Chemical Characterization and Determination of the Antioxidant Properties of Phenolic Compounds in Three Scutellaria sp. Plants Grown in Colombia
Abstract
:1. Introduction
2. Results
2.1. Experimental Design and Extraction Yields
2.2. Analysis with UHPLC/ESI-Q-Orbitrap-MS of Scutellaria spp. Extracts
2.3. Antioxidant Activity
3. Discussion
3.1. Evaluation of Experimental Variables
3.2. Quantification of Phenolic Compounds in Scutellaria spp. Extracts
3.3. Antioxidant Activity of Scutellaria spp. Extracts
4. Materials and Methods
4.1. Reagents
4.2. Scutellaria Plants
4.3. Experimental Design and Extraction
4.4. Identification and Quantification by LC/MS of Compounds in Scutellaria spp. Extracts
4.5. In Vitro Antioxidant Activity of Scutellaria spp. Extracts
4.5.1. ABTS+• Cation-Radical Discoloration Technique
4.5.2. Online HPLC-ABTS +• Cation–Radical Decoloration Technique
4.5.3. β-Carotene Discoloration Assay
4.5.4. Measurement of Oxygen Radical Absorbance Capacity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Tercero, M.; Olalla, R. Enfermedades tropicales transmitidas por vectores. Medidas preventivas y profilaxis. Offarm 2008, 27, 78–87. [Google Scholar]
- Instituto Nacional de Salud. Protocolo de Vigilancia del Dengue. Available online: https://www.ins.gov.co/buscador-eventos/Lineamientos/Pro_Dengue.pdf (accessed on 15 June 2022).
- Sarmiento, M.C. Enfermedades transmisibles en Colombia: Cambios ambivalentes. Rev. Salud Pública 2000, 2, 82–93. [Google Scholar]
- Camini, F.C.; da Silva Caetano, C.C.; Almeida, L.T.; de Brito Magalhães, C.L. Implications of oxidative stress on viral pathogenesis. Arch. Virol. 2017, 162, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Iqhrammullah, M.; Rizki, D.R.; Purnama, A.; Duta, T.F.; Harapan, H.; Idroes, R.; Ginting, B. Antiviral moleculart targets of essential oils against SARS-CoV-2: A systematic review. Sci. Pharm. 2023, 91, 15. [Google Scholar] [CrossRef]
- Yusnaini, R.; Nasution, R.; Saidi, N.; Arabia, T.; Idroes, R.; Ikhsan, I.; Bahtiar, R.; Iqhrammullah, M. Ethanolic extract from Limonia acidissima L. fruit attenuates serum uric acid level via URAT1 in potassium oxonate-induced hyperuricemic rats. Pharmaceuticals 2023, 16, 419. [Google Scholar] [CrossRef]
- Deng, L.; Du, C.; Song, P.; Chen, T.; Rui, S.; Armstrong, D.G.; Deng, W. The role of oxidative stress and antioxidants in diabetic wound healing. Oxidative Med. Cell. Longev. 2021, 2021, 8852759. [Google Scholar] [CrossRef]
- Ranjbar, M.; Mahmoudi, C. A taxonomic revision of Scutellaria sect. Lupulinaria subsect. Lupulinaria (Lamiaceae) in Iran. Feddes Repert. 2017, 128, 63–101. [Google Scholar] [CrossRef]
- Shen, J.; Li, P.; Liu, S.; Liu, Q.; Li, Y.; Sun, Y.; He, C.; Xiao, P. Traditional uses, ten-years research progress on phytochemistry and pharmacology, and clinical studies of the genus Scutellaria. J. Ethnopharmacol. 2021, 265, 113–198. [Google Scholar] [CrossRef]
- Benítez-Benítez, R.; Sarria-Villa, R.A.; Gallo-Corredor, J.A.; Pérez Pacheco, N.O.; Álvarez Sandoval, J.H.; Giraldo Aristizabal, C.I. Obtención y rendimiento del extracto etanólico de dos plantas medicinales. Rev. Fac. Cienc. Básicas 2020, 15, 31–40. [Google Scholar] [CrossRef]
