, S.; Zhang, Z.; Tang, H.; Xu, Y.; Gao, F.; Xu, X.; Liu, S.; Zhou, J.; Wang, Z.; et al. Three-dimensional honeycomb-like carbon as sulfur host for sodium-sulfur batteries without the shuttle effect. ACS Appl Mater Interfaces 2022, 14, 54662–54669. [Google Scholar] [CrossRef]
- Lei, H.; Li, J.; Zhang, X.; Ma, L.; Ji, Z.; Wang, Z.; Pan, L.; Tan, S.; Mai, W. A review of hard carbon anode: Rational design and advanced characterization in potassium ion batteries. InfoMat 2022, 4, e12272. [Google Scholar] [CrossRef]
- Gong, H.; Chen, Y.; Chen, S.; Xu, C.; Yang, Y.; Ye, Y.; Huang, Z.; Ning, R.; Cui, Y.; Bao, Z. Fast-charging of hybrid lithium-ion/lithium-metal anodes by nanostructured hard carbon host. Acs Energy Lett. 2022, 7, 4417–4426. [Google Scholar] [CrossRef]
- Chi, C.; Liu, Z.; Lu, X.; Meng, Y.; Huangfu, C.; Yan, Y.; Qiu, Z.; Qi, B.; Wang, G.; Pang, H.; et al. Balance of sulfur doping content and conductivity of hard carbon anode for high-performance K-ion storage. Energy Storage Mater. 2022, 54, 668–679. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, X.; An, Y.; Li, C.; Wang, L.; Zhang, X.; Sun, X.; Wang, K.; Zhang, H.; Ma, Y. Low-temperature carbonized nitrogen doped hard carbon nanofiber towards high-performance sodium-ion capacitors. Energy Environ. Mater. 2023, 17, e12603. [Google Scholar] [CrossRef]
- Liu, C.; Lu, Q.; Gorbunov, M.V.; Omar, A.; Martinez, I.G.G.; Zhao, P.; Hantusch, M.; Permana, A.D.C.; He, H.; Gaponik, N.; et al. Ultrasmall CoS nanoparticles embedded in heteroatom-doped carbon for sodium-ion batteries and mechanism explorations via synchrotron X-ray techniques. J. Energy Chem. 2023, 79, 373–381. [Google Scholar] [CrossRef]
- Kim, H.; Hyun, J.C.; Kim, D.-H.; Kwak, J.H.; Lee, J.B.; Moon, J.H.; Choi, J.; Lim, H.-D.; Yang, S.J.; Jin, H.M.; et al. Revisiting lithium- and sodium-ion storage in hard carbon anodes. Adv. Mater. 2023, 20, 2209128. [Google Scholar] [CrossRef]
- Ye, W.; Li, X.; Zhang, B.; Liu, W.; Cheng, Y.; Fan, X.; Zhang, H.; Liu, Y.; Dong, Q.; Wang, M.-S. Superfast mass transport of na/k via mesochannels for dendrite-free metal batteries. Adv. Mater. 2023, e2210447. [Google Scholar] [CrossRef]
- Surta, T.W.; Koh, E.; Li, Z.; Fast, D.B.; Ji, X.; Greaney, P.A.; Dolgos, M.R. Combining experimental and theoretical techniques to gain an atomic level understanding of the defect binding mechanism in hard carbon anodes for sodium ion batteries. Adv. Energy Mater. 2022, 12, 2200647. [Google Scholar] [CrossRef]
- Chen, X.; Liu, C.; Fang, Y.; Ai, X.; Zhong, F.; Yang, H.; Cao, Y. Understanding of the sodium storage mechanism in hard carbon anodes. Carbon Energy 2022, 4, 1133–1150. [Google Scholar] [CrossRef]
- Sun, N.; Qiu, J.; Xu, B. Understanding of sodium storage mechanism in hard carbons: Ongoing development under debate. Adv. Energy Mater. 2022, 12, 2200715. [Google Scholar] [CrossRef]
