Evaluation of the Antioxidant Activities and Phenolic Profile of Shennongjia Apis cerana Honey through a Comparison with Apis mellifera Honey in China
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolic Content (TPC), Flavonoid Content (TFC), and Antioxidant Activity
2.2. Quantification of Thirteen Polyphenols in Honeys Using Different Extraction Methods
2.3. Identification of Individual Polyphenols
2.4. Metabolomics Analysis
3. Materials and Methods
3.1. Chemicals
3.2. Honey Samples
3.3. Extraction of Phenolic Compounds
3.4. HPLC–QTOF-MS Conditions
3.5. Determination of Total Phenolic Content (TPC) and Total Flavonoids Content (TFC)
3.6. Antioxidant Activity
3.7. Data Processing and Metabolomics Analysis
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Pyrzynska, K.; Biesaga, M. Analysis of phenolic acids and flavonoids in honey. TrAC Trends Anal. Chem. 2009, 28, 893–902. [Google Scholar] [CrossRef]
- Combarros-Fuertes, P.; Estevinho, L.M.; Dias, L.G.; Castro, J.M.; Tomas-Barberan, F.A.; Tornadijo, M.E.; Fresno-Baro, J.M. Bioactive components and antioxidant and antibacterial activities of different varieties of honey: A screening prior to clinical application. J. Agric. Food Chem. 2019, 67, 688–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavanagh, S.; Gunnoo, J.; Marques Passos, T.; Stout, J.C.; White, B. Physicochemical properties and phenolic content of honey from different floral origins and from rural versus urban landscapes. Food Chem. 2019, 272, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, K.S.d.; Gasparotto Sattler, J.A.; Lauer Macedo, L.F.; Serna González, C.V.; Pereira de Melo, I.L.; da Silva Araújo, E.; Granato, D.; Sattler, A.; de Almeida-Muradian, L.B. Phenolic compounds, antioxidant capacity and physicochemical properties of Brazilian Apis mellifera honeys. LWT Food Sci. Technol. 2018, 91, 85–94. [Google Scholar] [CrossRef]
- Tuksitha, L.; Chen, Y.-L.S.; Chen, Y.-L.; Wong, K.-Y.; Peng, C.-C. Antioxidant and antibacterial capacity of stingless bee honey from Borneo (Sarawak). J. Asia-Pac. Entomol. 2018, 21, 563–570. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Giampieri, F.; Brenciani, A.; Mazzoni, L.; Gasparrini, M.; González-Paramás, A.M.; Santos-Buelga, C.; Morroni, G.; Simoni, S.; Forbes-Hernández, T.Y.; et al. Apis mellifera vs. Melipona beecheii Cuban polifloral honeys: A comparison based on their physicochemical parameters, chemical composition and biological properties. LWT Food Sci. Technol. 2018, 87, 272–279. [Google Scholar] [CrossRef]
- Boussaid, A.; Chouaibi, M.; Rezig, L.; Hellal, R.; Donsì, F.; Ferrari, G.; Hamdi, S. Physicochemical and bioactive properties of six honey samples from various floral origins from Tunisia. Arab. J. Chem. 2018, 11, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Mudasar, M.; Mathivanan, V.; Nabi Shah, G.H.; Mir, G.M.; Selvisabhanayakam. Physico-chemical analysis of honey of Apis ceranaindica and Apis Mellifera from different regions of Anantnag District, Jammu & Kashmir. Int. J. Pharm. Pharm. Sci. 2013, 5, 635–638. [Google Scholar] [CrossRef]
- Wang, Y.; Gou, X.; Yue, T.; Ren, R.; Zhao, H.; He, L.; Liu, C.; Cao, W. Evaluation of physicochemical properties of Qinling Apis cerana honey and the antimicrobial activity of the extract against Salmonella Typhimurium LT2 in vitro and in vivo. Food Chem. 2021, 337, 127774. [Google Scholar] [CrossRef]
- Yang, C.; Gong, G.; Jin, E.; Han, X.; Zhuo, Y.; Yang, S.; Song, B.; Zhang, Y.; Piao, C. Topical application of honey in the management of chemo/radiotherapy-induced oral mucositis: A systematic review and network meta-analysis. Int. J. Nurs. Stud. 2018, 89, 80–87. [Google Scholar] [CrossRef]
