Preparation of Biochar with Developed Mesoporous Structure from Poplar Leaf Activated by KHCO3 and Its Efficient Adsorption of Oxytetracycline Hydrochloride
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterizations of Biochars
2.2. Adsorption Kinetics
2.3. Adsorption Isotherms
2.4. Effects of Solution pH and Metal Ions
2.5. Reusability
2.6. Possible Adsorption Mechanism
3. Materials and Methods
3.1. Materials and Reagents
3.2. Preparation of Biochar
3.3. General Procedure for the Adsorption of Oxytetracycline Hydrochloride
3.4. Analysis of Adsorption Kinetics and Isotherms
3.5. Characterizations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Samples Availability
References
- Ashiq, A.; Walpita, J.; Vithanage, M. Functionalizing non-smectic clay via methoxy-modification for enhanced removal and recovery of oxytetracycline from aqueous media. Chemosphere 2021, 276, 130079. [Google Scholar] [CrossRef] [PubMed]
- Watkinson, A.J.; Murby, E.J.; Kolpin, D.W.; Costanzo, S.D. The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Sci. Total Environ. 2009, 407, 2711–2723. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Limbu, S.M.; Shen, M.L.; Zhai, W.Y.; Qiao, F.; He, A.Y.; Du, Z.Y.; Zhang, M.L. Environmental concentrations of antibiotics impair zebrafish gut health. Environ. Pollut. 2018, 235, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.; Antunes, S.C.; Nunes, B.; Correia, A.T. Histopathological effects in gills and liver of Sparus aurata following acute and chronic exposures to erythromycin and oxytetracycline. Environ. Sci. Pollut. Res. 2019, 26, 15481–15495. [Google Scholar] [CrossRef]
- Glasl, B.; Bourne, D.G.; Frade, P.R.; Thomas, T.; Schaffelke, B.; Webster, N.S. Microbial indicators of environmental perturbations in coral reef ecosystems. Microbiome 2019, 7, 94. [Google Scholar] [CrossRef] [Green Version]
- Almeida, A.R.; Tacao, M.; Machado, A.L.; Golovko, O.; Zlabek, V.; Domingues, I.; Henriques, I. Long-term effects of oxytetracycline exposure in zebrafish: A multi-level perspective. Chemosphere 2019, 222, 333–344. [Google Scholar] [CrossRef]
- Akhil, D.; Lakshmi, D.; Senthil Kumar, P.; Vo, D.-V.N.; Kartik, A. Occurrence and removal of antibiotics from industrial wastewater. Environ. Chem. Lett. 2021, 19, 1477–1507. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Zhang, X.; Chen, Z.; Shen, J.; Kang, J. Effect of Aerobic Granular Sludge Concentrations on Adsorption and Biodegradation to Oxytetracycline. Water Air Soil Pollut. 2021, 232, 184. [Google Scholar] [CrossRef]
- Karpov, M.; Seiwert, B.; Mordehay, V.; Reemtsma, T.; Polubesova, T.; Chefetz, B. Transformation of oxytetracycline by redox-active Fe(III)- and Mn(IV)-containing minerals: Processes and mechanisms. Water Res. 2018, 145, 136–145. [Google Scholar] [CrossRef]
- Ding, J.; Sarrigani, G.V.; Qu, J.; Ebrahimi, A.; Zhong, X.; Hou, W.-C.; Cairney, J.M.; Huang, J.; Wiley, D.E.; Wang, D.K. Designing Co3O4/silica catalysts and intensified ultrafiltration membrane-catalysis process for wastewater treatment. Chem. Eng. J. 2021, 419, 129465. [Google Scholar] [CrossRef]
