Optimization of Extraction Process and Dynamic Changes in Triterpenoids of Lactuca indica from Different Medicinal Parts and Growth Periods
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of TTC Conditions
2.1.1. Influence of Solid–Liquid Ratio on TTC
2.1.2. Influence of Microwave Power on TTC
2.1.3. The Influence of Extraction Time on TTC
2.2. Optimization of Microwave-Assisted Parameters for Triterpenoids by BBD
2.2.1. Model Fitting Analysis
2.2.2. Model Applicability Diagnosis
2.2.3. Response Surface Optimization Analysis of Triterpenoid Extraction Conditions
2.3. Dynamic Changes in TTC in Different Parts of LIM in Different Growth Stages
2.4. Antioxidant Activity of Total Triterpenoids in LIM
3. Materials and Methods
3.1. Plant Materials
3.2. Chemicals and Reagents
3.3. Microwave-Assisted Extraction of Total Triterpenoids
3.4. Determination of TTC
3.5. Single-Factor Experiment
3.6. Optimization Experimental Design
3.7. Determination of Antioxidant Activity of MAE Extracts
3.7.1. DPPH Radical Scavenging Assay
3.7.2. ABTS Radical Scavenging Assay
3.7.3. Hydroxyl Radical Scavenging Activity
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, X.Y.; Sun, F.Y. Shennong Bencao Jing; The Commercial Press: Beijing, China, 1995. [Google Scholar]
- Oliya, B.K.; Kim, M.Y.; Lee, S.-H. Development of genic-SSR markers and genetic diversity of Indian lettuce (Lactuca indica L.) in South Korea. Genes Genom. 2018, 40, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Li, K.W.; Liang, Y.Y.; Xie, S.M.; Niu, F.J.; Guo, L.Y. Ixeris sonchifolia: A review of its traditional uses, chemical constituents, pharmacology and modern applications. Biomed. Pharmacother. 2020, 125, 109869. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Li, Y.; Jia, Y.; Wang, Z.; Rong, R.; Bao, J.; Zhao, M.; Fu, Z.; Ge, G. Comparative Analysis of Major Flavonoids among Parts of Lactuca indica during Different Growth Periods. Molecules 2021, 26, 7445. [Google Scholar] [CrossRef]
- Liu, S.M.; Xie, W.D.; Meng, F.J. Research progress on chemical constituents and pharmacological activities of Ixeris. Lishizhen Med. Mater. Med. 2010, 21, 975–977. [Google Scholar]
- El-Mekkawy, S.; Meselhy, M.R.; Nakamura, N.; Tezuka, Y.; Otake, T. Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum. Phytochemistry 1998, 49, 1651. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, L.X.; Lei, J.D.; He, J.; Guo, L.Q. Study on optimization of extraction technology of ursolic acid from Eriobotrya japonica leaves by response surface-method and its purification. Chin. J. Trop. Crops 2015, 36, 1518–1524. [Google Scholar]
- Guo, J.; Wang, L.L.; Wu, X.S.; Liu, T.G.; Wu, J.S. Ultrasonic extraction of ursolic acid from xishan Jujube (zizyphus jujuba Mill). Chin. Agric. Sci. Bull. 2016, 32, 175–181. [Google Scholar]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.Y. Microwave and enzyme co-assisted aqueous two-phase extraction of polyphenol and lutein from marigold (Tagetes erecta L.) flower. Ind. Crops Prod. 2018, 123, 296–302. [Google Scholar] [CrossRef]
- Chen, X.Q.; Liu, L.L.; Sun, T.T.; Zhang, Y. Optimization of extraction of total phenolics and total flavonoids from Phellodendron amurense fruit by response surface method and their antioxidant activities. Fine Chem. 2020, 37, 300–308. [Google Scholar]
- Klejdus, B.; Lojková, L.; Lap?Ík, O.; Koblovská, R.; Moravcová, J.; Kubáň, V. Supercritical fluid extraction of isoflavones from biological samples with ultra-fast high-performance liquid chromatography/mass spectrometry. J. Sep. Sci. 2015, 28, 1334–1346. [Google Scholar] [CrossRef] [PubMed]
- Delazar, A.; Nahar, L.; Hamedeyazdan, S.; Sarker, S.D. Microwave-Assisted Extraction in Natural Products Isolation. In Natural Products Isolation; Sarker, S.D., Nahar, L., Eds.; Humana Press: Totowa, NJ, USA, 2012; pp. 89–115. [Google Scholar]