- Zhao, H.; Cheng, N.; He, L.; Peng, G.; Xue, X.; Wu, L.; Cao, W. Antioxidant and hepatoprotective effects of A. cerana honey against acute alcohol-induced liver damage in mice. Food Res. Int. 2017, 101, 35–44. [Google Scholar] [CrossRef]
- Chang, X.; Wang, J.; Yang, S.; Chen, S.; Song, Y. Antioxidative, antibrowning and antibacterial activities of sixteen floral honeys. Food Funct. 2011, 2, 541–546. [Google Scholar] [CrossRef]
- Deng, J.; Liu, R.; Lu, Q.; Hao, P.; Xu, A.; Zhang, J.; Tan, J. Biochemical properties, antibacterial and cellular antioxidant activities of buckwheat honey in comparison to manuka honey. Food Chem. 2018, 252, 243–249. [Google Scholar] [CrossRef]
- Shen, S.; Wang, J.; Chen, X.; Liu, T.; Zhuo, Q.; Zhang, S.Q. Evaluation of cellular antioxidant components of honeys using UPLC-MS/MS and HPLC-FLD based on the quantitative composition-activity relationship. Food Chem. 2019, 293, 169–177. [Google Scholar] [CrossRef]
- Sun, C.; Tan, H.; Zhang, Y.; Zhang, H. Phenolics and abscisic acid identified in acacia honey comparing different SPE cartridges coupled with HPLC-PDA. J. Food Compos. Anal. 2016, 53, 91–101. [Google Scholar] [CrossRef]
- Zhou, J.; Yao, L.; Li, Y.; Chen, L.; Wu, L.; Zhao, J. Floral classification of honey using liquid chromatography-diode array detection-tandem mass spectrometry and chemometric analysis. Food Chem. 2014, 145, 941–949. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, Y.; Wang, J.; Li, X.; Wang, W.; Huang, Z. Sugaring-out assisted liquid-liquid extraction coupled with high performance liquid chromatography-electrochemical detection for the determination of 17 phenolic compounds in honey. J. Chromatogr. A 2019, 1601, 104–114. [Google Scholar] [CrossRef]
- Bertoncelj, J.; Polak, T.; Kropf, U.; Korošec, M.; Golob, T. LC-DAD-ESI/MS analysis of flavonoids and abscisic acid with chemometric approach for the classification of Slovenian honey. Food Chem. 2011, 127, 296–302. [Google Scholar] [CrossRef]
- Lv, C.; Yang, J.; Liu, R.; Lu, Q.; Ding, Y.; Zhang, J.; Deng, J. A comparative study on the adsorption and desorption characteristics of flavonoids from honey by six resins. Food Chem. 2018, 268, 424–430. [Google Scholar] [CrossRef]
- Zhao, J.; Du, X.; Cheng, N.; Chen, L.; Xue, X.; Zhao, J.; Wu, L.; Cao, W. Identification of monofloral honeys using HPLC-ECD and chemometrics. Food Chem. 2016, 194, 167–174. [Google Scholar] [CrossRef]
- Can, Z.; Yildiz, O.; Sahin, H.; Akyuz Turumtay, E.; Silici, S.; Kolayli, S. An investigation of Turkish honeys: Their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chem. 2015, 180, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Devi, A.; Jangir, J.; Anu-Appaiah, K.A. Chemical characterization complemented with chemometrics for the botanical origin identification of unifloral and multifloral honeys from India. Food Res. Int. 2018, 107, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Beiranvand, S.; Williams, A.; Long, S.; Brooks, P.R.; Russell, F.D. Use of kinetic data to model potential antioxidant activity: Radical scavenging capacity of Australian eucalyptus honeys. Food Chem. 2020, 342, 128332. [Google Scholar] [CrossRef] [PubMed]
- Chua, L.S.; Rahaman, N.L.; Adnan, N.A.; Eddie Tan, T.T. Antioxidant activity of three honey samples in relation with their biochemical components. J. Anal. Methods Chem. 2013, 2013, 313798. [Google Scholar] [CrossRef]
- Gašić, U.M.; Natić, M.M.; Mišić, D.M.; Lušić, D.V.; Milojković-Opsenica, D.M.; Tešić, Ž.L.; Lušić, D. Chemical markers for the authentication of unifloral Salvia officinalis L. honey. J. Food Compos. Anal. 2015, 44, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Ouchemoukh, S.; Amessis-Ouchemoukh, N.; Gómez-Romero, M.; Aboud, F.; Giuseppe, A.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Characterisation of phenolic compounds in Algerian honeys by RP-HPLC coupled to electrospray time-of-flight mass spectrometry. LWT Food Sci. Technol. 2017, 85, 460–469. [Google Scholar] [CrossRef]
