Inclusion Complexes of 3,4-Ethylenedioxythiophene with Per-Modified β- and γ-Cyclodextrins
Abstract
:1. Introduction
2. Results and Discussion
Synthesis and Characterization
3. Materials and Methods
3.1. Synthesis and Characterization
3.2. Characterization
3.3. Synthesis of TMe-βCD and TMe-γCD
- 1. H-NMR (D2O, 400 MHz), δ (ppm): 5.29 (d, J = 3.5 Hz, 7H, H1), 3.88–3.85 (m, 14H, H5, H6a), 3.76 (t, J = 8.9 Hz, 7H, H4), 3.72–3.65 (m, 14H, H3, H6b), 3.61 (s, 21H, C2-OCH3), 3.52 (s, 21H, C3-OCH3), 3.39 (s, 21H, C6-OCH3), 3.36 (dd, J = 3.5 Hz, J = 9.6 Hz, 7H, H2).
- 13. C NMR (D2O, 100 MHz), δ (ppm): 97.0 (C1), 80.9 (C3), 80.0 (C2), 77.0 (C4), 70.7 (C6), 70.4 (C5), 57.9 (C2-OCH3), 58.4 (C6-OCH3), 58.1 (C3-OCH3).
3.4. Synthesis of EDOT∙TMe-βCD and EDOT∙TMe-γCD
- 1. H-NMR (D2O, 400 MHz), δ (ppm): 6.50 (s, Ar-H from EDOT), 5.25 (d, J = 3.5 Hz, H1), 4.26 (s, CH2 from EDOT), 3.83–3.81 (m, H5, H6a), 3.72 (t, J = 9.0 Hz, H4), 3.64–3.60 (m, H3, H6b, C2-OCH3), 3.51 (s, C3-OCH3), 3.39 (s, C6-OCH3), 3.31 (dd, J = 3.4 Hz, J = 9.9 Hz, H2).
- 1. H-NMR (D2O, 400 MHz), δ (ppm): 6.51 (s, Ar-H from EDOT) 5.26 (d, J = 3.4 Hz, H1), 4.26 (s, CH2 from EDOT), 3.84–3.81 (m, H5, H6a), 3.73 (t, J = 9.0 Hz, H4), 3.66–3.62 (m, H3, H6b, C2-OCH3), 3.52 (s, C3-OCH3), 3.39 (s, C6-OCH3), 3.32 (dd, J = 3.4 Hz, J = 9.9 Hz, H2).
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Groenendaal, L.; Zotti, G.; Aubert, P.-H.; Waybright, S.M.; Reynolds, J.R. Electrochemistry of Poly(3,4-alkylenedioxythiophene) Derivatives. Adv. Mater. 2003, 15, 855–879. [Google Scholar] [CrossRef]
- Nelson, A.; Belitsky, J.M.; Vidal, S.; Joiner, C.S.; Baum, L.G.; Stoddart, J.F. A Self-Assembled Multivalent Pseudopolyrotaxane for Binding Galectin-1. J. Am. Chem. Soc. 2004, 126, 11914–11922. [Google Scholar] [CrossRef] [PubMed]
- Chinai, J.M.; Taylor, A.B.; Ryno, L.M.; Hargreaves, N.D.; Morris, C.A.; Hart, P.J.; Urbach, A.R. Molecular Recognition of Insulin by a Synthetic Receptor. J. Am. Chem. Soc. 2011, 133, 8810–8813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardy, J.G.; Lee, J.Y.; Schmidt, C.E. Biomimetic conducting polymer-based tissue scaffolds. Curr. Opin. Biotechnol. 2013, 24, 847–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; Xu, J.; Lu, L.; Yang, T.; Gao, Y. Fabrication of nanostructured PEDOT clusters using β-cyclodextrin as substrate and applied for simultaneous determination of hyperoside and shikonin. Colloids Surf. A Physicochem. Eng. Asp. 2015, 482, 203–212. [Google Scholar] [CrossRef]
- Farcas, A.; Ouldali, H.; Cojocaru, C.; Pastoriza-Gallego, M.; Resmerita, A.-M.; Oukhaled, A. Structural characteristics and the label-free detection of poly(3,4-ethylenedioxythiophene/cucurbit[7]uril) pseudorotaxane at single molecule level. Nano Res. 2022, 16, 2728–2737. [Google Scholar] [CrossRef]
- Dahabra, L.; Broadberry, G.; Le Gresley, A.; Najlah, M.; Khoder, M. Sunscreens Containing Cyclodextrin Inclusion Complexes for Enhanced Efficiency: A Strategy for Skin Cancer Prevention. Molecules 2021, 26, 1698. [Google Scholar] [CrossRef]
- Kfoury, M.; Landy, D.; Fourmentin, S. Characterization of Cyclodextrin/Volatile Inclusion Complexes: A Review. Molecules 2018, 23, 1204. [Google Scholar] [CrossRef] [Green Version]