- Gullón, P.; Eibes, G.; Lorenzo, J.M.; Pérez-Rodríguez, N.; Lú-Chau, T.A.; Gullón, B. Green sustainable process to revalorize purple corn cobs within a biorefinery frame: Co-production of bioactive extracts. Sci. Total Environ. 2020, 709, 136236. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.Y.; Zu, Y.G.; Fu, Y.J.; Meng, L.; Gu, C.B.; Wei, W.; Yao, X.H. Negative pressure cavitation extraction and antioxidant activity of biochanin A and genistein from the leaves of Dalbergia odorifera T. Chen. Sep. Purif. Technol. 2011, 83, 91–99. [Google Scholar] [CrossRef]
- Gw, A.; Qi, C.A.; Ljy, A.; Ying, L.A.; Mzg, A.; Yao, M.A.; Ji, L.; Sdz, A.; Wei, W.A. Negative pressure cavitation based ultrasound-assisted extraction of main flavonoids from Flos Sophorae Immaturus and evaluation of its extraction kinetics-ScienceDirect. Sep. Purif. Technol. 2020, 244, 115805. [Google Scholar]
- Kaderides, K.; Papaoikonomou, L.; Serafim, M.; Goula, A.M. Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chem. Eng. Process. Process Intensif. 2019, 137, 1–11. [Google Scholar] [CrossRef]
- Da Porto, C.; Porretto, E.; Decorti, D. Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrason. Sonochemistry 2013, 20, 1076–1080. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Xu, R.Y.; Hao, J.Y.; Wang, Z.X.; Zeng, Y.Q.; Gao, Y. Etection of activity of liquid formula of flavonoid from Lycium ruthenicum and optimization of extraction proces. Chin. Pharm. J. 2021, 56, 883–890. [Google Scholar]
- Sheng, Z.L.; Wan, P.F.; Dong, C.L.; Li, Y.H. Optimization of total flavonoids content extracted from Flos Populi using response surface methodology. Ind. Crops Prod. 2013, 43, 778–786. [Google Scholar] [CrossRef]
- Yin, H.H.; Liao, H.H.; Zhao, W.; Zeng, X.Y.; Tong, Y.M.; Liu, W.; Jiang, Y.M.; Qin, Z.H. Response surface optimization of ultrasonic assist extraction of triterpenoids from Rhodomyrtus tomentosa leaves and its antioxidant activity. Food Res. Dev. 2021, 42, 74–80. [Google Scholar]
- Li, J.; Wu, C.; Li, F.; Yu, R.; Wu, X.; Shen, L.; Liu, Y.; Zeng, W. Optimization of ultrasound-assisted water extraction of flavonoids from Psidium guajava leaves by response surface analysis. Prep. Biochem. Biotechnol. 2019, 49, 21–29. [Google Scholar] [CrossRef]
- Xu, D.P.; Zheng, J.; Zhou, Y.; Li, Y.; Li, S.; Li, H.B. Extraction of natural antioxidants from the Thelephora ganbajun Mushroom by an ultrasound-assisted extraction technique and evaluation of antiproliferative activity of the extract against human cancer cells. Int. J. Mol. Sci. 2016, 17, 1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Extraction of polysaccharides by autohydrolysis of spent coffee grounds and evaluation of their antioxidant activity. Carbohydr. Polym. 2017, 157, 258–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Zhou, L.; Mou, Y.; Mao, Z. Extraction optimization of polysaccharide from Zanthoxylum bungeanum using RSM and its antioxidant activity. Int. J. Biol. Macromol. 2015, 72, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.H.; Luo, M.; Zhao, C.J.; Wang, W.; Zu, Y.G.; Zhang, D.Y.; Yao, X.H.; Fu, Y.J. Ionic liquid-based negative pressure cavitation-assisted extraction of three main flavonoids from the pigeonpea roots and its pilot-scale application. Sep. Purif. Technol. 2013, 107, 26–36. [Google Scholar] [CrossRef]
- Zhou, T.; Luo, C.M.; Zhang, S.L. Dynamic changes of chemical constituents in different drying processes of the leaves from Salvia miltiorrhiza. Chin. Tradit. Pat. Med. 2019, 41, 2946–2952. [Google Scholar]
- Zhou, T.S. Salvianolic acid B in roots of Salvia miltioorrhiza is a dehydration stress induced product during the post-harvested drying process. Mod. Chin. Med. 2013, 15, 211–218. [Google Scholar]
- Dong, J.P. Isolation of Chemical Composition in lxeris sonchifolia (Bge.) Hance and Assaying Collected at Different Time; Jilin Agricultural University: Jilin, China, 2008. [Google Scholar]