- Rusko, J.; Vainovska, P.; Vilne, B.; Bartkevics, V. Phenolic profiles of raw mono- and polyfloral honeys from Latvia. J. Food Compos. Anal. 2021, 98, 103813. [Google Scholar] [CrossRef]
- Gasic, U.; Keckes, S.; Dabic, D.; Trifkovic, J.; Milojkovic-Opsenica, D.; Natic, M.; Tesic, Z. Phenolic profile and antioxidant activity of Serbian polyfloral honeys. Food Chem. 2014, 145, 599–607. [Google Scholar] [CrossRef]
- Sergiel, I.; Pohl, P.; Biesaga, M. Characterisation of honeys according to their content of phenolic compounds using high performance liquid chromatography/tandem mass spectrometry. Food Chem. 2014, 145, 404–408. [Google Scholar] [CrossRef]
- Castro, C.; Mura, F.; Valenzuela, G.; Figueroa, C.; Salinas, R.; Zuniga, M.C.; Torres, J.L.; Fuguet, E.; Delporte, C. Identification of phenolic compounds by HPLC-ESI-MS/MS and antioxidant activity from Chilean propolis. Food Res. Int. 2014, 64, 873–879. [Google Scholar] [CrossRef]
- Fyfe, L.; Okoro, P.; Paterson, E.; Coyle, S.; McDougall, G.J. Compositional analysis of Scottish honeys with antimicrobial activity against antibiotic-resistant bacteria reveals novel antimicrobial components. LWT Food Sci. Technol. 2017, 79, 52–59. [Google Scholar] [CrossRef]
- Jandrić, Z.; Frew, R.D.; Fernandez-Cedi, L.N.; Cannavan, A. An investigative study on discrimination of honey of various floral and geographical origins using UPLC-QToF MS and multivariate data analysis. Food Control 2017, 72, 189–197. [Google Scholar] [CrossRef]
- Vasic, V.; Gasic, U.; Stankovic, D.; Lusic, D.; Vukic-Lusic, D.; Milojkovic-Opsenica, D.; Tesic, Z.; Trifkovic, J. Towards better quality criteria of European honeydew honey: Phenolic profile and antioxidant capacity. Food Chem. 2019, 274, 629–641. [Google Scholar] [CrossRef] [Green Version]
- Truchado, P.; Vit, P.; Heard, T.A.; Tomas-Barberan, F.A.; Ferreres, F. Determination of interglycosidic linkages in O-glycosyl flavones by high-performance liquid chromatography/photodiode-array detection coupled to electrospray ionization ion trap mass spectrometry. Its application to Tetragonula carbonaria honey from Australia. Rapid Commun. Mass Spectrom. 2015, 29, 948–954. [Google Scholar] [CrossRef]
- Chen, S.D.; Lu, C.J.; Zhao, R.Z. Identification and quantitative characterization of PSORI-CM01, a Chinese medicine formula for psoriasis therapy, by liquid chromatography coupled with an LTQ Orbitrap mass spectrometer. Molecules 2015, 20, 1594–1609. [Google Scholar] [CrossRef] [Green Version]
- Mannina, L.; Sobolev, A.P.; Di Lorenzo, A.; Vista, S.; Tenore, G.C.; Daglia, M. Chemical composition of different botanical origin honeys produced by Sicilian black honeybees (Apis mellifera ssp. sicula). J. Agric. Food Chem. 2015, 63, 5864–5874. [Google Scholar] [CrossRef]
- Keckes, S.; Gasic, U.; Velickovic, T.C.; Milojkovic-Opsenica, D.; Natic, M.; Tesic, Z. The determination of phenolic profiles of Serbian unifloral honeys using ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry. Food Chem. 2013, 138, 32–40. [Google Scholar] [CrossRef]
- Cui, J.; Duan, X.; Ke, L.; Pan, X.; Liu, J.; Song, X.; Ma, W.; Zhang, W.; Liu, Y.; Fan, Y. Extraction, purification, structural character and biological properties of propolis flavonoids: A review. Fitoterapia 2022, 157, 105106. [Google Scholar] [CrossRef]
- Truchado, P.; Ferreres, F.; Tomas-Barberan, F.A. Liquid chromatography-tandem mass spectrometry reveals the widespread occurrence of flavonoid glycosides in honey, and their potential as floral origin markers. J. Chromatogr. A 2009, 1216, 7241–7248. [Google Scholar] [CrossRef]
