Dry Nutrition Delivery System Based on Defatted Soybean Particles and Its Application with β-Carotene
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. NDS Construction
3.2. NDS Characterization
3.3. Cumulative Release and Model Fitting
3.4. Stability of NDS
3.5. In Vitro Safety and Absorption Assessment
3.6. Statistical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- McClements, D.J. Nanoscale Nutrient Delivery Systems for Food Applications: Improving Bioactive Dispersibility, Stability, and Bioavailability. J. Food Sci. 2015, 80, 1602–1611. [Google Scholar] [CrossRef]
- Diniz do Nascimento, L.; Moraes, A.A.B.; Costa, K.S.D.; Pereira Galucio, J.M.; Taube, P.S.; Costa, C.M.L.; Neves Cruz, J.; de Aguiar Andrade, E.H.; Faria, L.J.G. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules 2020, 10, 988. [Google Scholar] [CrossRef]
- Bao, C.; Jiang, P.; Chai, J.; Jiang, Y.; Li, D.; Bao, W.; Liu, B.; Liu, B.; Norde, W.; Li, Y. The delivery of sensitive food bioactive ingredients: Absorption mechanisms, influencing factors, encapsulation techniques and evaluation models. Food Res. Int. 2019, 120, 130–140. [Google Scholar] [CrossRef]
- Day, L.; Seymour, R.B.; Pitts, K.F.; Konczak, I.; Lundin, L. Incorporation of functional ingredients into foods. Trends Food Sci. Technol. 2009, 20, 388–395. [Google Scholar] [CrossRef]
- Rohmah, M.; Rahmadi, A.; Raharjo, S. Bioaccessibility and antioxidant activity of beta-carotene loaded nanostructured lipid carrier (NLC) from binary mixtures of palm stearin and palm olein. Heliyon 2022, 8, e08913. [Google Scholar] [CrossRef]
- Ribaya-Mercado, J.D.; Fox, J.G.; Rosenblad, W.D.; Blanco, M.C.; Russell, R.M. Beta-carotene, retinol and retinyl ester concentrations in serum and selected tissues of ferrets fed beta-carotene. J. Nutr. 1992, 122, 1898–1903. [Google Scholar] [CrossRef]
- Di Martino, A.; Trusova, M.E.; Postnikov, P.S.; Sedlarik, V. Enhancement of the antioxidant activity and stability of beta-carotene using amphiphilic chitosan/nucleic acid polyplexes. Int. J. Biol. Macromol. 2018, 117, 773–780. [Google Scholar] [CrossRef]
- Tang, X.M.; Liu, P.D.; Chen, Z.J.; Li, X.Y.; Huang, R.; Liu, G.D.; Dong, R.S.; Chen, J. Encapsulation of a Desmodium intortum Protein Isolate Pickering Emulsion of beta-Carotene: Stability, Bioaccesibility and Cytotoxicity. Foods 2022, 11, 936. [Google Scholar] [CrossRef]
- Chen, L.; Yokoyama, W.; Tam, C.; Tan, Y.; Alves, P.; Bartley, G.; Zhong, F. Evaluation of Cellular Absorption and Metabolism of beta-Carotene Loaded in Nanocarriers after In Vitro Digestion. J. Agric. Food Chem. 2021, 69, 9383–9394. [Google Scholar] [CrossRef]
- Afonso, B.S.; Azevedo, A.G.; Goncalves, C.; Amado, I.R.; Ferreira, E.C.; Pastrana, L.M.; Cerqueira, M.A. Bio-Based Nanoparticles as a Carrier of beta-Carotene: Production, Characterisation and In Vitro Gastrointestinal Digestion. Molecules 2020, 25, 4497. [Google Scholar] [CrossRef]
- Jain, A.; Thakur, D.; Ghoshal, G.; Katare, O.P.; Shivhare, U.S. Characterization of microcapsulated beta-carotene formed by complex coacervation using casein and gum tragacanth. Int. J. Biol. Macromol. 2016, 87, 101–113. [Google Scholar] [CrossRef]
- Phuong, P.T.T.; Lee, S.; Lee, C.; Seo, B.; Park, S.; Oh, K.T.; Lee, E.S.; Choi, H.G.; Shin, B.S.; Youn, Y.S. Beta-carotene-bound albumin nanoparticles modified with chlorin e6 for breast tumor ablation based on photodynamic therapy. Colloids Surf. 2018, 171, 123–133. [Google Scholar] [CrossRef]
- Vukoja, J.; Pichler, A.; Ivic, I.; Simunovic, J.; Kopjar, M. Cellulose as a Delivery System of Raspberry Juice Volatiles and Their Stability. Molecules 2020, 25, 2624. [Google Scholar] [CrossRef]
- Mao, L.; Wang, D.; Liu, F.; Gao, Y. Emulsion design for the delivery of beta-carotene in complex food systems. Crit. Rev. Food Sci. Nutr. 2018, 58, 770–784. [Google Scholar] [CrossRef]