- Wang, Z.L.; Wang, S.; Kuang, Y.; Hu, Z.M.; Qiao, X.; Ye, M. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharm. Biol. 2018, 56, 465–484. [Google Scholar] [CrossRef] [Green Version]
- Karimov, A.M.; Botirov, E.K. Structural diversity and state of knowledge of flavonoids of the Scutellaria L. genus. Russ. J. Bioorganic Chem. 2017, 43, 691–711. [Google Scholar] [CrossRef]
- Joshee, N.; Dhekney, S.A.; Parajuli, P. Skullcaps (Scutellaria spp.): Ethnobotany and current research. In Medicinal Plants. From Farm to Pharmacy, 1st ed.; Joshee, N., Dhekney, S.A., Parajuli, P., Eds.; Springer: Cham, Switzerland, 2019; Volume 1, pp. 449–632. [Google Scholar]
- Grzegorczyk-Karolak, I.; Kontek, B.; Kontek, R.; Wysokińska, H.; Olas, B. Evaluation of antioxidant activity of extracts from the roots and shoots of Scutellaria alpina L. and S. altissima L. and selected blood cells. Adv. Clin. Exp. Med. 2019, 28, 453–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.H.; Lee, H.; Choi, Y.Y.; Lee, D.H.; Yang, W.M. Scutellaria baicalensis ameliorates the destruction of periodontal ligament via inhibition of inflammatory cytokine expression. J. Chin. Med. Assoc. 2018, 81, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Kwon, Y.S.; Kim, D.; Lee, J.; Kim, H.P. Flavonoids from Scutellaria baicalensis inhibit senescence-associated secretory phenotype production by interrupting IκBζ/C/EBPβ pathway: Inhibition of age-related inflammation. Phytomedicine 2020, 76, 153–255. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Xing, G.; Zhang, M.; Zhong, M.; Han, Z.; He, C.; Liu, X. Wogonoside inhibits cell growth and induces mitochondrial-mediated autophagy-related apoptosis in human colon cancer cells through the PI3K/AKT/mTOR/p70S6K signaling pathway. Oncol. Lett. 2018, 15, 4463–4470. [Google Scholar] [CrossRef] [Green Version]
- Roy, M.K.; Nakahara, K.; Na Thalang, V.; Trakoontivakorn, G.; Takenaka, M.; Isobe, S.; Tsushida, T. Baicalein, a flavonoid extracted from a methanolic extract of Oroxylum indicum inhibits proliferation of a cancer cell line in vitro via induction of apoptosis. Pharmazie 2007, 62, 149–153. [Google Scholar]
- Li-Weber, M. New therapeutic aspects of flavones: The anticancer properties of Scutellaria and its main active constituents wogonin, baicalein and baicalin. Cancer Treat. Rev. 2009, 35, 57–68. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, L.; Wu, Y.; Dai, Q.; Zhou, Y.; Li, Z.; Yang, L.; Guo, Q.; Lu, N. Selective anti-tumor activity of wogonin targeting the warburg effect through stablizing p53. Pharmacol. Res. 2018, 135, 49–59. [Google Scholar] [CrossRef]
- Huang, H.; Cai, H.; Zhang, L.; Hua, Z.; Shi, J.; Wei, Y. Oroxylin A inhibits carcinogen-induced skin tumorigenesis through inhibition of inflammation by regulating SHCBP1 in mice. Int. Immunopharmacol. 2020, 80, 106–123. [Google Scholar] [CrossRef]
- Pabón, L.C.; Rodríguez, M.F.; Hernández-Rodríguez, P. Plantas medicinales que se comercializan en Bogotá (Colombia) para el tratamiento de enfermedades infecciosas. BLACPMA 2017, 16, 529–546. [Google Scholar]
- Metlin Database. Available online: https://metlin.scripps.edu/landing_page.php?pgcontent=mainPage (accessed on 20 May 2021).
