Isotropic and Anisotropic Monolayer Structures in RF Discharge Plasma
Abstract
:1. Introduction
2. Results and Discussion
2.1. Experimental Results
2.2. Basic Equations of the Hydrodynamic Model for Dusty Plasma in a Capacitive RF Discharge
2.3. Analytical Solution of RF Discharge
3. Experimental Setup
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Bechinger, C.; Di Leonardo, R.; Löwen, H.; Reichhardt, C.; Volpe, G.; Volpe, G. Active particles in complex and crowded environments. Rev. Mod. Phys. 2016, 88, 045006. [Google Scholar] [CrossRef]
- Elgeti, J.; Winkler, R.G.; Gompper, G. Physics of microswimmers single particle motion and collective behavior: A review. Rep. Prog. Phys. 2015, 78, 056601. [Google Scholar] [CrossRef] [Green Version]
- Sriram Ramaswamy. Active matter. J. Stat. Mech. 2017, 2017, 054002. [Google Scholar] [CrossRef]
- Hagan, M.F.; Grason, G.M. Equilibrium mechanisms of self-limiting assembly. Rev. Mod. Phys. 2021, 93, 025008. [Google Scholar] [CrossRef] [PubMed]
- Vasiliev, M.M.; Antipov, S.N.; Petrov, O.F. Large-scale vortices in dc glow discharge dusty plasmas. J. Phys. A Math. Gen. 2006, 39, 4539–4544. [Google Scholar] [CrossRef]
- Trukhachev, F.M.; Vasiliev, M.M.; Petrov, O.F.; Vasilieva, E.V. Microdynamic and thermodynamic properties of dissipative dust-acoustic solitons. J. Phys. A Math. Theor. 2021, 54, 095702. [Google Scholar] [CrossRef]
- Vasilieva, E.V.; Petrov, O.F.; Vasiliev, M.M. Laser-induced melting of two-dimensional dusty plasma system in RF discharge. Sci. Rep. 2021, 11, 523. [Google Scholar] [CrossRef]
- Vaulina, O.S.; Vasilieva, E.V. Orientational order and topological defects in two-dimensional Yukawa systems. Phys. Lett. A 2014, 378, 719–722. [Google Scholar] [CrossRef]
- Petrov, O.F.; Vasiliev, M.M.; Tun, Y.; Statsenko, K.B.; Vaulina, O.S.; Vasilieva, E.V.; Fortov, V.E. Two-dimensional phase transition in a strongly nonideal dusty plasma. J. Exp. Theor. Phys. 2015, 120, 327–332. [Google Scholar] [CrossRef]
- Totsuji, H. Structure and melting of two-dimensional dust crystals. Phys. Plasmas 2001, 8, 1856–1862. [Google Scholar] [CrossRef]
- Henning, C.; Baumgartner, H.; Piel, A.; Ludwig, P.; Golubnichiy, V.; Bonitz, M.; Block, D. Ground state of a confined Yukawa plasma. Phys. Rev. E 2006, 74, 056403. [Google Scholar] [CrossRef] [Green Version]
- Timofeev, A.V.; Nikolaev, V.S.; Semenov, V.P. Inhomogeneity of structural and dynamical characteristics of dusty plasma in a gas discharge. J. Exp. Theor. Phys. 2020, 130, 153–160. [Google Scholar] [CrossRef]
- Nikolaev, V.S.; Timofeev, A.V. Inhomogeneity of a harmonically confined Yukawa system. Phys. Plasmas 2019, 26, 073701. [Google Scholar] [CrossRef]
- Hariprasad, M.; Bandyopadhyay, P.; Agora, G.; Sen, A. Experimental observation of a dusty plasma crystal in the cathode sheath of a DC glow discharge plasma. Phys. Plasmas 2018, 25, 123704. [Google Scholar] [CrossRef] [Green Version]
- Hariprasad, M.G.; Bandyopadhyay, P.; Nikolaev, V.S.; Kolotinskii, D.A.; Arumugam, S.; Arora, G.; Singh, S.; Sen, A.; Timofeev, A.V. Self-sustained non-equilibrium co-existence of fluid and solid states in a strongly coupled complex plasma system. Sci. Rep. 2022, 12, 13882. [Google Scholar] [CrossRef]