- Zhao, W.; Dong, Q.; Sun, C.; Xia, D.; Huang, H.; Yang, G.; Wang, G.; Leung, D.Y.C. A novel Au/g-C3N4 nanosheets/CeO2 hollow nanospheres plasmonic heterojunction photocatalysts for the photocatalytic reduction of hexavalentchromium and oxidation of oxytetracycline hydrochloride. Chem. Eng. J. 2021, 409, 128185. [Google Scholar] [CrossRef]
- Harja, M.; Ciobanu, G. Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite. Sci. Total Environ. 2018, 628–629, 36–43. [Google Scholar] [CrossRef]
- Jian, S.J.; Cheng, Y.T.; Ma, X.F.; Guo, H.T.; Hu, J.P.; Zhang, K.Y.; Jiang, S.H.; Yang, W.S.; Duan, G.G. Excellent fluoride removal performance by electrospun La-Mn bimetal oxide nanofibers. New J. Chem. 2022, 46, 490–497. [Google Scholar] [CrossRef]
- Gupta, A.; Vyas, R.K.; Vyas, S. A review on antibiotics pervasiveness in the environment and their removal from wastewater. Sep. Sci. Technol. 2023, 58, 326–344. [Google Scholar] [CrossRef]
- Haciosmanoglu, G.G.; Mejias, C.; Martin, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Antibiotic adsorption by natural and modified clay minerals as designer adsorbents for wastewater treatment: A comprehensive review. J. Environ. Manag. 2022, 317, 115397. [Google Scholar] [CrossRef]
- Jian, S.J.; Chen, Y.H.; Shi, F.S.; Liu, Y.F.; Jiang, W.L.; Hu, J.P.; Han, X.S.; Jiang, S.H.; Yang, W.S. Template-Free Synthesis of Magnetic La-Mn-Fe Tri-Metal Oxide Nanofibers for Efficient Fluoride Remediation: Kinetics, Isotherms, Thermodynamics and Reusability. Polymers 2022, 14, 5417. [Google Scholar] [CrossRef]
- Wang, J.W.; Sun, Y.; Zhao, X.M.; Chen, L.; Peng, S.Y.; Ma, C.X.; Duan, G.G.; Liu, Z.Z.; Wang, H.; Yuan, Y.H.; et al. A poly(amidoxime)-modified MOF macroporous membrane for high-efficient uranium extraction from seawater. e-Polymers 2022, 22, 399–410. [Google Scholar] [CrossRef]
- Yang, W.S.; Wang, Y.F.; Wang, Q.M.; Wu, J.L.; Duan, G.G.; Xu, W.H.; Jian, S.J. Magnetically separable and recyclable Fe3O4@PDA covalent grafted by l-cysteine core-shell nanoparticles toward efficient removal of Pb2+. Vacuum 2021, 189, 110229. [Google Scholar] [CrossRef]
- Ma, X.F.; Zhao, S.Y.; Tian, Z.W.; Duan, G.G.; Pan, H.Y.; Yue, Y.Y.; Li, S.S.; Jian, S.J.; Yang, W.S.; Liu, K.M.; et al. MOFs meet wood: Reusable magnetic hydrophilic composites toward efficient water treatment with super-high dye adsorption capacity at high dye concentration. Chem. Eng. J. 2022, 446, 136851. [Google Scholar] [CrossRef]
- Chen, Y.M.; Li, S.J.; Li, X.L.; Mei, C.T.; Zheng, J.J.; Shiju, E.; Duan, G.G.; Liu, K.M.; Jiang, S.H. Liquid Transport and Real-Time Dye Purification via Lotus Petiole-Inspired Long-Range-Ordered Anisotropic Cellulose Nanofibril Aerogels. ACS Nano 2021, 15, 20666–20677. [Google Scholar] [CrossRef]
- Luo, T.T.; Wu, L.S.; Jia, B.; Zeng, Y.L.; Hao, J.J.; He, S.X.; Liang, L.L. Research on adsorption mechanisms of levofloxacin over fungus chaff biochar modified by combination of alkali activation and copper-cobalt metallic oxides. Biomass Convers. Biorefinery 2023, 13, 1–15. [Google Scholar] [CrossRef]
- Lv, J.M.; Ma, Y.L.; Chang, X.; Fang, J.Z.; Cai, L.Y.; Ma, Y.; Fan, S.B. Chemical adsorption of oxytetracycline from aqueous solution by modified molecular sieves. Water Sci. Technol. 2017, 75, 1221–1232. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jiang, X.; Yin, C.J.; Zhang, B.L.; Zhang, Q.Y. Facile fabrication of hierarchical porous ZIF-8 for enhanced adsorption of antibiotics. J. Hazard. Mater. 2019, 367, 194–204. [Google Scholar] [CrossRef]