- Liu, G.; Rajesh, N.; Wang, X.; Zhang, M.; Wu, Q.; Li, S.; Chen, B.; Yao, S. Identification of flavonoids in the stems and leaves of Scutellaria baicalensis Georgi. J. Chromatogr. B 2011, 879, 1023–1028. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Ye, M.; Xu, M.; Sun, J.; Wang, B.; Guo, D. Characterization of flavonoids in the traditional chinese herbal medicine-Huangqin by liquid chromatography coupled with electrospray ionization mass spectrometry. J. Chromatogr. B 2007, 848, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Molina-García, L.; Fernández-de Córdova, M.L.; Aktumsek, A.; Uysal, S.; Rengasamy, K.R.; Aumeeruddy, M.Z.; Bahadori, M.B.; Mahomoodally, M.F. Chemical profile, antioxidant, and enzyme inhibitory properties of two Scutellaria species: S. orientalis L. and S. salviifolia Benth. J. Pharm. Pharmacol. 2019, 71, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Ma, J.; Chen, Y.; Tian, Q.; Shen, Y.; Wang, X.; Chen, B.; Yao, S. Investigation of flavonoid profile of Scutellaria bacalensis Georgi by high performance liquid chromatography with diode array detection and electrospray ion trap mass spectrometry. J. Chromatogr. A 2009, 1216, 4809–4814. [Google Scholar] [CrossRef]
- Seo, O.N.; Kim, G.S.; Kim, Y.H.; Park, S.; Jeong, S.W.; Lee, S.J.; Jin, J.S.; Shin, S.C. Determination of polyphenol components of korean Scutellaria baicalensis Georgi using liquid chromatography-tandem mass spectrometry: Contribution to overall antioxidant activity. J. Funct. Foods 2013, 5, 1741–1750. [Google Scholar] [CrossRef]
- He, L.; Zhang, Z.; Lu, L.; Liu, Y.; Li, S.; Wang, J.; Song, Z.; Yan, Z.; Miao, J. Rapid identification and quantitative analysis of the chemical constituents in Scutellaria indica L. by UHPLC-QTOF-MS and UHPLC-MS/MS. J. Pharm. Biomed. Anal. 2016, 117, 125–139. [Google Scholar] [CrossRef]
- Huang, D.; Boxin, O.U.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Masek, A.; Chrzescijanska, E. Effect of UV-A irradiation and temperature on the antioxidant activity of quercetin studied using ABTS, DPPH and electrochemistry methods. Int. J. Electrochem. Sci. 2015, 10, 5276–5290. [Google Scholar]
- Sierra Prada, L.J.; Stashenko, E.E.; Martínez Morales, J.R. Estudio de la Composición Química y Evaluación de Las Actividades Antioxidante y Fotoprotectora de Extractos de Flores de Plantas Tropicales Cultivadas en Colombia. Ph.D. Dissertation, Universidad Industrial de Santander, Bucaramanga, Colombia, 2020. [Google Scholar]
- Lizette Gil del Valle, R.G.H. El estrés oxidativo como cofactor de algunas enfermedades infeccisoas. Boletín Epidemiológico Sem. 2015, 27, 17–24. [Google Scholar]
- Kabera, J.N.; Semana, E.; Mussa, A.R.; He, X. Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties. J. Pharm. Pharmacol. 2014, 2, 377–392. [Google Scholar]
- Shang, X.; He, X.; Li, M.; Zhang, R.; Fan, P.; Zhang, Q.; Jia, Z. The genus Scutellaria an ethnopharmacological and phytochemical review. J. Ethnopharmacol. 2010, 128, 279–313. [Google Scholar] [CrossRef] [PubMed]
- Joshee, N.; Parajuli, P.; Medina-Bolivar, F.; Shannon, D. Scutellaria: Biotechnology, phytochemistry and its potencial as a commercial medicinal crop. In Biotechnology for Medicinal Plants, 1st ed.; Chandra, S., Ed.; Springer: Berlin, Germany, 2013; Volume 1, pp. 70–75. [Google Scholar]
