Preparation of MoFs-Derived Cobalt Oxide/Carbon Nanotubes Composites for High-Performance Asymmetric Supercapacitor
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Materials
3.2. Materials Characterization
3.3. Preparation of Materials
3.4. Fabrication of Supercapacitor Electrode
- (1)
- Preparation of Single Electrode
- (2)
- Assembly of Asymmetric Supercapacitors
3.5. Electrochemical Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Liu, C.; Li, F.; Ma, L.P.; Cheng, H.M. Advanced Materials for Energy Storage. Adv. Mater. 2010, 22, 28–62. [Google Scholar] [CrossRef] [PubMed]
- Brousse, T.; Taberna, P.L.; Crosnier, O.; Dugas, R.; Guillemet, P.; Scudeller, Y.; Zhou, Y.; Favier, F.; Belanger, D.; Simon, P.J. Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor. J. Power Sources 2007, 173, 633. [Google Scholar] [CrossRef]
- Yuan, C.Z.; Zhang, X.G.; Su, L.H.; Gao, B.; Shen, L.F. Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J. Mater. Chem. 2009, 19, 5772. [Google Scholar] [CrossRef]
- Najib, S.; Erdem, E. Current progress achieved in novel materials for supercapacitor electrodes: Mini review. Nanoscale Adv. 2019, 1, 2817–2827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarangapani, S.; Tilak, B.V.; Chen, C.P. Materials for electrochemical capacitors: Theoretical and experimental constraints. J. Electrochem. Soc. 1996, 143, 3761. [Google Scholar] [CrossRef]
- Gherghel, L.; Kubel, C.; Lieser, G.; Rader, H.J.; Mullen, K.J. Pyrolysis in the mesophase: A chemist’s approach toward preparing carbon nano-and microparticles. Am. Chem. Soc. 2002, 124, 13130–13138. [Google Scholar] [CrossRef] [PubMed]
- Titirici, M.M.; Antonietti, M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem. Soc. Rev. 2010, 39, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Elmouwahidi, A.; Zapata-Benabithe, Z.; Carrasco-Marin, F.; Moreno-Castilla, C. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresour. Technol. 2012, 111, 185–190. [Google Scholar] [CrossRef]
- Liang, Q.; Ye, L.; Huang, Z.H.; Xu, Q.; Bai, Y.; Kang, F.; Yang, Q.H. A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Nanoscale 2014, 6, 13831–13837. [Google Scholar] [CrossRef]
- Yang, Z.-C.; Tang, C.-H.; Gong, H.; Li, X.; Wang, J.J. Hollow spheres of nanocarbon and their manganese dioxide hybrids derived from soft template for supercapacitor application. Power Sources 2013, 240, 713–720. [Google Scholar] [CrossRef]
- Luo, C.; Wei, R.; Guo, D.; Zhang, S.; Yan, S. Adsorption behavior of MnO2 functionalized multi-walled carbon nanotubes for the removal of cadmium from aqueous solutions. Chem. Eng. J. 2013, 225, 406–415. [Google Scholar] [CrossRef]
- Xie, X.; Gao, L. Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method. Carbon 2007, 45, 2365–2373. [Google Scholar] [CrossRef]
- Yang, B.; Gong, Q.; Zhao, L.; Sun, H.; Ren, N.; Qin, J.; Xu, J.; Yang, H. Preconcentration and determination of lead and cadmium in water samples with a MnO2 coated carbon nanotubes by using ETAAS. Desalination. 2011, 278, 65–69. [Google Scholar] [CrossRef]
- Li, B.; Bai, C.; Zhang, S.; Zhao, X.; Li, Y.; Wang, L.; Ding, K.; Shu, X.; Li, S.; Ma, L.J. An adaptive supramolecular organic framework for highly efficient separation of uranium via an in situ induced fit mechanism. J. Mater. Chem. A 2015, 3, 23788–23798. [Google Scholar] [CrossRef]