- Jitapunkul, K.; Toochinda, P.; Lawtrakul, L. Molecular Dynamic Simulation Analysis on the Inclusion Complexation of Plumbagin with β-Cyclodextrin Derivatives in Aqueous Solution. Molecules 2021, 26, 6784. [Google Scholar] [CrossRef]
- Zhang, X.; Su, J.; Wang, X.; Wang, X.; Liu, R.; Fu, X.; Li, Y.; Xue, J.; Li, X.; Zhang, R.; et al. Preparation and Properties of Cyclodextrin Inclusion Complexes of Hyperoside. Mol. 2022, 27, 2761. [Google Scholar] [CrossRef]
- Percástegui, E.G.; Ronson, T.K.; Nitschke, J.R. Design and Applications of Water-Soluble Coordination Cages. Chem. Rev. 2020, 120, 13480–13544. [Google Scholar] [CrossRef]
- Garibyan, A.; Delyagina, E.; Agafonov, M.; Khodov, I.; Terekhova, I. Effect of pH, temperature and native cyclodextrins on aqueous solubility of baricitinib. J. Mol. Liq. 2022, 360, 119548. [Google Scholar] [CrossRef]
- Agafonov, M.; Garibyan, A.; Terekhova, I. Improving pharmacologically relevant properties of sulfasalazine loaded in γ-cyclodextrin-based metal organic framework. J. Ind. Eng. Chem. 2022, 106, 189–197. [Google Scholar] [CrossRef]
- Guo, T.; Zhang, R.; Wang, X.; Kong, L.; Xu, J.; Xiao, H.; Bedane, A.H. Porous structure of β-cyclodextrin for CO2 capture: Structural remodeling by thermal activation. Molecules 2022, 27, 7375. [Google Scholar] [CrossRef] [PubMed]
- Farcas, A.; Liu, Y.-C.; Nilam, M.; Balan-Porcarasu, M.; Ursu, E.-L.; Nau, W.M.; Hennig, A. Synthesis and photophysical properties of inclusion complexes between conjugated polyazomethines with γ-cyclodextrin and its tris-O-methylated derivative. Eur. Polym. J. 2019, 113, 236–243. [Google Scholar] [CrossRef]
- Idris, M.; Bazzar, M.; Guzelturk, B.; Demir, H.V.; Tuncel, D. Cucurbit[7]uril-threaded fluorene–thiophene-based conjugated polyrotaxanes. RSC Adv. 2016, 6, 98109–98116. [Google Scholar] [CrossRef]
- Putnin, T.; Le, H.; Bui, T.-T.; Jakmunee, J.; Ounnunkad, K.; Péralta, S.; Aubert, P.-H.; Goubard, F.; Farcas, A. Poly(3,4-ethylenedioxythiophene/permethylated β-cyclodextrin) polypseudorotaxane and polyrotaxane: Synthesis, characterization and application as hole transporting materials in perovskite solar cells. Eur. Polym. J. 2018, 105, 250–256. [Google Scholar] [CrossRef]
- Farcas, A.; Tregnago, G.; Resmerita, A.-M.; Aubert, P.-H.; Cacialli, F. Synthesis and photophysical characteristics of polyfluorene polyrotaxanes. Beilstein J. Org. Chem. 2015, 11, 2677–2688. [Google Scholar] [CrossRef] [Green Version]
- Nakazono, K.; Takashima, T.; Arai, T.; Koyama, Y.; Takata, T. High-Yield One-Pot Synthesis of Permethylated α-Cyclodextrin-based Polyrotaxane in Hydrocarbon Solvent through an Efficient Heterogeneous Reaction. Macromolecules 2009, 43, 691–696. [Google Scholar] [CrossRef]
- Botsi, A.; Yannakopoulou, K.; Hadjoudis, E.; Perly, B. Structural Aspects of Permethylated Cyclodextrins and Comparison with their Parent Oligosaccharides, as Derived from Unequivocally Assigned1H and13C NMR Spectra in Aqueous Solutions. Org. Magn. Reson. 1996, 34, 419–423. [Google Scholar] [CrossRef]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef]
- YASARA. Yet Another Scientific Artificial Reality Application: Molecular Graphics, Modelling and Simulation Program. Available online: www.yasara.org (accessed on 1 October 2022).