- Ilic, I.K.; Schutjajew, K.; Zhang, W.; Oschatz, M. Changes of porosity of hard carbons during mechanical treatment and the relevance for sodium-ion anodes. Carbon 2022, 186, 55–63. [Google Scholar] [CrossRef]
- Yu, K.; Wang, X.; Yang, H.; Bai, Y.; Wu, C. Insight to defects regulation on sugarcane waste-derived hard carbon anode for sodium-ion batteries. J. Energy Chem. 2021, 55, 499–508. [Google Scholar] [CrossRef]
- Alvin, S.; Cahyadi, H.S.; Hwang, J.; Chang, W.; Kwak, S.K.; Kim, J. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon. Adv. Energy Mater. 2020, 10, 2000283. [Google Scholar] [CrossRef]
- Jin, Q.; Wang, K.; Li, H.; Li, W.; Feng, P.; Zhang, Z.; Wang, W.; Zhou, M.; Jiang, K. Tuning microstructures of hard carbon for high capacity and rate sodium storage. Chem. Eng. J. 2021, 417, 128104. [Google Scholar] [CrossRef]
- Hou, L.; Liu, T.; Wang, H.; Bai, M.; Tang, X.; Wang, Z.; Zhang, M.; Li, S.; Wang, T.; Zhou, K.; et al. Boosting the reversible, high-rate Na+ storage capability of the hard carbon anode via the synergistic structural tailoring and controlled presodiation. Small 2023, 20, 2207638. [Google Scholar] [CrossRef] [PubMed]
- Michael, M.; Mangayarkarasi, N.; Edgardo Maximiliano Gavilán, A.; Anshika, B.; Swoyam, P.; Heather, A.; Maria, C.-R.; Maria-Magdalena, T.; Ezequiel, L.; Harry Ernst, H. Sodiation energetics in pore size controlled hard carbons determined via entropy profiling. J. Mater. Chem. A 2023, 10, 1039. [Google Scholar]
- Stevens, D.A.; Dahn, J.R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 2000, 147, 1271. [Google Scholar] [CrossRef]
- Qiu, S.; Xiao, L.; Sushko, M.L.; Han, K.S.; Shao, Y.; Yan, M.; Liang, X.; Mai, L.; Feng, J.; Cao, Y.; et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 2017, 7, 1700403. [Google Scholar] [CrossRef]
- Stevens, D.A.; Dahn, J.R. The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 2001, 148, A803–A811. [Google Scholar] [CrossRef]
- Xu, T.; Qiu, X.; Zhang, X.; Xia, Y. Regulation of surface oxygen functional groups and pore structure of bamboo-derived hard carbon for enhanced sodium storage performance. Chem. Eng. J. 2023, 452, 139514. [Google Scholar] [CrossRef]
- Cao, Y.; Xiao, L.; Sushko, M.L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf, L.V.; Yang, Z.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783–3787. [Google Scholar] [CrossRef]
- Lu, H.; Ai, F.; Jia, Y.; Tang, C.; Zhang, X.; Huang, Y.; Yang, H.; Cao, Y. Exploring sodium-ion storage mechanism in hard carbons with different microstructure prepared by ball-milling method. Small 2018, 14, 2108092. [Google Scholar] [CrossRef]
- Jiang, N.; Chen, L.; Jiang, H.; Hu, Y.; Li, C. Introducing the solvent co-intercalation mechanism for hard carbon with ultrafast sodium storage. Small 2022, 18, 2108092. [Google Scholar] [CrossRef]
- Yuan, M.; Cao, B.; Liu, H.; Meng, C.; Wu, J.; Zhang, S.; Li, A.; Chen, X.; Song, H. Sodium storage mechanism of nongraphitic carbons: A general model and the function of accessible closed pores. Chem. Mater. 2022, 34, 3489–3500. [Google Scholar] [CrossRef]