- Bodor, Z.; Kovacs, Z.; Benedek, C.; Hitka, G.; Behling, H. Origin identification of Hungarian honey using melissopalynology, physicochemical analysis, and near infrared spectroscopy. Molecules 2021, 26, 7274. [Google Scholar] [CrossRef]
- Mohammed, M.; Sulaiman, S.A.; Khalil, M.I.; Gan, S.H. Evaluation of physicochemical and antioxidant properties of sourwood and other Malaysian honeys: A comparison with manuka honey. Chem. Cent. J. 2013, 7, 138. [Google Scholar] [CrossRef] [Green Version]
- Habib, H.M.; Al Meqbali, F.T.; Kamal, H.; Souka, U.D.; Ibrahim, W.H. Bioactive components, antioxidant and DNA damage inhibitory activities of honeys from arid regions. Food Chem. 2014, 153, 28–34. [Google Scholar] [CrossRef] [PubMed]
TPC (mg GAE/Kg) | TFC (mg EC/Kg) | FRAP (uM of Fe2+/100 g) | DPPH (%) | ABTS (%) | |
---|---|---|---|---|---|
A.m_p1 | 104.33 ± 4.21 | 15.65 ± 1.59 | 60.13 ± 1.55 | 3.63 ± 0.21 | 55.95 ± 0.31 |
A.m_p2 | 239.12 ± 17.97 | 25.10 ± 0.86 | 175.13 ± 4.44 | 6.34 ± 0.19 | 68.78 ± 1.02 |
A.m_p3 | 225.38 ± 10.34 | 21.21 ± 0.51 | 199.50 ± 3.63 | 5.76 ± 0.14 | 75.95 ± 0.43 |
A.m_p4 | 177.04 ± 24.46 | 27.71 ± 1.53 | 93.25 ± 3.84 | 2.80 ± 0.11 | 58.78 ± 0.17 |
A.m_p5 | 186.88 ± 10.38 | 26.42 ± 1.48 | 133.25 ± 2.56 | 3.63 ± 0.16 | 65.68 ± 0.13 |
A.m_p6 | 158.29 ± 5.05 | 31.57 ± 1.04 | 100.13 ± 5.41 | 3.42 ± 0.08 | 57.84 ± 0.97 |
A.m_p7 | 130.48 ± 3.78 | 14.74 ± 0.71 | 78.25 ± 2.97 | 2.17 ± 0.24 | 54.73 ± 1.01 |
A.m_p8 | 172.91 ± 7.98 | 40.18 ± 1.02 | 111.38 ± 5.13 | 3.00 ± 0.35 | 60.27 ± 0.27 |
A.m_F | 379.20 ± 25.86 | 42.76 ± 0.29 | 300.75 ± 4.32 | 8.93 ± 0.33 | 87.57 ± 0.34 |
MGO100+ | 622.16 ± 3.72 | 111.24 ± 3.91 | 719.50 ± 9.03 | 19.77 ± 0.56 | 94.73 ± 0.23 |
MGO250+ | 652.33 ± 9.70 | 110.42 ± 2.19 | 626.38 ± 6.81 | 16.02 ± 0.46 | 94.59 ± 0.13 |
A.c_1 | 550.70 ± 11.10 | 83.28 ± 0.35 | 607.63 ± 7.97 | 17.65 ± 0.56 | 92.97 ± 0.25 |
A.c_2 | 265.49 ± 5.57 | 45.8 ± 1.08 | 326.38 ± 4.56 | 9.18 ± 0.37 | 77.43 ± 0.48 |
A.c_3 | 450.61 ± 9.16 | 71.63 ± 0.29 | 375.75 ± 3.60 | 8.84 ± 0.18 | 88.11 ± 0.16 |
A.c_4 | 327.67 ± 3.79 | 49.65 ± 0.77 | 323.25 ± 4.63 | 7.72 ± 0.30 | 83.38 ± 0.30 |
A.c_5 | 271.57 ± 8.94 | 39.33 ± 0.86 | 330.13 ± 3.10 | 8.22 ± 0.10 | 82.16 ± 0.51 |
A.c_6 | 470.01 ± 12.73 | 102.24 ± 0.75 | 405.13 ± 5.78 | 11.60 ± 0.09 | 91.76 ± 0.30 |
A.c_7 | 340.00 ± 4.13 | 50.48 ± 2.16 | 423.88 ± 3.32 | 10.64 ± 0.32 | 91.49 ± 0.34 |
A.c_8 | 680.90 ± 35.80 | 87.51 ± 3.83 | 541.38 ± 5.66 | 13.60 ± 0.41 | 93.51 ± 0.42 |
A.c_9 | 334.67 ± 3.76 | 61.33 ± 1.65 | 344.50 ± 4.59 | 7.88 ± 0.43 | 84.31 ± 0.11 |
A.c_10 | 264.98 ± 4.79 | 45.78 ± 0.46 | 234.50 ± 3.13 | 7.38 ± 0.13 | 73.51 ± 0.32 |
A.c_11 | 270.66 ± 1.96 | 57.86 ± 1.24 | 245.75 ± 4.22 | 6.34 ± 0.09 | 71.76 ± 0.59 |
A.c_12 | 263.02 ± 2.23 | 44.05 ± 1.49 | 263.25 ± 3.50 | 8.22 ± 0.50 | 70.13 ± 0.46 |
A.c_13 | 382.51 ± 3.97 | 52.24 ± 0.75 | 382.63 ± 6.10 | 6.88 ± 0.20 | 84.05 ± 0.36 |
A.c_14 | 407.30 ± 17.02 | 59.14 ± 0.04 | 391.38 ± 5.66 | 9.30 ± 0.23 | 88.92 ± 0.62 |
A.c_15 | 327.02 ± 3.09 | 62.57 ± 0.59 | 321.38 ± 5.00 | 7.55 ± 0.48 | 76.89 ± 0.71 |
A.c_16 | 296.28 ± 8.15 | 60.85 ± 0.68 | 280.13 ± 2.94 | 7.38 ± 0.34 | 80.14 ± 0.58 |
A.c_17 | 326.52 ± 4.71 | 56.59 ± 2.14 | 387.63 ± 3.47 | 9.89 ± 0.35 | 87.84 ± 0.47 |
A.c_18 | 322.43 ± 7.27 | 43.62 ± 1.20 | 350.75 ± 3.66 | 6.88 ± 0.24 | 83.38 ± 0.52 |
A.c_19 | 329.70 ± 2.70 | 47.94 ± 0.41 | 383.88 ± 4.69 | 8.39 ± 0.33 | 84.05 ± 0.17 |
A.c_20 | 302.61 ± 6.95 | 48.88 ± 5.04 | 303.88 ± 3.17 | 7.38 ± 0.29 | 80.54 ± 0.63 |
A.c_21 | 360.04 ± 10.55 | 48.84 ± 4.56 | 360.75 ± 5.28 | 9.47 ± 0.53 | 74.86 ± 0.33 |
A.c_22 | 331.69 ± 12.15 | 35.87 ± 0.44 | 299.50 ± 2.80 | 8.01 ± 0.41 | 82.57 ± 0.46 |
A.c_23 | 343.23 ± 8.74 | 47.53 ± 1.88 | 335.13 ± 6.41 | 7.34 ± 0.12 | 83.24 ± 0.48 |
A.c_24 | 452.07 ± 9.32 | 58.75 ± 1.55 | 520.13 ± 4.04 | 11.39 ± 0.22 | 90.27 ± 0.40 |