- Fabre, N.; Rustan, I.; Hoffman, E.; Quetin-Leclercq, J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. Am. Soc. Mass Spectrom. 2001, 50, 707–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becchi, M.; Fraisse, D. Fast atom bombardment and fast atom bombardment collision-activated dissociation/mass-analysed ion kinetic energy analysis of C-glycosidic flavonoids. Biomed. Environ. Mass Spectrom. 1989, 18, 122–130. [Google Scholar] [CrossRef]
- Wu, W.; Yan, C.; Li, L.; Liu, Z.; Liu, S. Studies on the flavones using liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromatogr. A 2004, 1047, 213–220. [Google Scholar] [CrossRef]
- Li, Q.M.; Claeys, M. Characterization and differentiation of diglycosyl flavonoids by positive ion fast atom bombardment and tandem mass spectrometry. Biol. Mass Spectrom. 1994, 23, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.L.; Vedernikova, I.; Van Den Heuvel, H.; Claeys, M. Internal glucose residue loss in protonated O-diglycosyl flavonoids upon low-energy collision-induced dissociation. J. Am. Soc. Mass Spectrom. 2000, 11, 136–144. [Google Scholar] [CrossRef] [Green Version]
- Dai, S.J.; Tao, J.Y.; Liu, K.; Jiang, Y.T.; Shen, L. neo-Clerodane diterpenoids from Scutellaria barbata with cytotoxic activities. Phytochemistry 2006, 67, 1326–1330. [Google Scholar] [CrossRef]
- Esquivel, B.; Flores, E.; Hernández-Ortega, S.; Toscano, R.A. neo-Clerodane diterpenoids from Scutellaria drummondii. Phytochemistry 1995, 38, 175–179. [Google Scholar] [CrossRef]
- Maleki, S.; Akaberi, T.; Emami, S.A.; Akaberi, M. Diterpenes of Scutellaria spp.: Phytochemistry and pharmacology. Phytochemistry 2022, 201, 113–285. [Google Scholar] [CrossRef]
- Horvath, C.R.; Martos, P.A.; Saxena, P.K. Identification and quantification of eight flavones in root and shoot tissues of the medicinal plant Huang-qin (Scutellaria baicalensis Georgi) using high-performance liquid chromatography with diode array and mass spectrometric detection. J. Chromatogr. A 2005, 1062, 199–207. [Google Scholar] [CrossRef]
- Awad, R.; Arnason, J.T.; Trudeau, V.; Bergeron, C.; Budzinski, J.W.; Foster, B.C.; Merali, Z. Phytochemical and biological analysis of skullcap (Scutellaria lateriflora L.): A medicinal plant with anxiolytic properties. Phytomedicine 2003, 10, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Li, B.Q.; Fu, T.; Dongyan, Y.; Mikovits, J.A.; Ruscetti, F.W.; Wang, J.M. Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry. Biochem. Biophys. Res. Commun. 2000, 276, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Zhu, J. Baicalin alleviates oxidative stress damage in trabecular meshwork cells in vitro. Naunyn. Schmiedebergs. Arch. Pharmacol. 2018, 391, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Zhan, S.; Wang, Y.; Zhou, G.; Liang, H.; Chen, X.; Shen, H. Baicalin, the major component of traditional Chinese medicine Scutellaria baicalensis induces colon cancer cell apoptosis through inhibition of oncomiRNAs. Sci. Rep. 2018, 8, 14477. [Google Scholar] [CrossRef] [Green Version]
- Moghaddam, E.; Teoh, B.T.; Sam, S.S.; Lani, R.; Hassandarvish, P.; Chik, Z.; Yueh, A.; Abubakar, S.; Zandi, K. Baicalin, a metabolite of baicalein with antiviral activity against dengue virus. Sci. Rep. 2014, 4, 5452. [Google Scholar] [CrossRef] [Green Version]
- López Luengo, M.T. Flavonoides. Offarm 2002, 21, 108–114. [Google Scholar]