- Ren, Q.; Wang, J.; Yan, L.; Lv, W.; Zhang, F.; Zhang, L.; Liu, B.; Shi, Z. Manipulating free-standing, flexible and scalable microfiber carbon papers unlocking ultra-high initial Coulombic efficiency and storage sodium behavior. Chem. Eng. J. 2021, 425, 131656. [Google Scholar] [CrossRef]
- Song, M.; Yi, Z.; Xu, R.; Chen, J.; Cheng, J.; Wang, Z.; Liu, Q.; Guo, Q.; Xie, L.; Chen, C. Towards enhanced sodium storage of hard carbon anodes: Regulating the oxygen content in precursor by low-temperature hydrogen reduction. Energy Storage Mater. 2022, 51, 620–629. [Google Scholar] [CrossRef]
- Bai, P.; He, Y.; Zou, X.; Zhao, X.; Xiong, P.; Xu, Y. Elucidation of the sodium-storage mechanism in hard carbons. Adv. Energy Mater. 2018, 8, 1703217. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Y.-S.; Titirici, M.-M.; Chen, L.; Huang, X. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600659. [Google Scholar] [CrossRef]
- Yang, L.; Hu, M.; Zhang, H.; Yang, W.; Lv, R. Pore structure regulation of hard carbon: Towards fast and high-capacity sodium-ion storage. J. Colloid Interface Sci. 2020, 566, 257–264. [Google Scholar] [CrossRef]
- Yin, X.; Lu, Z.; Wang, J.; Feng, X.; Roy, S.; Liu, X.; Yang, Y.; Zhao, Y.; Zhang, J. Enabling fast na+ transfer kinetics in the whole-voltage-region of hard-carbon anodes for ultrahigh-rate sodium storage. Adv. Mater. 2022, 34, 2109282. [Google Scholar] [CrossRef]
- Liu, M.; Wu, F.; Bai, Y.; Li, Y.; Ren, H.; Zhao, R.; Feng, X.; Song, T.; Wu, C. Boosting sodium storage performance of hard carbon anodes by pore architecture engineering. Acs Appl. Mater. Interfaces 2021, 13, 47671–47683. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.; Dai, W.; Lian, X.; Cui, X.; Zhang, W.; Zhang, K.; Lin, M.; Zou, R.; Loh, K.P.; et al. From micropores to ultra-micropores inside hard carbon: Toward enhanced capacity in room-/low-temperature sodium-ion storage. Nano-Micro Lett. 2021, 13, 98. [Google Scholar] [CrossRef]
- Wu, D.; Sun, F.; Qu, Z.; Wang, H.; Lou, Z.; Wu, B.; Zhao, G. Multi-scale structure optimization of boron-doped hard carbon nanospheres boosting the plateau capacity for high performance sodium ion batteries. J. Mater. Chem. A 2022, 10, 17225–17236. [Google Scholar] [CrossRef]
- Yu, K.; Zhao, H.; Wang, X.; Zhang, M.; Dong, R.; Li, Y.; Bai, Y.; Xu, H.; Wu, C. Hyperaccumulation route to ca-rich hard carbon materials with cation self-incorporation and interlayer spacing optimization for high-performance sodium-ion batteries. Acs Appl. Mater. Interfaces 2020, 12, 10544–10553. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Song, N.; Zhang, Z.; Chen, W.; Feng, J.; Xi, B.; Xiong, S. Integrating Bi@C nanospheres in porous hard carbon frameworks for ultrafast sodium storage. Adv. Mater. 2022, 34, 2202673. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hou, M.; Shi, Z.; Liu, X.; Mizota, I.; Lou, H.; Wang, B.; Hou, X. Regulate phosphorus configuration in high p-doped hard carbon as a superanode for sodium storage. ACS Appl. Mater. Interfaces 2021, 13, 12059–12068. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Yang, Q.; Wei, Y.; Rao, R.; Wang, Y.; Sha, M.; Ma, X.; Wang, L.; Qian, Y. Phosphorus-doped hard carbon with controlled active groups and microstructure for high-performance sodium-ion batteries. J. Mater. Chem. A 2020, 8, 20486–20492. [Google Scholar] [CrossRef]