- Huang, L.; Li, C.; Yuan, W.; Shi, G. Strong composite films with layered structures prepared by casting silk fibroin–graphene oxide hydrogels. Nanoscale 2013, 5, 3780–3786. [Google Scholar] [CrossRef]
- Gupta, T.K.; Singh, B.P.; Singh, V.N.; Teotia, S.; Singh, A.P.; Elizabeth, I.; Dhakate, S.R.; Dhawan, S.; Mathur, R.J. MnO2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties. J. Mater. Chem. A 2014, 2, 4256–4263. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.S.; Deng, W.J.; Li, S.S.; Wu, Z.G.; Cai, J.H.; Luo, J.W. Sandwich-like chitosan porous carbon Spheres/MXene composite with high specific capacitance and rate performance for supercapacitors. J. Bioresour. Bioprod. 2022, 7, 63–72. [Google Scholar] [CrossRef]
- Hsu, S.C.; Chiang, H.H.; Huang, T.Y.; Chao, S.H.; Wu, R.T.; Huang, J.-H.; Chang-jian, C.W.; Weng, H.C.; Chen, H.C. Morphology evolution and electrochemical behavior of NixMn1-x(OH)2 mixed hydroxides as high-performance electrode for supercapacitor. J. Electrochim. Acta 2022, 403, 139692. [Google Scholar] [CrossRef]
- Yang, G.W.; Xu, C.L.; Li, H.L. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem.Commun. 2008, 6537–6539. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, Y.-S.; Chang-Jian, C.-W.; Huang, T.-Y.; Chen, Y.-L.; Huang, J.-H.; Wu, N.-J.; Hsu, S.-C.; Cheng, C.-P. High-performance supercapacitor based on a ternary nanocomposites of NiO, polyaniline, and Ni/NiO-decorated MWCNTs. J. Taiwan Inst. Chem. Eng. 2022, 134, 104318. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, G.; Wang, Z.; Yang, Y.; Shi, Z.; Gu, Z. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 2008, 8, 2664. [Google Scholar] [CrossRef]
- Zhu, T.; Chen, J.S.; Lou, X.W. Shape-controlled synthesis of porous Co3O4 nanostructures for application in supercapacitors. J. Mater. Chem. 2010, 20, 7015. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, Y.; Qu, B.; Hu, L.; Mei, L.; Lei, D.; Li, Q.; Chen, L.; Li, Q.; Wang, T. Synthesis of mesoporous NiO nanospheres as anode materials for lithium ion batteries. Electrochim. Acta 2012, 80, 140–147. [Google Scholar] [CrossRef]
- Bae, J.; Song, M.K.; Park, Y.J.; Kim, J.M.; Liu, M.; Wang, Z.L. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed. 2011, 50, 1683. [Google Scholar] [CrossRef]
- Yuan, L.; Lu, X.H.; Xiao, X.; Zhai, T.; Dai, J.; Zhang, F.; Hu, B.; Wang, X.; Gong, L.; Chen, J.; et al. Flexible Solid-State Supercapacitors Based on Carbon Nanoparticles/MnO2 Nanorods Hybrid Structure. ACS Nano 2012, 6, 656. [Google Scholar] [CrossRef]
- Yang, P.H.; Xiao, X.; Li, Y.Z.; Ding, Y.; Qiang, P.F.; Tan, X.H.; Mai, W.J.; Lin, Z.Y.; Wu, W.Z.; Li, T.Q.; et al. Hydrogenated ZnO core–shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 2013, 7, 2617. [Google Scholar] [CrossRef]
- Xiao, Z.Y.; Fan, L.L.; Xu, B.; Zhang, S.Q.; Kang, W.P.; Kanga, Z.X.; Lin, H.; Liu, X.P.; Zhang, S.Y.; Sun, D.F. Green Fabrication of Ultrathin Co3O4 Nanosheets from Metal–Organic Framework for Robust High-Rate Supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 41827–41836. [Google Scholar] [CrossRef]
- Huang, X.H.; Tu, J.P.; Xia, X.H.; Wang, X.L.; Xiang, J.Y. Porous NiO/poly (3, 4-ethylenedioxythiophene) films as anode materials for lithium ion batteries. J. Power Sources 2010, 195, 1207–1210. [Google Scholar] [CrossRef]
- Li, W.; Xu, L.; Chen, J. Co3O4 Nanomaterials in Lithium-Ion Batteries and Gas Sensors. Adv. Funct. Mater. 2005, 15, 851–857. [Google Scholar] [CrossRef]