- Kolotinskii, D.A.; Nikolaev, V.S.; Timofeev, A.V. Effect of Structural Inhomogeneity and Nonreciprocal Effects in the Interaction of Macroparticles on the Dynamic Properties of a Dusty Plasma Monolayer. JETP Lett. 2021, 113, 510–517. [Google Scholar] [CrossRef]
- Nikolaev, V.S.; Timofeev, A.V. Nonhomogeneity of phase state in a dusty plasma monolayer with nonreciprocal particle interactions. Phys. Plasmas 2021, 28, 033704. [Google Scholar] [CrossRef]
- Klumov, B.A. On the Effect of Confinement on the Structure of a Complex (Dusty) Plasma. JETP Lett. 2019, 110, 715–721. [Google Scholar] [CrossRef]
- Petrov, O.F.; Statsenko, K.B.; Vasiliev, M.M. Active Brownian motion of strongly coupled charged grains driven by laser radiation in plasma. Sci. Rep. 2022, 12, 8618. [Google Scholar] [CrossRef]
- Vrancken, R.; Paeva, G.V.; Kroesen, G.M.W.; Stoffels, W.W. Dust void formation above rectangular and circular potential traps in an rf plasma. Plasma Sources Sci. Technol. 2005, 14, 509. [Google Scholar] [CrossRef]
- Tsytovich, V.N.; Vladimirov, S.V.; Morfill, G.E. Size of dust voids as a function of the power input in dusty plasma. J. Exp. Theor. Phys. 2006, 102, 334. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, Y.; Zheng, X.; Huang, F.; Shi, G.-F.; Yu, M.Y. Theory of void formation in dusty plasmas. Phys. Plasmas 2009, 16, 063707. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X.; Chen, Z.; Huang, F. Numerical study on the influence of electron temperature on void formation in dusty plasma. Phys. Scr. 2020, 95, 055606. [Google Scholar] [CrossRef]
- Holstein, T. Energy distribution of electrons in high frequency gas discharges. Phys. Rev. 1946, 70, 367–384. [Google Scholar] [CrossRef]
- Huxley, L.G.H.; Crompton, R.W. The Diffusion and Drift of Electrons in Gases; Wile-Interscience Pub.; John and Wiley and Sons: Hoboken, NJ, USA, 1974. [Google Scholar]
- Raizer, Y.P.; Shneider, M.N.; Yatsenko, N.A. Radio-Frequency Capacitive Discharges; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Barnes, M.S.; Keller, J.H.; Forster, J.C.; O’Neill, J.A.; Coultas, D.K. Transport of dust particles in glow-discharge plasmas. Phys. Rev. Lett. 1992, 68, 313–316. [Google Scholar] [CrossRef]
- Hagelaar, G.J.M. Coulomb collisions in the Boltzmann equation for electrons in low-temperature gas discharge plasmas. Plasma Sources Sci. Technol. 2016, 25, 015015. [Google Scholar] [CrossRef] [Green Version]
- Hagelaar, G.J.M.; Pitchford, L.C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci. Technol. 2005, 14, 722–733. [Google Scholar] [CrossRef]
- Pitchford, L.C.; Alves, L.L.; Bartschat, K.; Biagi, S.F.; Bordage, M.-C.; Bray, I.; Brion, C.E.; Brunger, M.J.; Campbell, L.; Chachereau, A.; et al. LXCat: An Open-Access, Web-Based Platform for Data Needed for Modeling Low Temperature Plasmas. Plasma Process. Polym. 2017, 14, 1600098. [Google Scholar] [CrossRef]