- Yan, J.; Li, H.; Wang, K.; Jin, Q.; Lai, C.; Wang, R.; Cao, S.; Han, J.; Zhang, Z.; Su, J.; et al. Ultrahigh phosphorus doping of carbon for high-rate sodium ion batteries anode. Adv. Energy Mater. 2021, 11, 2003911. [Google Scholar] [CrossRef]
- Huang, G.; Kong, Q.; Yao, W.; Wang, Q. High Proportion of Active Nitrogen-doped hard carbon based on mannich reaction as anode material for high-performance sodium-ion batteries. ChemSusChem 2023, 20, e202202070. [Google Scholar] [CrossRef]
- Ma, M.; Cai, H.; Xu, C.; Huang, R.; Wang, S.; Pan, H.; Hu, Y.-S. Engineering solid electrolyte interface at nano-scale for high-performance hard carbon in sodium-ion batteries. Adv. Funct. Mater. 2021, 31, 2100278. [Google Scholar] [CrossRef]
- Zhang, W.; Zeng, F.; Huang, H.; Yu, Y.; Xu, M.; Xing, L.; Li, W. Enhanced interphasial stability of hard carbon for sodium-ion battery via film-forming electrolyte additive. Nano Res. 2022, 11, 5974. [Google Scholar] [CrossRef]
- Jin, Y.; Xu, Y.; Le, P.M.L.; Vo, T.D.; Zhou, Q.; Qi, X.; Engelhard, M.H.; Matthews, B.E.; Jia, H.; Nie, Z.; et al. Highly reversible sodium ion batteries enabled by stable electrolyte-electrode interphases. Acs Energy Lett 2020, 5, 3212–3220. [Google Scholar] [CrossRef]
- Lohani, H.; Kumar, A.; Kumari, P.; Ahuja, A.; Gautam, M.; Sengupta, A.; Mitra, S. Artificial organo-fluoro-rich anode electrolyte interface and partially sodiated hard carbon anode for improved cycle life and practical sodium-ion batteries. Acs Appl. Mater. Interfaces 2022, 14, 37793–37803. [Google Scholar] [CrossRef]
- Dong, R.; Zheng, L.; Bai, Y.; Ni, Q.; Li, Y.; Wu, F.; Ren, H.; Wu, C. Elucidating the mechanism of fast na storage kinetics in ether electrolytes for hard carbon anodes. Adv. Mater. 2021, 33, e2008810. [Google Scholar] [CrossRef]
- Zeng, F.; Xing, L.; Zhang, W.; Xie, Z.; Liu, M.; Lin, X.; Tang, G.; Mo, C.; Li, W. Innovative discontinuous-SEI constructed in ether-based electrolyte to maximize the capacity of hard carbon anode. J. Energy Chem. 2023, 79, 459–467. [Google Scholar] [CrossRef]
- Hou, X.; Li, T.; Qiu, Y.; Jiang, M.; Zheng, Q.; Li, X. Weak coulomb interaction between anions and Na plus during solvation enabling desirable solid electrolyte interphase and superior kinetics for HC-based sodium ion batteries. Chem. Eng. J. 2023, 453, 139932. [Google Scholar] [CrossRef]
- Zhou, D.; Tang, X.; Guo, X.; Li, P.; Shanmukaraj, D.; Liu, H.; Gao, X.; Wang, Y.; Rojo, T.; Armand, M.; et al. Polyolefin-based janus separator for rechargeable sodium batteries. Angew. Chem. Int. Ed. Engl. 2020, 59, 16725–16734. [Google Scholar] [CrossRef]