A.c_25 | 317.91 ± 8.15 | 55.67 ± 0.83 | 362.00 ± 3.97 | 6.72 ± 0.34 | 74.46 ± 0.17 |
A.c_26 | 358.04 ± 2.44 | 42.76 ± 0.29 | 312.00 ± 3.67 | 6.26 ± 0.45 | 75.00 ± 0.60 |
A. mellifera Honey (n = 9) | A. cerana Honey (n = 26) | Manuka Honey (n = 2) | ||
---|---|---|---|---|
Kaem | Kaem_XA | 2.94 ± 2.31 | 2.25 ± 2.27 b | 0.51 ± 0.30 |
Kaem_PLS | 4.67 ± 3.36 | 3.56 ± 2.94 b | 0.99 ± 0.06 | |
Kaem_EAC | 27.70 ± 12.59 | 47.72 ± 34.19 a | 9.92 ± 1.27 | |
Quer | Quer_XA * | 0.05 ± 0.10 | 0.85 ± 1.08 b | 0.19 ± 0.07 |
Quer_PLS ** | 0.66 ± 0.33 | 2.20 ± 1.48 b | 0.99 ± 0.38 | |
Quer_EAC ** | 4.60 ± 1.65 | 14.85 ± 10.38 a | 5.88 ± 1.58 | |
Pino | Pino_XA ** | 16.27 ± 25.18 | 0.37 ± 0.62 a | 22.68 ± 20.94 |
Pino_PLS *** | 15.53 ± 21.35 | 0.46 ± 0.81 a | 91.12 ± 1.07 | |
Pino_EAC *** | 15.65 ± 18.29 | 0.60 ± 1.04 a | 46.73 ± 2.14 | |
Gal | Gal_XA *** | 2.11 ± 2.45 | 0.16 ± 0.26 b | 2.64 ± 2.44 |
Gal_PLS **** | 2.25 ± 1.82 | 0.22 ± 0.34 ab | 7.11 ± 0.35 | |
Gal_EAC **** | 6.87 ± 5.90 | 0.55 ± 0.87 a | 14.58 ± 0.18 | |
Ch | Ch_XA ** | 8.17 ± 11.92 | 0.17 ± 0.29 a | 34.89 ± 5.13 |
Ch_PLS **** | 5.65 ± 5.62 | 0.22 ± 0.41 a | 23.12 ± 2.73 | |
Ch_EAC **** | 10.86 ± 10.32 | 0.48 ± 0.98 a | 17.52 ± 1.49 | |
CTabsa | CTbasa_XA | 56.67 ± 24.62 | 90.82 ± 60.22 a | 47.16 ± 17.02 |
CTbasa_PLS | 54.22 ± 21.24 | 83.60 ± 56.58 a | 65.78 ± 15.83 | |
CTbasa_EAC | 54.05 ± 18.74 | 68.81 ± 45.63 a | 38.82 ± 15.09 | |
4 Hba | 4 Hba_XA | 38.86 ± 26.60 | 29.22 ± 17.70 b | 10.77 ± 4.89 |
4Hba_PLS * | 105.21 ± 63.27 | 186.67 ± 88.91 a | 40.37± 13.53 | |
4Hba_EAC | 113.86 ± 69.66 | 183.52 ± 98.30 a | 51.96 ± 7.39 | |
Ru | Ru_XA ** | 1.41 ± 1.90 | 3.50 ± 1.61 a | 0 |
Ru_PLS ** | 1.42 ± 1.53 | 3.84 ± 1.94 a | 0 | |
Ru_EAC ** | 0.39 ± 0.57 | 1.15 ± 0.67 b | 0 | |
Tcina | Tcina_XA | 3.79 ± 11.36 | 1.67 ± 4.30 ab | 0 |
Tcina_PLS | 2.43 ± 7.28 | 1.03 ± 3.99 b | 29.05 ± 4.37 | |
Tcina_EAC | 10.23 ± 10.81 | 5.12 ± 7.16 a | 41.26 ± 14.91 | |
Pcoa | Pcoa_XA * | 8.34 ± 3.69 | 19.29 ± 13.13 a | 5.03 ± 0.20 |
Pcoa_PLS * | 13.09 ± 14.27 | 26.28 ± 16.11 a | 16.18 ± 2.15 | |
Pcoa_EAC* | 12.30 ± 8.96 | 26.29 ± 17.60 a | 9.53 ± 2.64 | |
Vana | Vana_XA **** | 2.13 ± 2.06 | 0 c | 0 |
Vana_PLS **** | 7.56 ± 3.23 | 3.80 ± 1.53 b | 6.00 ± 0.55 | |
Vana_EAC | 12.28 ± 10.25 | 10.18 ± 5.62 a | 11.38 ± 0.42 | |
Cafa | Cafa_XA | 49.18 ± 40.96 | 21.18 ± 37.83 a | 93.88± 8.32 |
Cafa_PLS | 50.45 ± 34.28 | 28.02 ± 64.41 a | 70.37 ± 7.29 | |
Cafa_EAC | 51.93 ± 32.84 | 31.26 ± 54.89 a | 48.43± 7.62 | |
Fera | Fera_XA | 3.75 ± 1.92 | 2.99 ± 2.80 b | 0.43 ± 0.61 |
Fera_PLS * | 5.23 ± 4.84 | 2.71 ± 2.12 b | 2.05 ± 0.28 | |
Fera_EAC | 9.21 ± 9.32 | 5.30 ± 3.25 a | 2.76 ± 0.52 |
No | RT (min) | Name | Formula | [M-H]calculated | [M-H]experimental | Error (ppm) | MS/MS | References | Detected in Honey Samples |
---|---|---|---|---|---|---|---|---|---|
Phenolic acids and abscidic acid | |||||||||
1 | 4.58 | c gallic acid | C7H6O5 | 169.0142 | 169.0142 | −0.4 | 125 | [27] | 8/11 (A. mellifera), 26/26 (A. cerana) |
2 | 8.18 | c protocatechuic acid | C7H6O4 | 153.0194 | 153.0193 | 0.3 | 109, 108 | [28] | 11/11 (A. mellifera), 25/26 (A. cerana) |
3 | 9.65 | c homogentisic acid | C8H8O4 | 167.0350 | 167.0350 | 0.0 | 123, 93 | [29] | 5/11 (A. mellifera), 7/26 (A. cerana) |
4 | 11.52 | c dihydrocaffeic acid | C9H10O4 | 181.0503 | 181.0506 | −1.8 | 163, 135, 119, 93 | [6] | 8/11 (A. mellifera), 23/26 (A. cerana) |
5 | 11.57 | a 4-hydroxybenzoic acid | C7H6O3 | 137.0244 | 137.0244 | −0.1 | 93 | std | All |
6 | 12.36 | c caffeoylquinic acid isomer 1 | C16H18O9 | 353.0874 | 353.0878 | −1.1 | 191, 179, 135 | [2] | 11/11 (A. mellifera), 25/26 (A. cerana) |
7 | 13.68 | c dimethoxybenzoic acid isomer | C9H10O4 | 181.0505 | 181.0506 | −1.0 | 137, 121 | [25] | 9/11 (A. mellifera), 26/26 (A. cerana) |