- Dashdorj, J.; Pfalzgraff, W.C.; Trout, A.; Fingerlow, D.; Cordier, M.; Viehland, L.A. Determination of mobility and diffusion coefficients of Ar+ and Ar2+ ions in argon gas. Int. J. Ion Mobil. Spec. 2020, 23, 143–151. [Google Scholar] [CrossRef]
- Basurto, E.; de Urquijo, J.; Alvarez, I.; Cisneros, C. Mobility of He+, Ne+, Ar+, N2+, O2+ and CO2+ in their parent gas. Phys. Rev. E 2000, 61, 3053–3057. [Google Scholar] [CrossRef]
- Helm, H.; Elford, M.T. The mobility of Ar+ ions in argon and the effect of spin-orbit coupling. J. Phys. B At. Mol. Phys. 1977, 10, 3849. [Google Scholar] [CrossRef]
- Hegerberg, R.; Elford, M.T.; Skullerud, H.R. The cross section for symmetric charge exchange of Ne+ in Ne and Ar+ in Ar at low energies. J. Phys. B At. Mol. Phys. 1982, 15, 797–811. [Google Scholar] [CrossRef]
- Chicheportiche, A.; Lepetit, B.; Gadéa, F.X.; Benhenni, M.; Yousfi, M.; Kalus, R. Ab initio transport coefficients of Ar+ ions in Ar for cold plasma jet modeling. Phys. Rev. E 2014, 89, 063102. [Google Scholar] [CrossRef]
- Radovanov, S.B.; Van Brunt, R.J.; Olthoff, J.K.; Jelenkovic, B.M. Ion kinetics and symmetric charge-transfer collisions in low-current, diffuse (Townsend) discharges in argon and nitrogen. Phys. Rev. E 1995, 51, 4036–4046. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.V.V.S.; Van Brunt, R.J.; Olthoff, J.K. Resonant charge exchange and the transport of ions at high electric-field to gas-density ratios E/N in argon, neon, and helium. Phys. Rev. E 1996, 54, 5642–5657. [Google Scholar] [CrossRef] [Green Version]
- Ellis, H.W.; Pai, R.Y.; McDaniel, E.W.; Mason, E.A.; Viehland, L.A. Transport properties of gaseous ions over a wide energy range. At. Data Nucl. Data Tables 1976, 17, 177. [Google Scholar] [CrossRef]
- Wannier, G.H. On the Motion of Gaseous Ions in a Strong Electric Field. I. Phys. Rev. 1951, 83, 281. [Google Scholar] [CrossRef]
- Filippov, A.V.; Babichev, V.N.; Dyatko, N.A.; Pal’, A.F.; Starostin, A.N.; Taran, M.D.; Fortov, V.E. Formation of plasma dust structures at atmospheric pressure. J. Exp. Theor. Phys. 2006, 102, 342–354. [Google Scholar] [CrossRef]
- Filippov, A.V.; Babichev, V.N.; Pal’, A.F.; Starostin, A.N.; Cherkovets, V.E.; Rerikh, V.K.; Taran, M.D. Dust Trap Formation in a Non-Self-Sustained Discharge with External Gas Ionization. Plasma Phys. Rep. 2015, 41, 895–904. [Google Scholar] [CrossRef]
- Filippov, A.V.; Babichev, V.N.; Pal’, A.F.; Starostin, A.N.; Cherkovets, V.E. A Dusty Plasma in a Non-Self-Sustained Gas Discharge at Atmospheric Pressure. Contr. Plasma Phys. 2016, 56, 286–295. [Google Scholar] [CrossRef]
- Epstein, P.S. On the Resistance Experienced by Spheres in their Motion. Phys. Rev. 1924, 23, 710–733. [Google Scholar] [CrossRef] [Green Version]
- Vladirnirov, S.V.; Ostrikov, K.; Sarnarian, A.A. Physics and Applications of Complex Plasmas; Imperial College Press: London, UK, 2005; p. 36. [Google Scholar]
- Morfill, G.E.; Ivlev, A.V. Complex plasmas: An interdisciplinary research field. Rev. Mod. Phys. 2009, 81, 1353–1404. [Google Scholar] [CrossRef]
- Lieberman, M.A. Analytical solution for capacitive RF sheath. IEEE Trans. Plasma Sci. 1988, 16, 638–644. [Google Scholar] [CrossRef]
