Conductive Polymer Nanoparticles as Solid Contact in Ion-Selective Electrodes Sensitive to Potassium Ions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological Characterization
2.2. Electrochemical Performance Characterization
2.3. Potentiometric and Chronopotentiometric Measurements
2.4. Reverse Chronopotentiometric Measurement
2.5. Electrochemical Impedance Spectroscopy
2.6. Water Layer Test
2.7. Effects of O2, CO2 and Light on the Electrode Potential Stability
3. Experiment
3.1. Experimental Materials
3.2. Preparation of Solid Contact Layer
3.3. Preparation of Potassium Ion Selective Electrode
3.4. Morphological Characterization
3.5. Electrochemical Measurement
4. Detection of Potassium in Real Samples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Lyu, Y.; Gan, S.; Bao, Y.; Zhong, L.; Xu, J.; Wang, W.; Liu, Z.; Ma, Y.; Yang, G.; Niu, L. Solid-contact ion-selective electrodes: Response mechanisms, transducer materials and wearable sensors. Membranes 2020, 10, 128. [Google Scholar] [CrossRef] [PubMed]
- Michalska, A. All-Solid-State Ion Selective and All-Solid-State Reference Electrodes. Electroanalysis 2012, 24, 1253–1265. [Google Scholar] [CrossRef]
- Bobacka, J. Conducting polymer-based solid-state ion-selective electrodes. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2006, 18, 7–18. [Google Scholar] [CrossRef]
- Bayer, I.S.; Steele, A.; Loth, E. Superhydrophobic and electroconductive carbon nanotube-fluorinated acrylic copolymer nanocomposites from emulsions. Chem. Eng. J. 2013, 221, 522–530. [Google Scholar] [CrossRef]
- Hu, J.; Stein, A.; Bühlmann, P. Rational design of all-solid-state ion-selective electrodes and reference electrodes. Trends Anal. Chem. 2016, 76, 102–114. [Google Scholar] [CrossRef]
- Cadogan, A.; Gao, Z.; Lewenstam, A.; Ivaska, A.; Diamond, D. All-solid-state sodium-selective electrode based on a calixarene ionophore in a poly(vinyl chloride) membrane with a polypyrrole solid contact. Anal. Chem. 1992, 64, 2496–2501. [Google Scholar] [CrossRef]
- Ruecha, N.; Rodthongkum, N.; Cate, D.M.; Volckens, J.; Chailapakul, O.; Henry, C.S. Sensitive electrochemical sensor using a graphene–polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II). Anal. Chim. Acta 2015, 874, 40–48. [Google Scholar] [CrossRef]
- Bobacka, J.; McCarrick, M.; Lewenstam, A.; Ivaska, A. All solid-state poly(vinyl chloride) membrane ion-selective electrodes with poly(3-octylthiophene) solid internal contact. Analyst 1994, 119, 1985–1991. [Google Scholar] [CrossRef]
- Guzinski, M.; Jarvis, J.M.; D’Orazio, P.; Izadyar, A.; Pendley, B.D.; Lindner, E. Solid-contact pH sensor without CO2 Interference with a Superhydrophobic PEDOT-C14 as solid contact: The ultimate “water layer” test. Anal. Chem. 2017, 89, 8468–8475. [Google Scholar] [CrossRef] [PubMed]
- Bobacka, J.; Ivaska, A.; Lewenstam, A. Potentiometric ion sensors. Chem. Rev. 2008, 108, 329–351. [Google Scholar] [CrossRef]
- Mousavi, Z.; Teter, A.; Lewenstam, A.; Maj-Zurawska, M.; Ivaska, A.; Bobacka, J. Comparison of Multi-walled Carbon Nanotubes and Poly(3-octylthiophene) as Ion-to-Electron Transducers in All-Solid-State Potassium Ion-Selective Electrodes. Electroanalysis 2011, 23, 1352–1358. [Google Scholar] [CrossRef]
- Harish, C.; SreeHarsha, V.S.; Santhosh, C.; Ramachandran, R.; Saranya, M.; Mudaliar, V.T.; Govardhan, K.; Nirmala, G.A. Synthesis of polyaniline/graphene nanocomposites and its optical, electrical and electrochemical properties. Adv. Sci. Eng. Med. 2013, 5, 140–148. [Google Scholar] [CrossRef]