- Cong, Q.; Yuan, X.; Qu, J. A review on the removal of antibiotics by carbon nanotubes. Water Sci. Technol. 2013, 68, 1679–1687. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.J.; Gao, X.; Seliem, M.K.; Mobarak, M.; Dong, R.T.; Wang, X.M.; Fu, K.L.; Li, Q.; Li, Z.C. Efficient adsorption of anionic azo dyes on porous heterostructured MXene/biomass activated carbon composites: Experiments, characterization, and theoretical analysis via advanced statistical physics models. Chem. Eng. J. 2023, 451, 138735. [Google Scholar] [CrossRef]
- Du, L.Q.; Ahmad, S.; Liu, L.A.; Wang, L.; Tang, J.C. A review of antibiotics and antibiotic resistance genes (ARGs) adsorption by biochar and modified biochar in water. Sci. Total Environ. 2023, 858, 159815. [Google Scholar] [CrossRef]
- Jjagwe, J.; Olupot, P.W.; Menya, E.; Kalibbala, H.M. Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. J. Bioresour. Bioprod. 2021, 6, 292–322. [Google Scholar] [CrossRef]
- Obey, G.; Adelaide, M.; Ramaraj, R. Biochar derived from non-customized matamba fruit shell as an adsorbent for wastewater treatment. J. Bioresour. Bioprod. 2022, 7, 109–115. [Google Scholar] [CrossRef]
- Cheng, N.; Wang, B.; Wu, P.; Lee, X.Q.; Xing, Y.; Chen, M.; Gao, B. Adsorption of emerging contaminants from water and wastewater by modified biochar: A review. Environ. Pollut. 2021, 273, 116448. [Google Scholar] [CrossRef]
- Moreno-Marenco, A.R.; Giraldo, L.; Moreno-Pirajan, J.C. Parabens Adsorption onto Activated Carbon: Relation with Chemical and Structural Properties. Molecules 2019, 24, 4313. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xu, J.; Li, B.; Xie, Z.X.; Li, X.D.; Tang, J.; Fan, S.S. Enhanced adsorption performance of tetracycline in aqueous solutions by KOH-modified peanut shell-derived biochar. Biomass Convers. Biorefinery 2023, 13, 1–15. [Google Scholar] [CrossRef]
- Maged, A.; Dissanayake, P.D.; Yang, X.; Pathirannahalage, C.; Bhatnagar, A.; Ok, Y.S. New mechanistic insight into rapid adsorption of pharmaceuticals from water utilizing activated biochar. Environ. Res. 2021, 202, 111693. [Google Scholar] [CrossRef]
- Ma, Y.F.; Li, M.; Li, P.; Yang, L.; Wu, L.; Gao, F.; Qi, X.B.; Zhang, Z.L. Hydrothermal synthesis of magnetic sludge biochar for tetracycline and ciprofloxacin adsorptive removal. Bioresour. Technol. 2021, 319, 124199. [Google Scholar] [CrossRef]
- Sellaoui, L.; Gomez-Aviles, A.; Dhaouadi, F.; Bedia, J.; Bonilla-Petriciolet, A.; Rtimi, S.; Belver, C. Adsorption of emerging pollutants on lignin-based activated carbon: Analysis of adsorption mechanism via characterization, kinetics and equilibrium studies. Chem. Eng. J. 2023, 452, 139399. [Google Scholar] [CrossRef]
- Yu, J.F.; Feng, H.P.; Tang, L.; Pang, Y.; Wang, J.J.; Zou, J.J.; Xie, Q.Q.; Liu, Y.N.; Feng, C.Y.; Wang, J.J. Insight into the key factors in fast adsorption of organic pollutants by hierarchical porous biochar. J. Hazard. Mater. 2021, 403, 123610. [Google Scholar] [CrossRef]
- Kozyatnyk, I.; Oesterle, P.; Wurzer, C.; Masek, O.; Jansson, S. Removal of contaminants of emerging concern from multicomponent systems using carbon dioxide activated biochar from lignocellulosic feedstocks. Bioresour. Technol. 2021, 340, 125561. [Google Scholar] [CrossRef]