- Krieger, E.; Koraimann, G.; Vriend, G. Increasing the precision of comparative models with YASARA NOVA-a self-parameterizing force field. Proteins 2002, 47, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Farcas, A.; Assaf, K.I.; Resmerita, A.-M.; Sacarescu, L.; Asandulesa, M.; Aubert, P.-H.; Nau, W.M. Cucurbit[7]uril-Threaded Poly(3,4-ethylenedioxythiophene): A Novel Processable Conjugated Polyrotaxane. Eur. J. Org. Chem. 2019, 2019, 3442–3450. [Google Scholar] [CrossRef]
- Zhou, J.; Jia, J.; He, J.; Li, J.; Cai, J. Cyclodextrin Inclusion Complexes and Their Application in Food Safety Analysis: Recent Developments and Future Prospects. Foods 2022, 11, 3871. [Google Scholar] [CrossRef]
- Selvaganesh, S.V.; Mathiyarasu, J.; Phani, K.; Yegnaraman, V. Chemical Synthesis of PEDOT–Au Nanocomposite. Nanoscale Res. Lett. 2007, 2, 546–549. [Google Scholar] [CrossRef] [Green Version]
- Braga, S.S.; Paz, F.A.A.; Pillinger, M.; Seixas, J.D.; Romão, C.C.; Gonçalves, I.S. Structural Studies of β-Cyclodextrin and Permethylated β-Cyclodextrin Inclusion Compounds of Cyclopentadienyl Metal Carbonyl Complexes. Eur. J. Inorg. Chem. 2006, 2006, 1662–1669. [Google Scholar] [CrossRef]
- Fernandes, C.M.; Carvalho, R.A.; da Costa, S.P.; Veiga, F.J. Multimodal molecular encapsulation of nicardipine hydrochloride by β-cyclodextrin, hydroxypropyl-β-cyclodextrin and triacetyl-β-cyclodextrin in solution. Structural studies by 1H NMR and ROESY experiments. Eur. J. Pharm. Sci. 2003, 18, 285–296. [Google Scholar] [CrossRef]
- Terekhova, I.; Koźbiał, M.; Kumeev, R.; Gierycz, P. Complex formation of native and hydroxypropylated cyclodextrins with benzoic acid in aqueous solution: Volumetric and 1H NMR study. Chem. Phys. Lett. 2011, 514, 341–346. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, J.; Guo, D.-S. Novel Permethylated β-Cyclodextrin Derivatives Appended with Chromophores as Efficient Fluorescent Sensors for the Molecular Recognition of Bile Salts. J. Org. Chem. 2007, 72, 8227–8234. [Google Scholar] [CrossRef]
- Caira, M.R.; Bourne, S.A.; Mhlongo, W.T.; Dean, P.M. New crystalline forms of permethylated β-cyclodextrin. Chem. Commun. 2004, 19, 2216–2217. [Google Scholar] [CrossRef] [Green Version]
- Botsi, A.; Yannakopoulou, K.; Perly, B.; Hadjoudis, E. Positive or Adverse Effects of Methylation on the Inclusion Behavior of Cyclodextrins. A Comparative NMR Study Using Pheromone Constituents of the Olive Fruit Fly. J. Org. Chem. 1995, 60, 4017–4023. [Google Scholar] [CrossRef]