- Kang, T.; Sun, C.; Li, Y.; Song, T.; Guan, Z.; Tong, Z.; Nan, J.; Lee, C.S. Dendrite-free sodium metal anodes via solid electrolyte interphase engineering with a covalent organic framework separator. Adv. Energy Mater. 2023, 10, 2204083. [Google Scholar] [CrossRef]
- Niu, X.; Li, J.; Song, J.; Li, Y.; He, T. Interconnected porous poly(ether imide) separator for thermally stable sodium ion battery. ACS Appl. Energy Mater. 2021, 4, 11080–11089. [Google Scholar] [CrossRef]
- Zhou, H.; Gu, J.; Wei, Y.; Zhang, W.; Kang, J.; Huang, J.-Q.; Zhang, B.; Hu, C.; Lin, X. Cellulose filter papers derived separator featuring effective ion transferring channels for sodium-ion batteries. J. Power Sources 2023, 558, 232649. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, J.; He, X.; Qiao, Y.; Li, L.; Chou, S.-L. Hard carbon derived from hazelnut shell with facile HCl treatment as high-initial-coulombic-efficiency anode for sodium ion batteries. Sustain. Mater. Technol. 2022, 33, e00446. [Google Scholar] [CrossRef]
- Wang, P.; Guo, Y.-J.; Chen, W.-P.; Duan, H.; Ye, H.; Yao, H.-R.; Yin, Y.-X.; Cao, F.-F. Self-supported hard carbon anode from fungus-treated basswood towards sodium-ion batteries. Nano Res. 2022, 11, 5974. [Google Scholar] [CrossRef]
- Zhen, Y.; Chen, Y.; Li, F.; Guo, Z.; Hong, Z.; Titirici, M.-M. Ultrafast synthesis of hard carbon anodes for sodium-ion batteries. Proc. Natl. Acad. Sci. USA 2021, 118, e111119118. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Zhang, R.; Luo, X.; Hu, Z.; Zhou, W.; Zhang, W.; Liu, J.; Liu, J. Epoxy phenol novolac resin: A novel precursor to construct high performance hard carbon anode toward enhanced sodium-ion batteries. Carbon 2023, 205, 353–364. [Google Scholar] [CrossRef]
- Gan, Q.; Qin, N.; Gu, S.; Wang, Z.; Li, Z.; Liao, K.; Zhang, K.; Lu, L.; Xu, Z.; Lu, Z. Extra sodiation sites in hard carbon for high performance sodium ion batteries. Small Methods 2021, 5, 2100580. [Google Scholar] [CrossRef] [PubMed]
- Pi, Y.; Gan, Z.; Yan, M.; Pei, C.; Yu, H.; Ge, Y.; An, Q.; Mai, L. Insight into pre-sodiation in Na3V2(PO4)(2)F-3/C @ hard carbon full cells for promoting the development of sodium-ion battery. Chem. Eng. J. 2021, 413, 127565. [Google Scholar] [CrossRef]
- Kamiyama, A.; Kubota, K.; Igarashi, D.; Youn, Y.; Tateyama, Y.; Ando, H.; Gotoh, K.; Komaba, S. MgO-template synthesis of extremely high capacity hard carbon for na-ion battery. Angew. Chem. Int. Ed. 2021, 60, 5114–5120. [Google Scholar] [CrossRef]
- Jin, Q.; Wang, K.; Feng, P.; Zhang, Z.; Cheng, S.; Jiang, K. Surface-dominated storage of heteroatoms-doping hard carbon for sodium-ion batteries. Energy Storage Mater. 2020, 27, 43–50. [Google Scholar] [CrossRef]
- Yan, L.; Wang, J.; Ren, Q.; Fan, L.; Liu, B.; Zhang, L.; He, L.; Mei, X.; Shi, Z. In-Situ graphene-coated carbon microsphere as high initial coulombic efficiency anode for superior Na/K-ion full cell. Chem. Eng. J. 2022, 432, 133257. [Google Scholar] [CrossRef]