- Nguyen, X.C.; Ly, Q.V.; Nguyen, T.T.H.; Ngo, H.T.T.; Hu, Y.X.; Zhang, Z.H. Potential application of machine learning for exploring adsorption mechanisms of pharmaceuticals onto biochars. Chemosphere 2022, 287, 132203. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. A Green Approach to High-Performance Supercapacitor Electrodes: The Chemical Activation of Hydrochar with Potassium Bicarbonate. Chemsuschem 2016, 9, 1880–1888. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Huang, Y.Y.; Wang, Z.X.; Li, J.L.; Liu, Z.; Fan, S.S. Enhanced adsorption capacity of tetracycline on tea waste biochar with KHCO3 activation from aqueous solution. Environ. Sci. Pollut. Res. 2021, 28, 44140–44151. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Y.; Zhang, S.Y.; Chen, Y.D.; Wang, R.P.; Ho, S.H. Tailoring a novel hierarchical cheese-like porous biochar from algae residue to boost sulfathiazole removal. Environ. Sci. Ecotechnol. 2022, 10, 100168. [Google Scholar] [CrossRef]
- Hou, C.; Liu, K.; Yu, X.L.; Yang, X.; Wang, J.X.; Liu, H.G.; Liu, C.L.; Sun, Y.B. Nitrogen-doped porous carbons synthesized with low-temperature sodium amide activation as metal-free catalysts for oxidative coupling of amines to imines. J. Mater. Sci. 2021, 56, 16865–16876. [Google Scholar] [CrossRef]
- Yadav, N.; Singh, M.K.; Yadav, N.; Hashmi, S.A. High performance quasi-solid-state supercapacitors with peanut-shell-derived porous carbon. J. Power Sources 2018, 402, 133–146. [Google Scholar] [CrossRef]
- Liu, K.; Sun, Y.B.; Feng, J.; Liu, Y.; Zhu, J.; Han, C.J.; Chen, C.Z.; Bao, T.Y.; Cao, X.Q.; Zhao, X.M.; et al. Intensified gas-phase hydrogenation of acetone to isopropanol catalyzed at metal-oxide interfacial sites. Chem. Eng. J. 2023, 454, 140059. [Google Scholar] [CrossRef]
- Lin, H.; Qiu, S.; Wu, Z.; Ye, X.; Liu, M. Fabrication of lignin-based biochar containing multi-metal ferrite and efficient removal for oxytetracycline hydrochloride. J. Clean. Prod. 2022, 331, 129885. [Google Scholar] [CrossRef]
- Jin, Z.; Xiao, S.; Dong, H.; Xiao, J.; Tian, R.; Chen, J.; Li, Y.; Li, L. Adsorption and catalytic degradation of organic contaminants by biochar: Overlooked role of biochar’s particle size. J. Hazard. Mater. 2022, 422, 126928. [Google Scholar] [CrossRef]
- Ma, X.C.; Fang, M.E.; Liu, B.G.; Chen, R.F.; Shi, R.; Wu, Q.D.; Zeng, Z.; Li, L.Q. Urea-assisted synthesis of biomass-based hierarchical porous carbons for the light hydrocarbons adsorption and separation. Chem. Eng. J. 2022, 428, 130985. [Google Scholar] [CrossRef]
- Sun, Y.B.; Hou, C.; Cao, X.Q.; Liu, K. Facile synthesis of nitrogen-doped foam-like carbon materials from purslane stem as efficient metal-free catalysts for oxidative coupling of amines to imines. J. Mater. Sci. 2021, 56, 6124–6134. [Google Scholar] [CrossRef]
- Xiao, F. A review of biochar functionalized by thermal air oxidation. Environ. Funct. Mater. 2022, 1, 187–195. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Iwuozor, K.O.; Igwegbe, C.A.; Adeniyi, A.G. Verification of pore size effect on aqueous-phase adsorption kinetics: A case study of methylene blue. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127119. [Google Scholar] [CrossRef]