- Gabelica, V.; Galic, N.; De Pauw, E. On the specificity of cyclodextrin complexes detected by electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 2002, 13, 946–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, E.; Salih, B.; Gómez-López, M.; Diederich, F.; Zenobi, R. Do matrix-assisted laser desorption/ionization mass spectra reflect solution-phase formation of cyclodextrin inclusion complexes? Analyst 2000, 125, 849–854. [Google Scholar] [CrossRef]
- Chen, M.; Diao, G.; Zhang, E. Study of inclusion complex of β-cyclodextrin and nitrobenzene. Chemosphere 2006, 63, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Youming, Z.; Xinrong, D.; Liangcheng, W.; Taibao, W. Synthesis and characterization of inclusion complexes of aliphatic-aromatic poly(Schiff base)s with β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2008, 60, 313–319. [Google Scholar] [CrossRef]
Sample | Step | Tonset 1 (°C) | Tpeak 2 (°C) | Tendset 3 (°C) | W 4 (%) | Residue 5 (%) |
---|---|---|---|---|---|---|
EDOT∙TMe-γCD | I | 157 | 187 | 207 | 24.78 | 13.1 |
II | 336 | 367 | 380 | 62.12 | ||
EDOT/TMe-γCD (physical mixture) | I | 143 | 192 | 206 | 78.17 | 3.76 |
II | 337 | 365 | 376 | 18.07 | ||
TMe-γCD | I | 318 | 361 | 377 | 89.19 | 2.03 |
II | 377 | 497 | 517 | 8.78 |
Sample | Step | Tonset 1 (°C) | Tpeak 2 (°C) | Tendset 3 (°C) | W 4 (%) | Residue 5 (%) |
---|---|---|---|---|---|---|
EDOT∙TMe-βCD | I | 138 | 187 | 230 | 32.11 | 7.13 |
II | 352 | 374 | 384 | 60.76 | ||
EDOT/TMe-βCD (physical mixture) | I | 130 | 201 | 212 | 76.17 | 4.75 |
II | 348 | 369 | 384 | 19.08 | ||
TMe-βCD | I | 345 | 372 | 386 | 90.61 | 4.52 |
II | 386 | 595 | 655 | 4.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farcas, A.; Resmerita, A.-M.; Balan-Porcarasu, M.; Cojocaru, C.; Peptu, C.; Sava, I. Inclusion Complexes of 3,4-Ethylenedioxythiophene with Per-Modified β- and γ-Cyclodextrins. Molecules 2023, 28, 3404. https://doi.org/10.3390/molecules28083404
Farcas A, Resmerita A-M, Balan-Porcarasu M, Cojocaru C, Peptu C, Sava I. Inclusion Complexes of 3,4-Ethylenedioxythiophene with Per-Modified β- and γ-Cyclodextrins. Molecules. 2023; 28(8):3404. https://doi.org/10.3390/molecules28083404
Chicago/Turabian StyleFarcas, Aurica, Ana-Maria Resmerita, Mihaela Balan-Porcarasu, Corneliu Cojocaru, Cristian Peptu, and Ion Sava. 2023. "Inclusion Complexes of 3,4-Ethylenedioxythiophene with Per-Modified β- and γ-Cyclodextrins" Molecules 28, no. 8: 3404. https://doi.org/10.3390/molecules28083404
APA StyleFarcas, A., Resmerita, A. -M., Balan-Porcarasu, M., Cojocaru, C., Peptu, C., & Sava, I. (2023). Inclusion Complexes of 3,4-Ethylenedioxythiophene with Per-Modified β- and γ-Cyclodextrins. Molecules, 28(8), 3404. https://doi.org/10.3390/molecules28083404