- Lai, C.-Z.; Fierke, M.A.; Stein, A.; Bühlmann, P. Ion-selective electrodes with three-dimensionally ordered macroporous carbon as the solid contact. Anal. Chem. 2007, 79, 4621–4626. [Google Scholar] [CrossRef] [PubMed]
- Pokrop, R.; Kulszewicz-Bajer, I.; Wielgus, I.; Zagorska, M.; Albertini, D.; Lefrant, S.; Louarn, G.; Pron, A. Electrochemical and Raman spectroelectrochemical investigation of single-wall carbon nanotubes–polythiophene hybrid materials. Synth. Met. 2009, 159, 919–924. [Google Scholar] [CrossRef]
- Zhu, J.; Qin, Y.; Zhang, Y. Preparation of all solid-state potentiometric ion sensors with polymer-CNT composites. Electrochem. Commun. 2009, 11, 1684–1687. [Google Scholar] [CrossRef]
- Ping, J.; Wang, Y.; Wu, J.; Ying, Y. Development of an all-solid-state potassium ion-selective electrode using graphene as the solid-contact transducer. Electrochem. Commun. 2011, 13, 1529–1532. [Google Scholar] [CrossRef]
- Mattinen, U.; Rabiej, S.; Lewenstam, A.; Bobacka, J. Impedance study of the ion-to-electron transduction process for carbon cloth as solid-contact material in potentiometric ion sensors. Electrochim. Acta 2011, 56, 10683–10687. [Google Scholar] [CrossRef]
- Fouskaki, M.; Chaniotakis, N. Fullerene-based electrochemical buffer layer for ion-selective electrodes. Analyst 2008, 133, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.S.M.; Kamel, A.H.; Amr, A.E.-G.; Hashem, H.M.; Bary, E.M.A. Imprinted polymeric beads-based screen-printed potentiometric platforms modified with multi-walled carbon nanotubes (MWCNTs) for selective recognition of fluoxetine. Nanomaterials 2020, 10, 572. [Google Scholar] [CrossRef] [Green Version]
- Pechenkina, I.A.; Mikhelson, K.N. Materials for the ionophore-based membranes for ion-selective electrodes: Problems and achievements. Russ. J. Electrochem. 2015, 51, 93–102. [Google Scholar] [CrossRef]
- Hambly, B.; Guzinski, M.; Pendley, B.; Lindner, E. Evaluation, Pitfalls and Recommendations for the “Water Layer Test” for Solid Contact Ion-selective Electrodes. Electroanalysis 2020, 32, 781–791. [Google Scholar] [CrossRef]
- Asthana, A.; Maitra, T.; Büchel, R.; Tiwari, M.K.; Poulikakos, D. Multifunctional superhydrophobic polymer/carbon nanocomposites: Graphene, carbon nanotubes, or carbon black? ACS Appl. Mater. Interfaces 2014, 6, 8859–8867. [Google Scholar] [CrossRef]
- Carey, J.L., III; Hirao, A.; Sugiyama, K.; Bühlmann, P. Semifluorinated Polymers as Ion-selective Electrode Membrane Matrixes. Electroanalysis 2017, 29, 739–747. [Google Scholar] [CrossRef]
- Arduini, F.; Cinti, S.; Mazzaracchio, V.; Scognamiglio, V.; Amine, A.; Moscone, D. Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio) sensor design. Biosens. Bioelectron. 2020, 156, 112033. [Google Scholar] [CrossRef] [PubMed]
- Kuzin, Y.; Kappo, D.; Porfireva, A.; Shurpik, D.; Stoikov, I.; Evtugyn, G.; Hianik, T. Electrochemical DNA sensor based on carbon black—Poly(neutral red) composite for detection of oxidative DNA damage. Sensors 2018, 18, 3489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzaracchio, V.; Tomei, M.R.; Cacciotti, I.; Chiodoni, A.; Novara, C.; Castellino, M.; Scordo, G.; Amine, A.; Moscone, D.; Arduini, F. Inside the different types of carbon black as nanomodifiers for screen-printed electrodes. Electrochim. Acta 2019, 317, 673–683. [Google Scholar] [CrossRef]
- Paczosa-Bator, B. All-solid-state selective electrodes using carbon black. Talanta 2012, 93, 424–427. [Google Scholar] [CrossRef]
- Paczosa-Bator, B. Effects of type of nanosized carbon black on the performance of an all-solid-state potentiometric electrode for nitrate. Microchim. Acta 2014, 181, 1093–1099. [Google Scholar] [CrossRef]