- Lawtae, P.; Tangsathitkulchai, C. The Use of High Surface Area Mesoporous-Activated Carbon from Longan Seed Biomass for Increasing Capacity and Kinetics of Methylene Blue Adsorption from Aqueous Solution. Molecules 2021, 26, 6521. [Google Scholar] [CrossRef]
- Ngigi, A.N.; Ok, Y.S.; Thiele-Bruhn, S. Biochar-mediated sorption of antibiotics in pig manure. J. Hazard. Mater. 2019, 364, 663–670. [Google Scholar] [CrossRef]
- Nakarmi, K.J.; Daneshvar, E.; Eshaq, G.; Puro, L.; Maiti, A.; Nidheesh, P.V.; Wang, H.; Bhatnagar, A. Synthesis of biochar from iron-free and iron-containing microalgal biomass for the removal of pharmaceuticals from water. Environ. Res. 2022, 214, 114041. [Google Scholar] [CrossRef]
- Sheng, H.; Yin, Y.; Xiang, L.; Wang, Z.; Harindintwali, J.D.; Cheng, J.; Ge, J.; Zhang, L.; Jiang, X.; Yu, X.; et al. Sorption of N-acyl homoserine lactones on maize straw derived biochars: Characterization, kinetics and isotherm analysis. Chemosphere 2022, 299, 134446. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, B.; Shen, J.; Yan, P.; Kang, J.; Wang, W.; Bi, L.; Zhu, X.; Li, Y.; Wang, S.; et al. Preparation of novel N-doped biochar and its high adsorption capacity for atrazine based on π–π electron donor-acceptor interaction. J. Hazard. Mater. 2022, 432, 128757. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Y.; Xu, J.; Fan, S.; Xu, H. Facile preparation of magnetic porous biochars from tea waste for the removal of tetracycline from aqueous solutions: Effect of pyrolysis temperature. Chemosphere 2022, 291, 132713. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, B.; Yu, X.; Zhang, J. Interpretation of BJH Method for Calculating Aperture Distribution Process. Daxue Huaxue 2020, 35, 98–106. [Google Scholar] [CrossRef]
- Zhang, H.; Song, X.; Zhang, J.; Liu, Y.; Zhao, H.; Hu, J.; Zhao, J. Performance and mechanism of sycamore flock based biochar in removing oxytetracycline hydrochloride. Bioresour. Technol. 2022, 350, 126884. [Google Scholar] [CrossRef]
- Li, X.; Gan, T.; Zhang, J.; Shi, Z.; Liu, Z.; Xiao, Z. High-capacity removal of oxytetracycline hydrochloride from wastewater via Mikania micrantha Kunth-derived biochar modified by Zn/Fe-layered double hydroxide. Bioresour. Technol. 2022, 361, 127646. [Google Scholar] [CrossRef]
- Li, N.; Zhou, L.; Jin, X.; Owens, G.; Chen, Z. Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework. J. Hazard. Mater. 2018, 366, 563–572. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, S.; Wang, Y. Mechanism of Oxytetracycline Removal by Coconut Shell Biochar Loaded with Nano-Zero-Valent Iron. Int. J. Environ. Res. Public Health 2021, 18, 13107. [Google Scholar] [CrossRef]
- Eniola, J.O.; Kumar, R.; Mohamed, O.A.; Al-Rashdi, A.A.; Barakat, M.A. Synthesis and characterization of CuFe2O4/NiMgAl-LDH composite for the efficient removal of oxytetracycline antibiotic. J. Saudi Chem. Soc. 2020, 24, 139–150. [Google Scholar] [CrossRef]
- Hu, Q.-L.; Wang, L.-S.; Yu, N.-N.; Zhang, Z.-F.; Zheng, X.; Hu, X.-M. Preparation of Fe3O4@C@TiO2 and its application for oxytetracycline hydrochloride adsorption. Rare Met. 2017, 39, 1333–1340. [Google Scholar] [CrossRef]
- Başkan, G.; Açıkel, Ü.; Levent, M. Investigation of adsorption properties of oxytetracycline hydrochloride on magnetic zeolite/Fe3O4 particles. Adv. Powder Technol. 2022, 33, 103600. [Google Scholar] [CrossRef]