8 | 14.16 | b ethyl gallate | C9H10O5 | 197.0453 | 197.0455 | −1.2 | 153, 109 | chemspider | 3/11 (A. mellifera), 22/26 (A. cerana) |
9 | 14.73 | a benzoic acid | C7H6O2 | 121.0296 | 121.0295 | 1.0 | 108, 92 | std | 6/11 (A. mellifera), 20/26 (A. cerana) |
10 | 17.08 | a vanillic acid | C8H8O4 | 167.0351 | 167.0350 | 1.0 | 152, 108, 123, 91 | std | 11/11 (A. mellifera), 25/26 (A. cerana) |
11 | 17.64 | c esculetin | C9H6O4 | 177.0191 | 177.0193 | −1.1 | 149, 133, 105, 89 | [30] | All |
12 | 17.93 | c phenylacetic acid | C8H8O2 | 135.0451 | 135.0452 | −0.7 | 107 | [27] | 6/11 (A. mellifera), 22/26 (A. cerana) |
13 | 17.97 | a caffeic acid | C9H8O4 | 179.0348 | 179.0350 | −0.9 | 135 | std | All |
14 | 18.95 | c caffeoylquinic acid isomer 2 | C16H18O9 | 353.0875 | 353.0878 | −0.8 | 191, 179 | [25] | 11/11 (A. mellifera), 25/26 (A. cerana) |
15 | 21.6 | c syringic acid | C9H10O5 | 197.0455 | 197.0455 | −0.3 | 182, 166.9, 153, 138, 123, 95 | [27] | 9/11 (A. mellifera), 22/26 (A. cerana) |
16 | 22.14 | b p-hydroxy-hydrocinnamic acid | C9H10O3 | 165.0556 | 165.0557 | −1.0 | 147, 119, 103, 72.9 | chemspider | All |
17 | 23.98 | c caffeoylquinic acid isomer 3 | C16H18O9 | 353.0880 | 353.0878 | 0.5 | 191, 179 | [25] | 9/11 (A. mellifera), 24/26 (A. cerana) |
18 | 24.07 | a p-coumaric acid | C9H8O3 | 163.0399 | 163.0401 | −1.3 | 119, 93 | std | All |
19 | 25.22 | c o-coumaric acid | C9H8O3 | 163.0397 | 163.0401 | −2.0 | 119, 93 | [27] | 10/11 (A. mellifera), 23/26 (A. cerana) |
20 | 26.43 | c methyl syringate | C10H12O5 | 211.0609 | 211.0612 | −1.2 | 196, 181, 167, 153 | [31] | 4/11 (A. mellifera), 14/26 (A. cerana) |
21 | 27.84 | c 4-methoxyphenyllactic acid | C10H12O4 | 195.0660 | 195.0663 | −1.3 | 177, 134, 162, 149 | [32] | 8/11 (A. mellifera), 26/26 (A. cerana) |
22 | 27.85 | c coniferyl aldehyde | C10H10O3 | 177.0552 | 177.0557 | −2.6 | 162, 133, 117, 105 | [33] | 3/11 (A. mellifera), 26/26 (A. cerana) |
23 | 28.88 | a ferulic acid | C10H10O4 | 193.0507 | 193.0506 | 0.4 | 178, 149, 134 | std | All |
24 | 31.6 | b 4-ethoxy-3-methoxycinnamic acid | C12H14O4 | 221.0818 | 221.0819 | −0.7 | 193, 151, 179, 135 | chemspider | 2/11 (A. mellifera), 0/26 (A. cerana) |
25 | 35.5 | c dicaffeoylquinic acid isomer 1 | C25H24O12 | 515.1196 | 515.1195 | 0.2 | 353, 191, 179, 173 | [28] | 9/11 (A. mellifera), 23/26 (A. cerana) |
26 | 36.61 | c 2-trans-4-trans-abscidic acid | C15H20O4 | 263.1282 | 263.1289 | −2.5 | 219, 204, 201 | [2] | All |
27 | 37.87 | c dicaffeoylquinic acid isomer 2 | C25H24O12 | 515.1197 | 515.1195 | 0.4 | 353, 191, 179, 173 | [28] | 9/11 (A. mellifera), 20/26 (A. cerana) |
28 | 38.73 | a trans-cinnamic acid | C9H8O2 | 147.0451 | 147.0452 | −0.6 | 119,103 | std | 7/11 (A. mellifera), 9/26 (A. cerana) |
29 | 39.28 | a 2-cis-4-trans-abscidic acid | C15H20O4 | 263.1280 | 263.1289 | −3.2 | 219, 204, 163, 152, 139 | std | All |
30 | 41.78 | c dicaffeoylquinic acid isomer 3 | C25H24O12 | 515.1193 | 515.1195 | −0.4 | 353, 191, 179, 173 | [28] | 9/11 (A. mellifera), 9/26 (A. cerana) |
31 | 53.27 | c prenyl caffeate | C14H16O4 | 247.0973 | 247.0976 | −1.3 | 179, 161, 135 | [2] | 9/11 (A. mellifera), 1/26 (A. cerana) |
32 | 53.33 | c caffeic acid benzyl ester | C16H14O4 | 269.0817 | 269.0819 | −1.0 | 178,161, 134 | [2] | 11/11 (A. mellifera), 2/26 (A. cerana) |
33 | 55.35 | c caffeic acid phenylethyl ester | C17H16O4 | 283.0973 | 283.0976 | −0.9 | 268, 215, 179, 161, 135 | [2] | 11/11 (A. mellifera), 4/26 (A. cerana) |
34 | 57.83 | c caffeic acid cinnamyl ester | C18H16O4 | 295.0968 | 295.0976 | −2.6 | 178, 134 | [2] | 11/11 (A. mellifera), 8/26 (A. cerana) |
Flavonols | |||||||||
35 | 22.25 | c myricetin | C15H10O8 | 317.0302 | 317.0303 | −0.3 | 299, 255, 206.9, 190.9, 163 | [27] | 1/11 (A. mellifera), 17/26 (A. cerana) |