- Pacheco, M.R.; Barbosa, S.C.; Quadrado, R.F.N.; Fajardo, A.R.; Dias, D. Glassy carbon electrode modified with carbon black and cross-linked alginate film: A new voltammetric electrode for paraquat determination. Anal. Bioanal. Chem. 2019, 411, 3269–3280. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, M.M.; Asiri, A.M. Carbon black co-adsorbed ZnO nanocomposites for selective benzaldehyde sensor development by electrochemical approach for environmental safety. J. Ind. Eng. Chem. 2018, 65, 300–308. [Google Scholar] [CrossRef]
- Randles, J.E.B. A cathode ray polarograph. Trans. Faraday Soc. 1948, 44, 322–327. [Google Scholar] [CrossRef]
- Jahan, M.; Liu, Z.; Loh, K.P. A Graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv. Funct. Mater. 2013, 23, 5363–5372. [Google Scholar] [CrossRef]
- Bobacka, J.; Ivaska, A.; Lewenstam, A. Plasticizer-free all-solid-state potassium-selective electrode based on poly(3-octylthiophene) and valinomycin. Anal. Chim. Acta 1999, 385, 195–202. [Google Scholar] [CrossRef]
- Zine, N.; Bausells, J.; Vocanson, F.; Lamartine, R.; Asfari, Z.; Teixidor, F.; Crespo, E.; de Oliveira, I.M.; Samitier, J.; Errachid, A. Potassium-ion selective solid contact microelectrode based on a novel 1,3-(di-4-oxabutanol)-calix[4]arene-crown-5 neutral carrier. Electrochim. Acta 2006, 51, 5075–5079. [Google Scholar] [CrossRef]
- Han, W.-S.; Lee, Y.-H.; Jung, K.-J.; Ly, S.-Y.; Hong, T.-K.; Kim, M.-H. Potassium ion-selective polyaniline solid-contact electrodes based on 4′4′(5′)-di-tert-butyldibenzo-18-crown-6-ether ionophore. J. Anal. Chem. 2008, 63, 987–993. [Google Scholar] [CrossRef]
- Mousavi, Z.; Bobacka, J.; Lewenstam, A.; Ivaska, A. Poly(3,4-ethylenedioxythiophene) (PEDOT) doped with carbon nanotubes as ion-to-electron transducer in polymer membrane-based potassium ion-selective electrodes. J. Electroanal. Chem. 2009, 633, 246–252. [Google Scholar] [CrossRef]
- Ivanova, N.M.; Podeshvo, I.V.; Goikhman, M.Y.; Yakimanskii, A.V.; Mikhelson, K.N. Potassium-selective solid contact electrodes with poly(amidoacid) Cu(I) complex electron-ion exchanging resin and different sorts of carbon black in the transducer layer. Sens. Actuators B Chem. 2013, 186, 589–596. [Google Scholar] [CrossRef]
- Vardar, G.; Altıkatoğlu, M.; Ortaç, D.; Cemek, M.; Işıldak, I. Measuring calcium, potassium, and nitrate in plant nutrient solutions using ion-selective electrodes in hydroponic greenhouse of some vegetables. Biotechnol. Appl. Biochem. 2015, 62, 663–668. [Google Scholar] [CrossRef]
- Siswanta, D.; Wulandari, Y.D.; Jumina, J. Synthesis of poly(benzyleugenol) and its application as an ionophore for a potassium ion-selective electrode. Eurasian J. Anal. Chem. 2016, 11, 115–125. [Google Scholar]
- An, Q.; Jiao, L.; Jia, F.; Ye, J.; Li, F.; Gan, S.; Zhang, Q.; Ivaska, A.; Niu, L. Robust single-piece all-solid-state potassium-selective electrode with monolayer-protected Au clusters. J. Electroanal. Chem. 2016, 781, 272–277. [Google Scholar] [CrossRef]
- Yu, K.; He, N.; Kumar, N.; Wang, N.; Bobacka, J.; Ivaska, A. Electrosynthesized polypyrrole/zeolite composites as solid contact in potassium ion-selective electrode. Electrochim. Acta 2017, 228, 66–75. [Google Scholar] [CrossRef]
- Zeng, X.; Qin, W. A solid-contact potassium-selective electrode with MoO2 microspheres as ion-to-electron transducer. Anal. Chim. Acta 2017, 982, 72–77. [Google Scholar] [CrossRef]
- Tran, T.N.T.; Qiu, S.; Chung, H.-J. Potassium ion selective electrode using polyaniline and matrix-supported ion-selective PVC membrane. IEEE Sens. J. 2018, 18, 9081–9087. [Google Scholar] [CrossRef]