- Lieberman, M.A. Dynamics of a collisional, capacitive RF sheath. IEEE Trans. Plasma Sci. 1989, 17, 338–341. [Google Scholar] [CrossRef]
- Godyak, V.A.; Sternberg, N. Dynamic model of the electrode sheaths in symmetrically driven rf discharges. Phys. Rev. A 1990, 42, 2299. [Google Scholar] [CrossRef]
- Czarnetzki, U. Analytical model for the radio-frequency sheath. Phys. Rev. E 2013, 88, 063101. [Google Scholar] [CrossRef]
- Godyak, V.A.; Piejak, R.B.; Alexandrovich, B.M. Electrical characteristics of parallel-plate RF discharges in argon. IEEE Trans. Plasma Sci. 1991, 19, 660–676. [Google Scholar] [CrossRef]
- Turner, M.M. Collisionless heating in radio-frequency discharges: A review. J. Phys. D Appl. Phys. 2009, 42, 194008. [Google Scholar] [CrossRef]
- Lafleur, T.; Chabert, P. Is collisionless heating in capacitively coupled plasmas really collisionless? Plasma Sources Sci. Technol. 2015, 24, 044002. [Google Scholar] [CrossRef]
- Schulze, J.; Donkó, Z.; Lafleur, T.; Wilczek, S.; Brinkmann, R.P. Spatio-temporal analysis of the electron power absorption in electropositive capacitive RF plasmas based on moments of the Boltzmann equation. Plasma Sources Sci. Technol. 2018, 27, 055010. [Google Scholar] [CrossRef] [Green Version]
- Vass, M.; Wilczek, S.; Lafleur, T.; Brinkmann, R.P.; Donkó, Z.; Schulze, J. Observation of dominant Ohmic electron power absorption in capacitively coupled radio frequency argon discharges at low pressure. Plasma Sources Sci. Technol. 2020, 29, 085014. [Google Scholar] [CrossRef]
- Wilczek, S.; Schulze, J.; Brinkmann, R.P.; Donkó, Z.; Trieschmann, J.; Mussenbrock, T. Electron dynamics in low pressure capacitively coupled radio frequency discharges. J. Appl. Phys. 2020, 127, 181101. [Google Scholar] [CrossRef]
- Kaganovich, I.D.; Polmarov, O.V.; Theodosiou, C.E. Revisiting the anomalous RF field penetration into a warm plasma. IEEE Trans. Plasma Sci. 2006, 34, 696–717. [Google Scholar] [CrossRef] [Green Version]
- Vaulina, O.S.; Khrapak, S.A. Scaling Law for the Fluid-Solid Phase Transition in Yukawa Systems (Dusty Plasmas). J. Exp. Theor. Phys. 2000, 90, 287–289. [Google Scholar] [CrossRef]
- Filippov, A.V.; Reshetnyak, V.V.; Starostin, A.N.; Tkachenko, I.M.; Fortov, V.E. Investigation of Dusty Plasma Based on the Ornstein—Zernike Integral Equation for a Multicomponent Fluid. JETP Lett. 2019, 110, 659–666. [Google Scholar] [CrossRef]
- Filippov, A.V.; Fortov, V.E.; Reshetniak, V.V.; Starostin, A.N.; Tkachenko, I.M. Electrostatic interactions and stability of dusty plasmas and the multicomponent Ornstein–Zernike equation. AIP Adv. 2020, 10, 045232. [Google Scholar] [CrossRef]
P (Pa) | E/N (Td) | ne (cm−3) | Te (eV) | RDi (μm) | RDe (μm) | le (cm) | li (cm) |
---|---|---|---|---|---|---|---|
3 | 142.46 | 3.39 × 108 | 4.457 | 379.4 | 851.9 | 2.304 | 0.078 |
4 | 120.45 | 2.95 × 108 | 4.472 | 354.1 | 915.0 | 1.663 | 0.061 |
5 | 107.89 | 2.61 × 108 | 4.478 | 336.7 | 974.1 | 1.297 | 0.050 |
6 | 99.66 | 2.34 × 108 | 4.476 | 324.1 | 1028.4 | 1.063 | 0.042 |