- Cartaya, O.; Reynaldo, I. Reseña bibliográfica. Flavonoides: Características químicas y aplicaciones. Cultiv. Trop. 2001, 22, 5–14. [Google Scholar]
- Lee, K.J.; Jung, P.M.; Oh, Y.C.; Song, N.Y.; Kim, T.; Ma, J.Y. Extraction and bioactivity analysis of major flavones compounds from Scutellaria baicalensis using in vitro assay and on-line screening HPLC-ABTS System. J. Anal. Methods Chem. 2014, 2014, 563702. [Google Scholar]
- Sun, Y.X.; Tang, Y.; Wu, A.L.; Liu, T.; Dai, X.L.; Zheng, Q.S.; Wang, Z.B. Neuroprotective effect of liquiritin against focal cerebral ischemia/reperfusion in mice via its antioxidant and antiapoptosis properties. J. Asian Nat. Prod. Res. 2010, 12, 1051–1060. [Google Scholar] [CrossRef]
- Zhang, X.H.; Zhou, C.C.; Li, C.Y.; Hua, Y.; Li, K.; Wei, P.; He, M.F. Isoliquiritin exert protective effect on telencephalon infarction injury by regulating multi-pathways in zebrafish model of ischemic stroke. Phytomedicine 2020, 83, 153–469. [Google Scholar] [CrossRef]
- Riebel, M.; Claus, H.; Xia, N.; Li, H.; König, H.; Decker, H.; Fronk, P. Antioxidant capacity of phenolic compounds on human cell lines as affected by grape-tyrosinase and Botrytis-laccase oxidation. Food Chem. 2017, 229, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.D.Q.; Greco, S.J.; Delarmelina, M.; Weber, K.C. Electrochemical quantification of the structure/antioxidant activity relationship of flavonoids. Electrochim. Acta 2015, 163, 161–166. [Google Scholar] [CrossRef]
- Cotelle, N. Role of flavonoids in oxidative stress. Curr. Top. Med. Chem. 2005, 1, 569–590. [Google Scholar] [CrossRef] [PubMed]
- Ishimoto, H.; Tai, A.; Yoshimura, M.; Amakura, Y.; Yoshida, T.; Hatano, T.; Ito, H. Antioxidative properties of functional polyphenols and their metabolites assessed by an ORAC assay. Biosci. Biotechnol. Biochem. 2012, 76, 395–399. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Deng, Z.; Zhang, J.; Dong, H.; Wang, W.; Xing, B.; Liu, X. Comparison of flavonoid O-glycoside, C-glycoside and their aglycones on antioxidant capacity and metabolism during in vitro digestion and in vivo. Foods 2022, 11, 882. [Google Scholar] [CrossRef]
- Plumb, G.W.; Price, K.R.; Williamson, G. Antioxidant properties of flavonol glycosides from tea. Redox Rep. 1999, 4, 13–16. [Google Scholar] [CrossRef]
- Ji, Y.; Li, B.; Qiao, M.; Li, J.; Xu, H.; Zhang, L.; Zhang, X. Advances on the in vivo and in vitro glycosylations of flavonoids. Appl. Microbiol. Biotechnol. 2020, 104, 6587–6600. [Google Scholar] [CrossRef]
- Liang, S.; Xu, Z.; Ruan, Y.; Niu, T.; Guo, W.; Jiang, W.; Hou, J. Isoquercitrin attenuates renal ischemia/reperfusion injury through antioxidation, anti-inflammation, and antiapoptosis in mice. Transplant. Proc. 2020, 52, 1014–1019. [Google Scholar] [CrossRef]
- Xiao, J. Dietary flavonoid aglycones and their glycosides: Wich show better biological significance? Crit. Rev. Food Sci. Nutr. 2017, 57, 1874–1905. [Google Scholar] [CrossRef]
- The NIST Mass Spectrometry Data Center. The NIST Mass Spectral Search Program. Standard Reference Data Program of the National Institute of Standards and Technology, U.S.A.; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017.
- Wishart, D.S.; Knox, C.; Guo, A.C.; Eisner, R.; Young, N.; Gautam, B.; Hau, D.D.; Psychogios, N.; Dong, E.; Bouatra, S.; et al. The human metabolome database. Nucleic Acids Res. 2009. Available online: https://hmdb.ca/ (accessed on 15 June 2022).