36 | 32.17 | c quercetin-3-O-(2-hexosyl) hexoside | C27H30O17 | 625.1415 | 625.1410 | 0.8 | 463, 300 | [33] | 9/11 (A. mellifera), 16/26 (A. cerana) |
37 | 33.68 | c quercetin-3-O-(2-rhamnosyl)hexoside | C27H30O16 | 609.1469 | 609.1461 | 1.3 | 300 | [34] | 10/11 (A. mellifera), 24/26 (A. cerana) |
38 | 33.74 | c methoxy kaempferol 3-O-(2-hexosyl) hexoside | C28H32O17 | 639.1575 | 639.1567 | 1.3 | 330, 314, 299 | [33] | 10/11 (A. mellifera), 21/26 (A. cerana) |
39 | 34.77 | c 8-O-methoxykaempferol-3-O-neohesperidoside | C28H32O16 | 623.1638 | 623.1618 | 3.3 | 314, 315, 459, 608 | [2] | 9/11 (A. mellifera), 25/26 (A. cerana) |
40 | 35.48 | c quercetin 3-O-glucoside | C21H20O12 | 463.0878 | 463.0882 | −0.9 | 301, 300, 271 | [33] | 10/11 (A. mellifera), 26/26 (A. cerana) |
41 | 35.57 | c kaempferol 3-O-(2-rhamnosyl)hexoside | C27H30O15 | 593.1523 | 593.1512 | 1.9 | 284 | [33] | 10/11 (A. mellifera), 26/26 (A. cerana) |
42 | 35.91 | c isorhamnetin-3-o-neohesperoside | C28H32O16 | 623.1624 | 623.1618 | 1.0 | 314, 315, 459 | [2] | 11/11 (A. mellifera), 25/26 (A. cerana) |
43 | 36.04 | a rutin | C27H30O16 | 609.1467 | 609.1461 | 1.0 | 300, 301 | std | 8/11 (A. mellifera), 26/26 (A. cerana) |
44 | 38.17 | c quercetin-3-rhamnoside isomer | C21H20O11 | 447.0923 | 447.0933 | −2.2 | 301, 300, 284, 255 | [33] | 10/11 (A. mellifera), 24/26 (A. cerana) |
45 | 41.96 | c quercetin-3-rhamnoside | C21H20O11 | 447.0931 | 447.0933 | −0.4 | 301, 300, 151 | [2] | 9/11 (A. mellifera), 23/26 (A. cerana) |
46 | 43.25 | a quercetin | C15H10O7 | 301.0351 | 301.0354 | −1.0 | 179, 151 | std | All |
47 | 46.92 | c kaempferol 7-O-rhamnoside | C21H20O10 | 431.0979 | 431.0984 | −1.0 | 285, 257, 151 | [33] | 11/11 (A. mellifera), 24/26 (A. cerana) |
48 | 47.71 | c methoxy kaempferol | C16H12O7 | 315.0506 | 315.0510 | −1.3 | 300, 272, 255, 165.9 | [33] | All |
49 | 47.91 | a kaempferol | C15H10O6 | 285.0401 | 285.0405 | −1.3 | 229, 185, 151, 239, 257 | std | All |
50 | 49.09 | c isorhamnetin | C16H12O7 | 315.0509 | 315.0510 | −0.5 | 300, 151 | [2] | 11/11 (A. mellifera), 23/26 (A. cerana) |
51 | 49.72 | c bis-methylated quercetin | C17H14O7 | 329.0666 | 329.0667 | −0.3 | 314, 299, 271 | [33] | All |
52 | 53.14 | c kaempferid | C16H12O6 | 299.0554 | 299.0561 | −2.5 | 284, 271, 255, 237, 211, 165 | [33] | 9/11 (A. mellifera), 5/26 (A. cerana) |
53 | 55.6 | a galangin | C15H10O5 | 269.0451 | 269.0455 | −1.6 | 213, 169 | std | 11/11 (A. mellifera), 13/26 (A. cerana) |
54 | 56.32 | c galangin-5-methyl ether isomer | C16H12O5 | 283.0609 | 283.0612 | −0.9 | 268, 239, 211 | [2] | 11/11 (A. mellifera), 16/26 (A. cerana) |
Flavanonols | |||||||||
55 | 29.56 | c taxifolin | C15H12O7 | 303.0508 | 303.0510 | −0.9 | 285, 275, 241, 177, 125 | [35] | 11/11 (A. mellifera), 25/26 (A. cerana) |
56 | 40.72 | c pinobanksin-5-methyl ether | C16H14O5 | 285.0765 | 285.0768 | −1.3 | 267, 252, 224, 165, 138 | [2] | 11/11 (A. mellifera), 7/26 (A. cerana) |
57 | 41.99 | c pinobanksin | C15H12O5 | 271.0606 | 271.0612 | −2.3 | 253, 197 | [33] | All |
58 | 53.72 | c pinobanksin-3-O-acetate | C17H14O6 | 313.0709 | 313.0718 | −2.9 | 253, 271 | [36] | 9/11 (A. mellifera), 12/26 (A. cerana) |
59 | 60.73 | c pinobanksin-3-O-butyrate | C19H18O6 | 341.1023 | 341.1031 | −2.1 | 253, 271, 197 | [2] | 10/11 (A. mellifera), 4/26 (A. cerana) |
60 | 65.35 | c pinobanksin-3-O-pentanoate | C20H20O6 | 355.1180 | 355.1187 | −2.1 | 253, 271 | [2] | 11/11 (A. mellifera), 8/26 (A. cerana) |
61 | 68.19 | c pinobanksin-3-O-hexanoate | C21H22O6 | 369.1333 | 369.1344 | −2.8 | 300, 271, 253 | [30] | 10/11 (A. mellifera), 0/26 (A. cerana) |
Flavanones | |||||||||
62 | 38.42 | c eriodictyol | C15H12O6 | 287.0552 | 287.0561 | −3.3 | 151, 135 | [33] | All |
63 | 45.15 | c hesperetin isomer | C16H14O6 | 301.0714 | 301.0718 | −1.1 | 164, 286 | [29] | 9/11 (A. mellifera), 26/26 (A. cerana) |