Precursor | Temperature (°C) | Electrolyte System | Doped Heteroatom (1)/Regular(2) | Current Density (mA g−1) | Capacity (mAh g−1) | ICE (%) | Cycle Number | Capacity Retention Rate (%) | Ref |
---|---|---|---|---|---|---|---|---|---|
hazelnut shell | 1400 | 1 M NaPF6 in EC/DMC | 2 | 20 | 342.0 | 91 | 100 | 91 | [119] |
fungus-treated basswood | 1300 | 1 M NaPF6 in DEDM | 2 | 200 | 175.6 | 88.2 | 536 | 86.4 | [120] |
sucrose | 1300 | 1 M NaPF6 DEGDME | 2 | 30 | 282.6 | 91.2 | 100 | 92 | [121] |
H2C2O4·2H2O | 1300 | 1 M NaClO4 PC with 5% FEC | 1 | 100 | 278.0 | 68.7 | 100 | 93.8 | [49] |
Epoxy phenol novolac resin | 1800 | 1 M NaPF6 in DME | 2 | 50 500 | 480.0 423.2 | 84.6 | 1000 | 92 | [122] |
trisodium citrate/hexamethylenetetramine | 800 | 1 M NaClO4 PC with 5% FEC | 2 | 5000 | 238.0 | 84.5 | 5000 | 98. 7 | [123] |
sugarcane waste-derived | 1200 | 1 M NaClO4 PC with 5% FEC | 2 | 50 | 323.6 | 500 | 96 | [110] | |
sucrose | 1200 | 1 M NaPF6 in EC/DEC | 2 | 50 1000 | 318.0 77.90 | 97.1 | 2000 | 86.9 | [58] |
C6H12O6⋅H2O | 600 | 1 M NaPF6 in EC/DMC | 120 1200 | 109.0 98.2 | 300 600 | 80.3 71.8 | [124] | ||
Hard carbon | 1 M NaPF6 in EC/DEC | 2 | 400 | 153.2 | 84.49 | 300 | 94.8 | [125] | |
citrate sodium | 800 | 1 M NaPF6 in EC/DEC with 5%FEC | 1 | 50 1000 | 280 193 | 200 2000 | 99 115 | [126] | |
(H3BTC) | 600 | 1 M NaPF6 in EC/DEC | 1 | 5000 | 305 | 5000 | 89.4 | [103] | |
sodium ligninsulfonate | 1200 | 1 M NaPF6 in DME | 2 | 20 | 210 | 1000 | 99 | [82] | |
water-soluble starch | 900 | 1 M NaClO4 in EC/DEC | 2 | 25 100 | 343.1 197.8 | 80.1 | 200 | 87.2 | [127] |
3-aminophenol | 1300 | 1 M NaPF6 in DEDM | 2 | 2000 | 344 | 3000 | 99.9 | [50] | |
corn starch | 1100 | 1 M NaClO4 in EC/DEC | 2 | 50 | 270 | 50 | 85.2 | [124] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, S.; Yang, H.; Zhang, Z.; Xu, X.; Xu, Y.; Zhou, J.; Zhou, X.; Pan, Z.; Rao, X.; Gu, Y.; et al. The Progress of Hard Carbon as an Anode Material in Sodium-Ion Batteries. Molecules 2023, 28, 3134. https://doi.org/10.3390/molecules28073134
Tan S, Yang H, Zhang Z, Xu X, Xu Y, Zhou J, Zhou X, Pan Z, Rao X, Gu Y, et al. The Progress of Hard Carbon as an Anode Material in Sodium-Ion Batteries. Molecules. 2023; 28(7):3134. https://doi.org/10.3390/molecules28073134
Chicago/Turabian StyleTan, Suchong, Han Yang, Zhen Zhang, Xiangyu Xu, Yuanyuan Xu, Jian Zhou, Xinchi Zhou, Zhengdao Pan, Xingyou Rao, Yudong Gu, and et al. 2023. "The Progress of Hard Carbon as an Anode Material in Sodium-Ion Batteries" Molecules 28, no. 7: 3134. https://doi.org/10.3390/molecules28073134
APA StyleTan, S., Yang, H., Zhang, Z., Xu, X., Xu, Y., Zhou, J., Zhou, X., Pan, Z., Rao, X., Gu, Y., Wang, Z., Wu, Y., Liu, X., & Zhang, Y. (2023). The Progress of Hard Carbon as an Anode Material in Sodium-Ion Batteries. Molecules, 28(7), 3134. https://doi.org/10.3390/molecules28073134