Biochar | Total Specific Surface Area (m2/g) | Mesoporous Specific Surface Area (m2/g) | Smeso/Stotal | Pore Volume (cm3/g) | Average Pore Size (nm) |
---|---|---|---|---|---|
PKC-0 | 36.2 | 34.0 | 93.9% | 0.0695 | 7.68 |
PKC-1 | 913.3 | 145.7 | 16.0% | 0.5966 | 2.49 |
PKC-2 | 1543.1 | 478.4 | 31.0% | 0.9619 | 2.61 |
PKC-3 | 1686.1 | 1100.2 | 65.3% | 1.2426 | 2.92 |
PKC-4 | 1769.7 | 1140.0 | 64.4% | 1.2945 | 2.95 |
PKC-5 | 1684.0 | 1091.1 | 64.8% | 1.2798 | 3.04 |
Biochar | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|
qe (mg/g) | k1 min−1 | R2 | qe (mg/g) | k2 (mg·g−1·min−1) | R2 | |
PKC-0 | 51.5 ± 2.3 | 0.30697 ± 0.08397 | 0.8268 | 54.3 ± 1.83 | 0.00855 ± 0.00225 | 0.9215 |
PKC-1 | 127.8 ± 4.6 | 0.56475 ± 0.13496 | 0.8629 | 133.6 ± 3.43 | 0.00612 ± 0.00138 | 0.9425 |
PKC-2 | 393.6 ± 18.1 | 0.06058 ± 0.01215 | 0.9137 | 438.4 ± 17.68 | 0.00020 ± 0.00004 | 0.9617 |
PKC-3 | 509.3 ± 14.3 | 0.20737 ± 0.03354 | 0.9405 | 538.4 ± 8.77 | 0.00060 ± 0.00007 | 0.9849 |
PKC-4 | 524.3 ± 6.8 | 0.56311 ± 0.04837 | 0.9816 | 543.0 ± 2.13 | 0.00165 ± 0.00006 | 0.9986 |
PKC-5 | 501.9 ± 14.2 | 0.45826 ± 0.08338 | 0.9190 | 524.0 ± 8.58 | 0.00132 ± 0.00018 | 0.9777 |
Biochar | Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|---|
qm (mg/g) | kL (L/mg) | R2 | KF (mg/g (L/mg)1/n) | 1/n | R2 | |
PKC-0 | 59.5 ± 16.1 | 0.00648 ± 0.000429 | 0.8383 | 0.94 ± 0.39 | 0.6886 ± 0.0934 | 0.9476 |
PKC-1 | 141.0 ± 17.7 | 0.02159 ± 0.0031 | 0.9560 | 13.84 ± 2.06 | 0.4083 ± 0.0360 | 0.9772 |
PKC-2 | 324.7 ± 16.3 | 0.08284 ± 0.01548 | 0.9926 | 52.52 ± 7.74 | 0.3915 ± 0.0445 | 0.9627 |
PKC-3 | 1514.7 ± 852.1 | 0.02025 ± 0.00645 | 0.6230 | 33.38 ± 8.11 | 0.8679 ± 0.1034 | 0.9592 |
PKC-4 | 1850.5 ± 737.1 | 0.01909 ± 0.005113 | 0.7317 | 36.79 ± 5.15 | 0.8958 ± 0.0641 | 0.9848 |
PKC-5 | 1819.8 ± 822.7 | 0.01692 ± 0.004994 | 0.6921 | 33.04 ± 4.93 | 0.8880 ± 0.0648 | 0.9843 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Z.; Hou, C.; Gao, Z.; Wang, L.; Yang, C.; Li, Y.; Liu, K.; Sun, Y. Preparation of Biochar with Developed Mesoporous Structure from Poplar Leaf Activated by KHCO3 and Its Efficient Adsorption of Oxytetracycline Hydrochloride. Molecules 2023, 28, 3188. https://doi.org/10.3390/molecules28073188
Wei Z, Hou C, Gao Z, Wang L, Yang C, Li Y, Liu K, Sun Y. Preparation of Biochar with Developed Mesoporous Structure from Poplar Leaf Activated by KHCO3 and Its Efficient Adsorption of Oxytetracycline Hydrochloride. Molecules. 2023; 28(7):3188. https://doi.org/10.3390/molecules28073188
Chicago/Turabian StyleWei, Zhenhua, Chao Hou, Zhishuo Gao, Luolin Wang, Chuansheng Yang, Yudong Li, Kun Liu, and Yongbin Sun. 2023. "Preparation of Biochar with Developed Mesoporous Structure from Poplar Leaf Activated by KHCO3 and Its Efficient Adsorption of Oxytetracycline Hydrochloride" Molecules 28, no. 7: 3188. https://doi.org/10.3390/molecules28073188
APA StyleWei, Z., Hou, C., Gao, Z., Wang, L., Yang, C., Li, Y., Liu, K., & Sun, Y. (2023). Preparation of Biochar with Developed Mesoporous Structure from Poplar Leaf Activated by KHCO3 and Its Efficient Adsorption of Oxytetracycline Hydrochloride. Molecules, 28(7), 3188. https://doi.org/10.3390/molecules28073188