- Mohite, P.B.; Harishchander, V.S. Self micro emulsifying drug delivery system (SMEDDS): An approach to enhance an oral bioavailability. Caribb. J. Sci. Technol. 2017, 5, 1–10. [Google Scholar]
- Ye, C.; Chi, H. A review of recent progress in drug and protein encapsulation: Approaches, applications and challenges. Mat. Sci. Eng. C-Mater. 2018, 83, 233–246. [Google Scholar] [CrossRef]
- Wang, D.; Ma, Y.; Wang, Q.; Huang, J.; Sun, R.; Xia, Q. Solid Self-Emulsifying Delivery System (S-SEDS) of Dihydromyricetin: A New Way for Preparing Functional Food. J. Food Sci. 2019, 84, 936–945. [Google Scholar] [CrossRef]
- Zhang, L.; Wahlgren, M.; Bergenstahl, B. Oil-Based Delivery Control Release System Targeted to the Later Part of the Gastrointestinal Tract-A Mechanistic Study. Pharmaceutics 2022, 14, 896. [Google Scholar] [CrossRef]
- Rosso, A.; Almouazen, E.; Pontes, J.; Andretto, V.; Leroux, M.; Romasko, E.; Azzouz-Maache, S.; Bordes, C.; Coste, I.; Renno, T.; et al. Supersaturable self-microemulsifying delivery systems: An approach to enhance oral bioavailability of benzimidazole anticancer drugs. Drug. Deliv. Transl. Re 2021, 11, 675–691. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, H.; Wu, L.; Yang, A.; Li, X. The Method for Nano Defatted Soybean Particles Manufacture. China Patent ZL 2009 1 0132261.8, 30 March 2011. [Google Scholar]
- Tong, S.G.; Hao, H.J.; Li, X.F.; Li, H.B.; Liao, Z.Y.; Wu, Z.H.; Chen, H.B. Safety evaluation of defatted soybean particles after nanofabrication. Qual. Assur. Saf. Crop. 2020, 12, 87–101. [Google Scholar] [CrossRef]
- Rajpoot, K. Solid Lipid Nanoparticles: A Promising Nanomaterial in Drug Delivery. Curr. Pharm. Des. 2019, 25, 3943–3959. [Google Scholar] [CrossRef]
- Wang, C.; Cui, B.; Zhao, X.; Zeng, Z.; Wang, Y.; Sun, C.; Guo, L.; Cui, H. Preparation and characterization of efficient and safe lambda-cyhalothrin nanoparticles with tunable particle size. Pest. Manag. Sci. 2021, 77, 2078–2086. [Google Scholar] [CrossRef]
- Lorand, T.; Deli, J.; Molnar, P.; Toth, G. FT-IR study of some carotenoids. Helv. Chim. Acta 2002, 85, 1691–1697. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, M.X.; Jiang, M.; Wang, Y.D. Spectroscopic investigation of the interaction between human serum albumin and three organic acids. Spectrochim. Acta A 2005, 61, 2245–2251. [Google Scholar] [CrossRef]
- Chen, K.H.; Cheng, W.T.; Li, M.J.; Yang, D.M.; Lin, S.Y. Calcification of senile cataractous lens determined by Fourier transform infrared (FTIR) and Raman microspectroscopies. J. Microsc-Oxf. 2005, 219, 36–41. [Google Scholar] [CrossRef]
- Bockuviene, A.; Sereikaite, J. Preparation and characterisation of novel water-soluble beta-carotene-chitooligosaccharides complexes. Carbohyd Polym. 2019, 225, 115226. [Google Scholar] [CrossRef]
- Cui, T.; Wu, Y.; Fan, F. Physicochemical properties and Strength analysis of vitreous encapsulated solids for the safe delivery of beta-Carotene. Food Res. Int. 2022, 151, 110877. [Google Scholar] [CrossRef]
- Wan Mohamad, W.A.F.; McNaughton, D.; Augustin, M.A.; Buckow, R. Characterisation of beta-carotene partitioning in protein emulsions: Effects of pre-treatments, solid fat content and emulsifier type. Food Chem. 2018, 257, 361–367. [Google Scholar] [CrossRef]
- Siepmann, J.; Peppas, N.A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug. Deliv. Rev. 2012, 64, 163–174. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Zhu, Y.; Shen, Y.; Cheng, S.; Zheng, H.; Xu, Y. Structure and properties of oxycellulose fabric crosslinked with soy protein. Carbohydr. Polym. 2021, 257, 117548. [Google Scholar] [CrossRef]
- Anderson, R.E.; Colorado, R.; Jr Crouse, C.; Ogrin, D.; Maruyama, B.; Pender, M.J.; Edwards, C.L.; Whitsitt, E.; Moore, V.C.; Koveal, D.; et al. A study of the formation, purification and application as a SWNT growth catalyst of the nanocluster [HxPMo12O40CH4Mo72Fe30(O2CMe)15O254(H2O)98]. Dalton Trans. 2006, 25, 3097–3107. [Google Scholar] [CrossRef]