Win (W) | Wout (W) | we (eV cm−3 s−1) | ne (cm−3) | RDi (μm) | RDe (μm) | η = Wi/We |
---|---|---|---|---|---|---|
30 | 4.60 | 4.03 × 1015 | 4.21 × 108 | 264.5 | 767.0 | 10.14 |
20 | 3.30 | 3.24 × 1015 | 3.37 × 108 | 295.7 | 856.4 | 8.13 |
8 | 1.10 | 2.01 × 1015 | 2.10 × 108 | 375.5 | 1085.5 | 5.06 |
5 | 0.60 | 1.57 × 1015 | 1.64 × 108 | 425.4 | 1228.6 | 3.95 |
P (Pa) | ϕ0 (V), Ti = Tgas | zd0 (e) Ti = Tgas | ϕd (V) | zd (e) | Elev (V/cm) | E (V/cm) | El,ion (eV) |
---|---|---|---|---|---|---|---|
3 | −9.906 | −3.94 × 104 | −15.53 | −5.81 × 104 | 9.87 | 1.068 | 1.326 |
4 | −9.934 | −3.94 × 104 | −15.14 | −5.66 × 104 | 10.12 | 1.205 | 1.005 |
5 | −9.945 | −3.93 × 104 | −14.80 | −5.54 × 104 | 10.35 | 1.349 | 0.803 |
6 | −9.941 | −3.91 × 104 | −14.49 | −5.43 × 104 | 10.56 | 1.495 | 0.667 |
we (eV/cm3 s) | ϕ0 (V) Ti = Tgas | zd0 (e) Ti = Tgas | ϕd (V) | zd (e) | Elev (V/cm) | E (V/cm) | El,ion (eV) |
---|---|---|---|---|---|---|---|
4.03 × 1015 | −9.945 | −3.99 × 104 | −14.79 | −5.56 × 104 | 10.31 | 1.349 | 0.799 |
3.24 × 1015 | −9.945 | −3.96 × 104 | −14.80 | −5.55 × 104 | 10.33 | 1.349 | 0.801 |
2.01 × 1015 | −9.945 | −3.90 × 104 | −14.80 | −5.53 × 104 | 10.36 | 1.349 | 0.804 |
1.57 × 1015 | −9.945 | −3.87 × 104 | −14.80 | −5.52 × 104 | 10.38 | 1.349 | 0.805 |
P (Pa) | Win (W) | we (eV cm−3 s−1) | Wst (eV cm−3 s−1) | Fid (dyn) * | νm (s−1) | ||
---|---|---|---|---|---|---|---|
3 | 15 | 2.79 × 1015 | 1.23 × 1016 | 8.36 × 10−7 | 3.46 × 107 | 2.04 × 10−3 | 149 |
4 | 15 | 2.62 × 1015 | 7.77 × 1015 | 7.51 × 10−7 | 2.80 × 107 | 1.78 × 10−3 | 129 |
5 | 15 | 2.50 × 1015 | 5.32 × 1015 | 6.60 × 10−7 | 2.34 × 107 | 1.57 × 10−3 | 114 |
6 | 15 | 2.41 × 1015 | 3.86 × 1015 | 5.74 × 10−7 | 2.00 × 107 | 1.41 × 10−3 | 103 |
5 | 30 | 4.03 × 1015 | 1.02 × 1015 | 8.57 × 10−7 | 2.34 × 107 | 2.53 × 10−3 | 184 |
5 | 20 | 3.24 × 1015 | 7.61 × 1015 | 7.64 × 10−7 | 2.34 × 107 | 2.03 × 10−3 | 148 |
5 | 8 | 2.01 × 1015 | 3.89 × 1015 | 5.80 × 10−7 | 2.34 × 107 | 1.26 × 10−3 | 92.0 |
5 | 5 | 1.57 × 1015 | 2.68 × 1015 | 4.96 × 10−7 | 2.34 × 107 | 9.86 × 10−3 | 71.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alekseevskaya, A.A.; Vasilieva, E.V.; Filippov, A.V.; Vasiliev, M.M.; Petrov, O.F. Isotropic and Anisotropic Monolayer Structures in RF Discharge Plasma. Molecules 2023, 28, 3259. https://doi.org/10.3390/molecules28073259
Alekseevskaya AA, Vasilieva EV, Filippov AV, Vasiliev MM, Petrov OF. Isotropic and Anisotropic Monolayer Structures in RF Discharge Plasma. Molecules. 2023; 28(7):3259. https://doi.org/10.3390/molecules28073259
Chicago/Turabian StyleAlekseevskaya, Anastasiya A., Elena V. Vasilieva, Anatoly V. Filippov, Mikhail M. Vasiliev, and Oleg F. Petrov. 2023. "Isotropic and Anisotropic Monolayer Structures in RF Discharge Plasma" Molecules 28, no. 7: 3259. https://doi.org/10.3390/molecules28073259
APA StyleAlekseevskaya, A. A., Vasilieva, E. V., Filippov, A. V., Vasiliev, M. M., & Petrov, O. F. (2023). Isotropic and Anisotropic Monolayer Structures in RF Discharge Plasma. Molecules, 28(7), 3259. https://doi.org/10.3390/molecules28073259