- Ping, J.; Wang, Y.; Ying, Y.; Wu, J. Application of electrochemically reduced graphene oxide on screen-printed ion-selective electrode. Anal. Chem. 2012, 84, 3473–3479. [Google Scholar] [CrossRef]
- Crespo, G.A.; Macho, S.; Rius, F.X. Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. Anal. Chem. 2008, 80, 1316–1322. [Google Scholar] [CrossRef] [PubMed]
- Bobacka, J. Potential Stability of All-Solid-State Ion-Selective Electrodes Using Conducting Polymers as Ion-to-Electron Transducers. Anal. Chem. 1999, 71, 4932–4937. [Google Scholar] [CrossRef] [PubMed]
- Kałuża, D.; Jaworska, E.; Mazur, M.; Maksymiuk, K.; Michalska, A. Multiwalled carbon nanotubes–poly(3-octylthiophene-2,5-diyl) nanocomposite transducer for ion-selective electrodes: Raman spectroscopy insight into the transducer/membrane interface. Anal. Chem. 2019, 91, 9010–9017. [Google Scholar] [CrossRef] [PubMed]
- Jaworska, E.; Wójcik, M.; Kisiel, A.; Mieczkowski, J.; Michalska, A. Gold nanoparticles solid contact for ion-selective electrodes of highly stable potential readings. Talanta 2011, 85, 1986–1989. [Google Scholar] [CrossRef]
Electrode | Intermediate Layer/Lonophore | Reference | Sensitivity (mV/decade) | LOD (10−n M) | Linear Range (M) | Ref. |
---|---|---|---|---|---|---|
GC | N/A/valinomycin | SCE | 49 | 5 | 10−5–10−1 | [33] |
Pt | Ppy/calixarene | N/A | 51 | 5.7 | 10−5.2–10−1 | [34] |
Pt | PANI/dbdb−18−6 | SCE | 58 | 5.8 | 10−5–10−1 | [35] |
Au | PEDOT−PSS/valinomycin | Ag/AgCl 3 M KCl | 61.3 | 3 | 10−3–10−1.5 | [36] |
GC | Graphene/valinomycin | N/A | 58.4 | 6.2 | 10−5.8–10−1 | [16] |
Graphite | Mixture of CB,poly(amidoacid) Cu(I)complex,resin/valinomycin | Ag/AgCl 3.5 M KCl | 59 | 7 | 10−6–10−1 | [37] |
Cu | Graphite-epoxy-hardener/valinomycin | Solid Ag/AgCl | 44 | 4.4 | 10−4.3–10−1 | [38] |
Ag | N/A/PBE | Ag/AgCl 3 M KCl | 56.3 | 4.7 | 10−4–10−1 | [39] |
Pt | Ppy/calixarene | N/A | 51 | 5.7 | 10−5.2–10−1 | [34] |
GC | Hexanethiolate monolayer protected gold cluster/valinomycin | Ag/AgCl 3 M KCl | 57.4 | 6.1 | 10−5–10−1 | [40] |
Pt | Ppy and zeolite/valinomycin | Ag/AgCl 3 M KCl | 54.2 | 5.1 | 10−5–10−2 | [41] |
GC | MoO₂/valinomycin | Ag/AgCl 3 M KCl | 55 | 5.5 | 10−5–10−3 | [42] |
Carbon SPE | PANI/valinomycin | Modified solid Ag/AgCl | 60.5 | 5.8 | 10−5–1 | [43] |
GC | POT-CB | Ag/AgCl 3 M KCl | 57.6 | 6.2 | 10−6–10−1 | This Work |
Sample | ISE (m mol/L) | AAS (m mol/L) | Accuracy |
---|---|---|---|
1 | 0.109 ± 0.02 | 0.119 ± 0.01 | 91.6% |
2 | 0.111 ± 0.02 | 0.122 ± 0.01 | 90.2% |
3 | 0.106 ± 0.01 | 0.113 ± 0.02 | 93.8% |
4 | 0.123 ± 0.03 | 0.134 ± 0.02 | 91.8% |
5 | 0.116 ± 0.02 | 0.126 ± 0.02 | 92.1% |
6 | 0.132 ± 0.03 | 0.145 ± 0.02 | 91.0% |
7 | 0.115 ± 0.01 | 0.127 ± 0.01 | 90.6% |
8 | 0.125 ± 0.02 | 0.115 ± 0.02 | 92.0% |
9 | 0.135 ± 0.03 | 0.147 ± 0.01 | 91.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, H.; Ye, J.; Zhao, X.; Zhang, Y. Conductive Polymer Nanoparticles as Solid Contact in Ion-Selective Electrodes Sensitive to Potassium Ions. Molecules 2023, 28, 3242. https://doi.org/10.3390/molecules28073242
Bao H, Ye J, Zhao X, Zhang Y. Conductive Polymer Nanoparticles as Solid Contact in Ion-Selective Electrodes Sensitive to Potassium Ions. Molecules. 2023; 28(7):3242. https://doi.org/10.3390/molecules28073242
Chicago/Turabian StyleBao, Hui, Jin Ye, Xuyan Zhao, and Yuan Zhang. 2023. "Conductive Polymer Nanoparticles as Solid Contact in Ion-Selective Electrodes Sensitive to Potassium Ions" Molecules 28, no. 7: 3242. https://doi.org/10.3390/molecules28073242
APA StyleBao, H., Ye, J., Zhao, X., & Zhang, Y. (2023). Conductive Polymer Nanoparticles as Solid Contact in Ion-Selective Electrodes Sensitive to Potassium Ions. Molecules, 28(7), 3242. https://doi.org/10.3390/molecules28073242