- Doh, H.; Kim, Y.; Nitin, N. Development of a food grade sanitizer delivery system with chlorine loaded gelatin microgels for enhanced binding and inactivation of biofilms. Food Res. Int. 2022, 155, 111026. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, H.; Wang, C.; Zhao, C.; Peng, Q.; Zhang, T.; Zhao, C. Stability and in vitro digestibility of beta-carotene in nanoemulsions fabricated with different carrier oils. Food Sci. Nutr. 2018, 6, 2537–2544. [Google Scholar] [CrossRef]
- Sharopov, F.; Valiev, A.; Satyal, P.; Gulmurodov, I.; Yusufi, S.; Setzer, W.N.; Wink, M. Cytotoxicity of the Essential Oil of Fennel (Foeniculum vulgare) from Tajikistan. Foods 2017, 6, 73. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.S.; Glahn, R.P.; Liu, R.H. Assessment of carotenoid bioavailability of whole foods using a Caco-2 cell culture model coupled with an in vitro digestion. J. Agric. Food Chem. 2004, 52, 4330–4337. [Google Scholar] [CrossRef]
- Li, S.; Mu, B.; Dong, W.; Liang, O.; Shao, S.; Wang, A. Incorporation of Lutein on Layered Double Hydroxide for Improving the Environmental Stability. Molecules 2020, 25, 1231. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Li, X.; Wu, Z.; Li, X.; Yang, A.; Tong, P.; Chen, H. Quantitative Determination of β-carotene Aided by Hexane/Ethanol Extraction. J. Chem. Soc. Pak. 2016, 38, 1263–1266. [Google Scholar]
- Han, C.; Fang, L.; Song, S.; Min, W. Polysaccharides-based delivery system for efficient encapsulation and controlled release of food-derived active peptides. Carbohydr. Polym. 2022, 291, 119580. [Google Scholar] [CrossRef]
- Ma, J.Q.; Guan, R.F.; Shen, H.T.; Lu, F.; Xiao, C.G.; Liu, M.Q.; Kang, T.S. Comparison of anticancer activity between lactoferrin nanoliposome and lactoferrin in Caco-2 cells in vitro. Food Chem. Toxicol. 2013, 59, 72–77. [Google Scholar] [CrossRef]
- Lacroix, I.M.E.; Chen, X.M.; Kitts, D.D.; Li-Chan, E.C.Y. Investigation into the bioavailability of milk protein-derived peptides with dipeptidyl-peptidase IV inhibitory activity using Caco-2 cell monolayers. Food Funct. 2017, 8, 701–709. [Google Scholar] [CrossRef] [Green Version]
- Qu, D.F.; Gu, Y.P.; Feng, L.F.; Han, J.Z. High Content Analysis technology for evaluating the joint toxicity of sunset yellow and sodium sulfite in vitro. Food Chem. 2017, 233, 135–143. [Google Scholar] [CrossRef] [PubMed]
Samples | DSP | 10 Min βc-DSP | 30 Min βc-DSP |
---|---|---|---|
PS (nm) | 665.4 ± 40.0 | 894.3 ± 96.7 | 829.7 ± 29.0 |
z (mV) | −14.84 ± 0.52 | −15.53 ± 0.54 | −15.20 ± 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Ouyang, X.; Zhou, X.; Li, X.; Li, H.; Li, W.; Wan, C.; Yu, B.; El-Sohaimy, S.; Wu, Z. Dry Nutrition Delivery System Based on Defatted Soybean Particles and Its Application with β-Carotene. Molecules 2023, 28, 3429. https://doi.org/10.3390/molecules28083429
Wu C, Ouyang X, Zhou X, Li X, Li H, Li W, Wan C, Yu B, El-Sohaimy S, Wu Z. Dry Nutrition Delivery System Based on Defatted Soybean Particles and Its Application with β-Carotene. Molecules. 2023; 28(8):3429. https://doi.org/10.3390/molecules28083429
Chicago/Turabian StyleWu, Chunyu, Xuewen Ouyang, Xiaoya Zhou, Xiaofei Li, Hongbo Li, Wenying Li, Cuixiang Wan, Bo Yu, Sobhy El-Sohaimy, and Zhihua Wu. 2023. "Dry Nutrition Delivery System Based on Defatted Soybean Particles and Its Application with β-Carotene" Molecules 28, no. 8: 3429. https://doi.org/10.3390/molecules28083429
APA StyleWu, C., Ouyang, X., Zhou, X., Li, X., Li, H., Li, W., Wan, C., Yu, B., El-Sohaimy, S., & Wu, Z. (2023). Dry Nutrition Delivery System Based on Defatted Soybean Particles and Its Application with β-Carotene. Molecules, 28(8), 3429. https://doi.org/10.3390/molecules28083429