- Re, R.; Pellergrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Panovska, T.K.; Kulevanova, S.; Stefova, M. In vitro antioxidant activity of some Teucrium species (Lamiaceae). Acta Pharm. 2005, 55, 207–214. [Google Scholar]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef] [PubMed]
- Cardinali, A.; Linsalata, V.; Lattanzio, V.; Ferruzzi, M.G. Verbascosides from olive mill waste water: Assessment of their bioaccessibility and intestinal uptake using an in vitro digestion/Caco-2 model system. J. Food Sci. 2011, 76, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; You, J.; Bao, C.; Zhang, H.; Meng, X.; Xiao, T.; Zhang, K.; Wang, Y.; Wang, H.; Zhang, H.; et al. Determination of total flavonoids in Scutellaria barbata D. Don by dynamic ultrasonic extraction coupled with on-line spectrophotometry. Anal. Chim. Acta 2008, 610, 217–223. [Google Scholar] [CrossRef]
- Liang, R.A.; Rui-Min, H.A.; Li-Min, F.U.; Xi-Cheng, A.I.; Zhang, J.P.; Skibsted, L.H. Baicalin in radical scavenging and its synergistic effect with β-carotene in antilipoxidation. J. Agric. Food Chem. 2009, 57, 7118–7124. [Google Scholar] [CrossRef]
- Oh, M.C.; Piao, M.J.; Fernando, P.M.; Han, X.; Hewage, S.R.; Park, J.E.; Ko, M.S.; Jung, U.; Kim, I.G.; Hyun, J.W. Baicalein protects human skin cells against ultraviolet β-induced oxidative stress. Biomol. Ther. 2016, 24, 616–622. [Google Scholar] [CrossRef] [Green Version]
Species | S. incarnata | S. coccinea | S. ventenatii × S. incarnata | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Yield | AA | Yield | AA | Yield | AA | ||||||
Source | F | p | F | p | F | p | F | p | F | p | F | p |
A: Temperature | 20.59 | 0.001 | 61.26 | 0 | 4.22 | 0.064 | 24.65 | 0.001 | 17.61 | 0.001 | 368.69 | 0 |
B: Solvent | 0.15 | 0.709 | 60.39 | 0 | 131.89 | 0.000 | 22.09 | 0.001 | 12.23 | 0.005 | 2589.6 | 0 |
C: Time | 0.64 | 0.441 | 2.89 | 0.117 | 35.09 | 0.001 | 18.52 | 0.001 | 0.49 | 0.499 | 3300.1 | 0 |
AB | 0.2 | 0.663 | 28.9 | 0.002 | 1.06 | 0.326 | 7.85 | 0.017 | 20.35 | 0.001 | 6680.8 | 0 |
AC | 9.22 | 0.011 | 0.65 | 0.436 | 16.40 | 0.002 | 25.54 | 0.001 | 0.28 | 0.61 | 5.57 | 0.042 |
BC | 4.31 | 0.062 | 30.72 | 0.001 | 5.00 | 0.050 | 8.10 | 0.016 | 15.61 | 0.002 | 67.84 | 0 |
Species | Combined Response | Yield, % ± s (n = 3) | Online HPLC-ABTS+•, µmol Trolox®/g extract ± s (n = 3) * | ||
---|---|---|---|---|---|
Temperature, °C | EtOH−H2O, % | Time, min | |||
S. incarnata | 50 | 70 | 5 | 26.0 ± 0.6 | 870 ± 3.5 |
S. coccinea | 50 | 70 | 15 | 22.1 ± 0.4 | 920 ± 4.9 |
S. ventenatii × S. incarnata | 50 | 40 | 15 | 19.4 ± 0.2 | 500 ± 2.1 |
Peak N° Figure 2 | Compound | Formula | Experimental Masses, m/z (I, %) | Δppm | HCD, eV | Product Ions | Formula | m/z (I, %) | Identification Criteria | Refs |
---|---|---|---|---|---|---|---|---|---|---|
1 | Isocarthamidin-glucuronide | C21H20O12 | [M+H]+ 465.13580 (2%) | 0.45 | 20 | [(M+H)−C6H8O6]+ | C15H13O6 | 289.07043 (100%) | a,b | [24] |
[(M+H)−C6H8O6−C8H8O]+ | C8H8O | 169.01312 (15%) | ||||||||