- Xu, W.; Chen, J.H.; Yu, M.H.; Zeng, Y.X.; Long, Y.B.; Lu, X.H.; Tong, Y.X. Sulphur-doped Co3O4 nanowires as an advanced negative electrode for high-energy asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 10779–10785. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Capacitive energy storage in nanostructured carbon-electrolyte systems. Acc. Chem. Res. 2013, 46, 1094–1103. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, H.; Wu, X.; Wang, L.; Zhang, A.; Xia, T.; Dong, H.; Li, X.; Zhang, L. Progress of electrochemical capacitor electrode materials: A review. Int. J. Hydrog. Energy 2009, 34, 4889–4899. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, L.; Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828. [Google Scholar] [CrossRef] [Green Version]
- Su, D.S.; Schlögl, R. Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. Chem. Sus. Chem. 2010, 3, 136–168. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, J.W.; Deng, H.B.; Du, Y.M.; Shi, X.W. Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors. J. Bioresour. Bioprod. 2021, 6, 142–151. [Google Scholar] [CrossRef]
- Yan, B.; Feng, L.; Zheng, J.J.; Zhang, Q.; Jiang, S.H.; Zhang, C.M.; Ding, Y.C.; Han, J.Q.; Chen, W.; He, S.J. High performance supercapacitors based on wood-derived thick carbon electrodes synthesized via green activation process. Inorg. Chem. Front. 2022, 9, 6108–6123. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Q.; Zhang, W.; Li, X.; Zhu, Z.; Zhang, C.; Xie, A.; Luo, S. Preparation and application of Co3O4-Ni-MOF/MWCNTs hybrid for supercapacitor. Ionics 2021, 27, 3543–3551. [Google Scholar] [CrossRef]
- Wang, X.; Li, M.; Chang, Z.; Yang, Y.; Wu, Y.; Liu, X. Co3O4@MWCNT Nanocable as Cathode with Superior Electrochemical Performance for Supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 2280–2285. [Google Scholar] [CrossRef]
- Ma, J.X.; Li, J.; Guo, R.; Xu, H.; Shi, F.; Dang, L.Q.; Liu, Z.H.; Sun, J.; Lei, Z.H. Direct growth of flake-like metal-organic framework on textile carbon cloth as high-performance supercapacitor electrode. J. Power Sources 2019, 428, 124–130. [Google Scholar] [CrossRef]
- Kumar, Y.A.; Das, H.T.; Guddeti, P.R.; Nallapureddy, R.R.; Pallavolu, M.R.; Alzahmi, S.; Obaidat, I.M. Self-Supported Co3O4@Mo-Co3O4 Needle-like Nanosheet Heterostructured Architectures of Battery-Type Electrodes for High-Performance Asymmetric Supercapacitors. Nanomaterials 2022, 12, 2330. [Google Scholar] [CrossRef]
- Ramesh, S.; Karuppasamy, K.; Sivasamy, A.; Kim, H.S.; Yadav, H.M.; Kim, H.S. Core shell nanostructured of Co3O4@RuO2 assembled on nitrogen-doped graphene sheets electrode for an efficient supercapacitor application. J. Alloy. Compd. 2021, 877, 160297. [Google Scholar] [CrossRef]
- Zhu, S.Q.; Shu, J.C.; Cao, M.S. Novel MOF-derived 3D hierarchical needlelike array architecture with excellent EMI shielding, thermal insulation and supercapacitor performance. Nanoscale 2022, 14, 7322–7331. [Google Scholar] [CrossRef]
- Sivakumar, P.; Jana, M.; Kota, M.; Jung, M.; Gedanken, A.; Park, H.S. Controllable synthesis of nanohorn-like architectured cobalt oxide for hybrid supercapacitor application. J. Power Sources 2018, 402, 147–156. [Google Scholar] [CrossRef]