- Wang, L.L. Research of dynamic characteristic and dry matter accumulation and active component of Ixeris chinensis. For. Sci. Technol. 2011, 36, 29–31, 48. [Google Scholar]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.M.; Wei, J.; Hu, Z.; Zhang, H.D. Study on extraction and purification of chlorogenic acid from Flos lonicerae flowers and its antioxidation properties. Food Sci. 2011, 32, 21–25. [Google Scholar]
- Huang, X.; Tu, Z.; Xiao, H.; Li, Z.; Zhang, Q.; Wang, H.; Hu, Y.; Zhang, L. Dynamic high pressure microfluidization-assisted extraction and antioxidant activities of sweet potato (Ipomoea batatas L.) leaves flavonoid. Food Bioprod. Process. 2013, 91, 1–6. [Google Scholar] [CrossRef]
- Chen, X.H.; Chen, G.J.; Wang, Z.R.; Kang, J.Q. A comparison of a polysaccharide extracted from ginger (Zingiber officinale) stems and leaves using different methods: Preparation, structure characteristics, and biological activities. Int. J. Biol. Macromol. 2020, 151, 635–649. [Google Scholar] [CrossRef] [PubMed]
- Wannes, W.A.; Mhamdi, B.; Sriti, J.; Jemia, M.B.; Ouchikh, O.; Hamdaoui, G.; Kchouk, M.E.; Marzouk, B. Antioxidant activities of the essential oils and methanol extracts from myrtle (Myrtus communis var. italica L.) leaf, stem and flower. Food Chem. Toxicol. 2010, 48, 1362–1370. [Google Scholar] [CrossRef] [PubMed]
Test | Solid–Liquid Ratio | Microwave Power | Extraction Time | Response of TTC |
---|---|---|---|---|
/(g/mL) | /(W) | /(min) | /(mg/g) | |
1 | 1:15 | 300 | 60 | 27.66 |
2 | 1:25 | 300 | 60 | 26.99 |
3 | 1:15 | 500 | 60 | 27.81 |
4 | 1:25 | 500 | 60 | 30.20 |
5 | 1:15 | 400 | 45 | 30.64 |
6 | 1:25 | 400 | 45 | 28.43 |
7 | 1:15 | 400 | 75 | 26.76 |
8 | 1:25 | 400 | 75 | 29.52 |
9 | 1:20 | 300 | 45 | 27.58 |
10 | 1:20 | 500 | 45 | 28.90 |
11 | 1:20 | 300 | 75 | 28.03 |
12 | 1:20 | 500 | 75 | 28.16 |
13 | 1:20 | 400 | 60 | 32.67 |
14 | 1:20 | 400 | 60 | 32.55 |
15 | 1:20 | 400 | 60 | 33.10 |
16 | 1:20 | 400 | 60 | 32.94 |
17 | 1:20 | 400 | 60 | 33.44 |
Source | Sum of Squares | Df | Mean Squares | F Value | p Value |
---|---|---|---|---|---|
Model | 87.9 | 9 | 9.77 | 35.78 | <0.0001 |
Solid–liquid ratio | 0.64 | 1 | 0.64 | 2.34 | 0.0317 |
Microwave power | 2.89 | 1 | 2.89 | 10.59 | <0.0001 |
Extraction time | 1.19 | 1 | 1.19 | 4.35 | 0.0017 |
AB | 2.35 | 1 | 2.35 | 8.6 | 0.0219 |
AC | 6.18 | 1 | 6.18 | 22.65 | 0.0021 |
BC | 0.36 | 1 | 0.36 | 1.32 | 0.2884 |
A2 | 17.76 | 1 | 17.76 | 65.06 | <0.0001 |
B2 | 31.23 | 1 | 31.23 | 114.41 | <0.0001 |
C2 | 17.67 | 1 | 17.67 | 64.73 | <0.0001 |
Residual | 1.91 | 7 | 0.27 | ||
Lack of fit | 1.42 | 3 | 0.47 | 3.85 | 0.1129 |
Pure error | 0.49 | 4 | 0.12 | ||
Cor total | 89.81 | 16 | |||
R2 | 87.9 | 9 | 9.77 | 35.78 | <0.0001 |
Adj-R2 | 0.64 | 1 | 0.64 | 2.34 | 0.0317 |
Factor | Level | ||
---|---|---|---|
−1 | 0 | 1 | |
A: Solid–liquid ratio/(g/mL) | 15:1 | 20:1 | 25:1 |
B: Microwave power/W | 300 | 400 | 500 |
C: Extraction time/min | 45 | 60 | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, J.; Si, Q.; Wang, Z.; Jia, Y.; Fu, Z.; Zhao, M.; Wilkes, A.; Ge, G. Optimization of Extraction Process and Dynamic Changes in Triterpenoids of Lactuca indica from Different Medicinal Parts and Growth Periods. Molecules 2023, 28, 3345. https://doi.org/10.3390/molecules28083345
Hao J, Si Q, Wang Z, Jia Y, Fu Z, Zhao M, Wilkes A, Ge G. Optimization of Extraction Process and Dynamic Changes in Triterpenoids of Lactuca indica from Different Medicinal Parts and Growth Periods. Molecules. 2023; 28(8):3345. https://doi.org/10.3390/molecules28083345
Chicago/Turabian StyleHao, Junfeng, Qiang Si, Zhijun Wang, Yushan Jia, Zhihui Fu, Muqier Zhao, Andreas Wilkes, and Gentu Ge. 2023. "Optimization of Extraction Process and Dynamic Changes in Triterpenoids of Lactuca indica from Different Medicinal Parts and Growth Periods" Molecules 28, no. 8: 3345. https://doi.org/10.3390/molecules28083345
APA StyleHao, J., Si, Q., Wang, Z., Jia, Y., Fu, Z., Zhao, M., Wilkes, A., & Ge, G. (2023). Optimization of Extraction Process and Dynamic Changes in Triterpenoids of Lactuca indica from Different Medicinal Parts and Growth Periods. Molecules, 28(8), 3345. https://doi.org/10.3390/molecules28083345