64 | 52.06 | c isosakuranetin | C16H14O5 | 285.0766 | 285.0768 | −1.0 | 165, 119 | [14] | 11/11 (A. mellifera), 19/26 (A. cerana) |
65 | 52.47 | a pinocembrin | C15H12O4 | 255.0661 | 255.0663 | −0.6 | 213, 171, 151 | std | 11/11 (A. mellifera), 16/26 (A. cerana) |
66 | 52.57 | c sakuranetin | C16H14O5 | 285.0766 | 285.0768 | −1.0 | 165, 119 | [14] | 11/11 (A. mellifera), 19/26 (A. cerana) |
Flavones | |||||||||
67 | 34.09 | c isovitexin | C21H20O10 | 431.0982 | 431.0984 | −0.3 | 385, 341, 311, 283, 251 | [27] | 2/11 (A. mellifera), 9/26 (A. cerana) |
68 | 35.45 | b vitexin | C21H20O10 | 431.0980 | 431.0984 | −0.9 | 341, 311, 283 | chemspider | 8/11 (A. mellifera), 10/26 (A. cerana) |
69 | 41.25 | c luteolin 7-O-rhamnoside | C21H20O10 | 431.0977 | 431.0984 | −1.5 | 285, 255, 227 | [33] | 10/11 (A. mellifera), 25/26 (A. cerana) |
70 | 44.82 | c luteolin | C15H10O6 | 285.0400 | 285.0405 | −1.5 | 133, 151, 175, 199 | [27] | All |
71 | 48.34 | c apigenin | C15H10O5 | 269.0454 | 269.0455 | −0.5 | 225, 205, 151, 117 | [27] | 11/11 (A. mellifera), 25/26 (A. cerana) |
72 | 49.48 | c luteolin-methyl-ether | C16H12O6 | 299.0559 | 299.0561 | −0.7 | 284, 256, 190.9 | [30] | All |
73 | 50.29 | c tectochrysin | C16H12O4 | 267.0657 | 267.0663 | −2.4 | 252, 224, 180 | [33] | 11/11 (A. mellifera), 6/26 (A. cerana) |
74 | 54.32 | c methoxychrysin | C16H12O5 | 283.0605 | 283.0612 | −2.4 | 268, 239, 211 | [2] | 7/11 (A. mellifera), 25/26 (A. cerana) |
75 | 54.36 | a chrysin | C15H10O4 | 253.0504 | 253.0506 | −1.0 | 209, 143 | std | 11/11 (A. mellifera), 17/26 (A. cerana) |
76 | 56.86 | c ermanin | C17H14O6 | 313.0718 | 313.0718 | 0.2 | 298, 283, 255, 199 | [30] | 11/11 (A. mellifera), 2/26 (A. cerana) |
Others | |||||||||
77 | 9.91 | c pantothenic acid | C9H17NO5 | 218.1028 | 218.1034 | −2.7 | 146, 88, 71 | [27] | All |
78 | 16.25 | c UI 1 | C10H7NO3 | 188.0352 | 188.0353 | −0.5 | 144 | [2] | 11/11 (A. mellifera), 25/26 (A. cerana) |
79 | 29.33 | c UI 2 | C10H7NO3 | 188.0352 | 188.0353 | −0.6 | 144 | [2] | 8/11 (A. mellifera), 26/26 (A. cerana) |
80 | 37.35 | c anchoic acid | C9H16O4 | 187.0967 | 187.0976 | −4.6 | 169, 125, 97 | chemspider | All |
81 | 39.01 | b hydroxyoctanoic acid | C8H16O3 | 159.1019 | 159.1027 | −4.8 | 113 | chemspider | All |
82 | 41.04 | c decenedioic acid | C10H16O4 | 199.0970 | 199.0976 | −2.9 | 155, 137, 181 | [31] | All |
83 | 59.03 | b aleuritic acid | C16H32O5 | 303.2172 | 303.2177 | −1.7 | 285, 229 | chemspider | All |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Ding, Q.; Zhang, Z.; Zhang, Y.; He, J.; Yang, Z.; Zhou, P.; Gong, X. Evaluation of the Antioxidant Activities and Phenolic Profile of Shennongjia Apis cerana Honey through a Comparison with Apis mellifera Honey in China. Molecules 2023, 28, 3270. https://doi.org/10.3390/molecules28073270
Guo J, Ding Q, Zhang Z, Zhang Y, He J, Yang Z, Zhou P, Gong X. Evaluation of the Antioxidant Activities and Phenolic Profile of Shennongjia Apis cerana Honey through a Comparison with Apis mellifera Honey in China. Molecules. 2023; 28(7):3270. https://doi.org/10.3390/molecules28073270
Chicago/Turabian StyleGuo, Jingwen, Qiong Ding, Zhiwei Zhang, Ying Zhang, Jianshe He, Zong Yang, Ping Zhou, and Xiaoyan Gong. 2023. "Evaluation of the Antioxidant Activities and Phenolic Profile of Shennongjia Apis cerana Honey through a Comparison with Apis mellifera Honey in China" Molecules 28, no. 7: 3270. https://doi.org/10.3390/molecules28073270
APA StyleGuo, J., Ding, Q., Zhang, Z., Zhang, Y., He, J., Yang, Z., Zhou, P., & Gong, X. (2023). Evaluation of the Antioxidant Activities and Phenolic Profile of Shennongjia Apis cerana Honey through a Comparison with Apis mellifera Honey in China. Molecules, 28(7), 3270. https://doi.org/10.3390/molecules28073270