- Xiang, C.C.; Li, M.; Zhi, M.J.; Manivannan, A.; Wu, N.Q. A reduced graphene oxide/Co3O4 composite for supercapacitor electrode. J. Power Sources 2013, 3, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Tummala, R.; Guduru, R.K.; Mohanty, P.S. Nanostructured Co3O4 electrodes for supercapacitor applications from plasma spray technique. J. Power Sources 2012, 209, 44–51. [Google Scholar] [CrossRef]
- Xu, J.; Gao, L.; Cao, J.Y.; Wang, W.C.; Chen, Z.D. Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material. Electrochim. Acta 2010, 56, 732–736. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Hu, Z.B.; Zhao, C.H.; Liu, K.Y.; Lin, D.G. Synthesis and Electrochemical Performances of Co3O4/graphene as Supercapacitor Material. Int. J. Electrochem. Sci. 2016, 11, 6078–6084. [Google Scholar] [CrossRef]
- Aslam, S.; Ramay, S.M.; Mahmood, A.; Mustafa, M.G.; Zawar, S.; Atiq, S. Electrochemical performance of transition metal doped Co3O4 as electrode material for supercapacitor applications. J. Sol-Gel. Sci. Technol. 2023, 105, 360–369. [Google Scholar] [CrossRef]
- Wang, X.Y.; Lu, S.X.; Xu, W.G. Synthesis of Needle-like Nanostructure Composite Electrode of Co3O4/rGO/NF for High-Performance Symmetric Supercapacitor. Crystals 2022, 12, 664. [Google Scholar] [CrossRef]
- Sudhakaran, M.S.P.; Gnanasekaran, G.; Pazhamalai, P.; Sahoo, S.; Hossain, M.M.; Bhattarai, R.M.; Kim, S.J.; Mok, Y.S. Hierarchically Porous Nanostructured Nickel Phosphide with Carbon Particles Embedded by Dielectric Barrier Discharge Plasma Deposition as a Binder-Free Electrode for Hybrid Supercapacitors. ACS Sustain. Chem. Eng. 2019, 7, 14805–14814. [Google Scholar]
Sample | Element Type and Content Wt% | Total Elements | ||
---|---|---|---|---|
C | Co | O | ||
MWCNT1@Co3O4 | 21.23 | 50.65 | 28.12 | 100% |
MWCNT2@Co3O4 | 26.07 | 44.04 | 29.90 | 100% |
MWCNT3@Co3O4 | 27.50 | 45.20 | 27.30 | 100% |
MWCNT4@Co3O4 | 28.50 | 44.32 | 27.18 | 100% |
Co3O4 Materials | Specific Capacitance (F·g−1) | Power Density (W·kg−1) | Energy Density (Wh·kg−1) | Ref. |
---|---|---|---|---|
rGO-Co3O4 | 472 F·g−1 (2 mV·s−1) | 39.0 | 8.3 | [44] |
Nanostructured Co3O4 | 162 F·g−1 (2.75 A·g−1) | ---- | ---- | [45] |
Co3O4 nanotubes | 574 F·g−1 (0.1 A·g−1) | ---- | ---- | [46] |
Co3O4/graphene | 362.6 F·g−1 (0.72 A·g−1) | ---- | ---- | [47] |
Mn0.05Co2.95O4 | 80.8 F·g−1 (1 A·g−1) | ---- | ---- | [48] |
Co3O4/rGO/NF | 311 F·g−1 (1 A·g−1) | 12 | 40 | [49] |
MWCNT3@Co3O4 | 206.89 F·g−1 (1 A·g−1) | 800 | 17.78 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Li, W.; Liu, X.; Song, X.; Li, H.; Tan, L. Preparation of MoFs-Derived Cobalt Oxide/Carbon Nanotubes Composites for High-Performance Asymmetric Supercapacitor. Molecules 2023, 28, 3177. https://doi.org/10.3390/molecules28073177
Yang C, Li W, Liu X, Song X, Li H, Tan L. Preparation of MoFs-Derived Cobalt Oxide/Carbon Nanotubes Composites for High-Performance Asymmetric Supercapacitor. Molecules. 2023; 28(7):3177. https://doi.org/10.3390/molecules28073177
Chicago/Turabian StyleYang, Caiqin, Weiwei Li, Xiaowei Liu, Xiumei Song, Hongpeng Li, and Lichao Tan. 2023. "Preparation of MoFs-Derived Cobalt Oxide/Carbon Nanotubes Composites for High-Performance Asymmetric Supercapacitor" Molecules 28, no. 7: 3177. https://doi.org/10.3390/molecules28073177
APA StyleYang, C., Li, W., Liu, X., Song, X., Li, H., & Tan, L. (2023). Preparation of MoFs-Derived Cobalt Oxide/Carbon Nanotubes Composites for High-Performance Asymmetric Supercapacitor. Molecules, 28(7), 3177. https://doi.org/10.3390/molecules28073177