[(M+H)−C6H8O6−H2O]+ | C15H11O5 | 271.06006 (1%) | ||||||||
[(M+H)−C6H8O6−H2O−C6H4O3]+ | C9H7O2 | 147.04401 (6%) | ||||||||
2 | Apigenin-C-glucoside-C-arabinoside (Schaftoside) | C26H28O14 | [M−H]− 563.14191 (75%) | 1.13 | 30 | [(M−H)−C2H4O2]− | C24H23O12 | 503.12198 (5%) | a,b | [25] |
[(M−H)−C3H6O3]− | C23H21O11 | 473.10934 (64%) | ||||||||
[(M−H)−C4H8O4]− | C22H17O10 | 443.09860 (70%) | ||||||||
[(M−H)−C5H10O5]− | C21H17O9 | 413.08817 (13%) | ||||||||
[(M−H)−C2H4O2−C4H8O4]− | C20H15O8 | 383.07773 (68%) | ||||||||
[(M-H)−C2H4O2−C5H10O5]− | C19H13O7 | 353.06668 (100%) | ||||||||
3 | Verbascoside | C29H36O15 | [M−H]− 623.19704 (7%) | 1.13 | 30 | [(M−H)−C9H6O3]− | C20H29O12 | 461.16672 (14%) | a,b | [26] |
[(M−H)−C9H6O3−C6H10O4]− | C14H19O8 | 315.10852 (3%) | ||||||||
[(M−H)−C20H30O12]− | C9H5O3 | 161.02365 (100%) | ||||||||
4 | Umbelliferone-hexoside-pentoside | C21H27O12 | [M+H]+ 471.14954 (20%) | 1.00 | 10 | [(M+H)−2H2O]+ | C21H23O10 | 435.12823 (5%) | a | - |
[(M+H)−C6H10O4]+ | C15H17O8 | 325.09261 (100%) | ||||||||
[(M+H)−C6H10O5]+ | C15H17O7 | 309.09671 (10%) | ||||||||
[(M+H)−C6H10O4−C6H10O5]+ | C9H7O3 | 163.03836 (17%) | ||||||||
[(M+H)−C6H10O4−C6H10O5−H2O]+ | C9H5O2 | 145.07590 (13%) | ||||||||
5 | Scutellarin | C21H18O12 | [M+H]+ 463.09691 (40%) | 0.42 | 10 | [(M+H)−C6H8O6]+ | C15H11O6 | 287.05537 (49%) | a,b,c | [24] |
[(M+H)−C6H8O6−C6H4O3]+ | C9H7O3 | 163.03885 (9%) | ||||||||
6 | Apigenin-7-glucuronide | C21H18O11 | [M+H]+ 447.09056 (12%) | 0.54 | 20 | [(M+H)−C6H8O6]+ | C15H11O5 | 271.06033 (100%) | a,b,c | [24] |
[(M+H)−C6H8O6−C8H6]+ | C7H5O5 | 169.01256 (1%) | ||||||||
7 | Isoliquiritin | C21H22O9 | [M+H]+ 419.13366 (22%) | 1.07 | 10 | [(M+H)−C6H10O5]+ | C15H13O4 | 257.08054 (100%) | a,b | [23] |
[(M+H)−C6H10O5−H2O]+ | C15H11O4 | 239.06585 (7%) | ||||||||
8 | Dihydrobaicalein glucuronide | C21H20O11 | [M+H]+ 449.10602 (3%) | 0.44 | 10 | [(M+H)−C6H8O6]+ | C15H11O5 | 273.07538 (100%) | a,b | [24] |
[(M+H)−C6H8O6−C8H8]+ | C7H5O5 | 169.01341 (82%) | ||||||||
[(M+H)−C6H8O6−C6H6O4]+ | C9H7O | 131.04932 (25%) | ||||||||
9 | Baicalin | C21H18O11 | [M+H]+ 447.09056 (5%) | 0.33 | 20 | [(M+H)−C6H8O6]+ | C15H11O5 | 271.06033 (100%) | a,b,c | [24] |
[(M+H)−C6H8O6−C8H6]+ | C7H5O5 | 169.01256 (1%) | ||||||||
10 | Scutellarein | C15H10O6 | [M+H]+ 287.05444 (100%) | 0.57 | 60 | [(M+H)−H2O]+ | C15H9O5 | 269.04416 (16%) | a,b,c | [24] |
[(M+H)−H2O−CO]+ | C14H9O4 | 241.04912 (8%) | ||||||||
[(M+H)−C8H6O]+ | C7H5O5 | 169.01280 (24%) | ||||||||
[(M+H)−C8H6O−CO]+ | C6H5O4 | 141.01810 (10%) | ||||||||
[(M+H)−C8H6O−CO−H2O]+ | C6H3O3 | 123.00771 (56%) | ||||||||
[(M+H)−C7H5O5]+ | C8H7O | 119.04921 (32%) | ||||||||
11 | Wogonoside | C22H20O11 | [M+H]+ 461.17773 (61%) | 20 | 0.47 | [(M+H)−C6H8O6]+ | C16H13O5 | 285.07535 (100%) | a,b,c | [24] |
[(M+H)−C6H8O6−CH3]+ | C15H10O5 | 270.05164 (2%) | ||||||||
12 | Norwogonin-glucuronide | C21H18O11 | [M+H]+ 447.20953 (52%) | 20 | 0.24 | [(M+H)−C6H8O6]+ | C15H11O5 | 271.06003 (100%) | a,b | [24] |
[(M+H)−C6H8O6−C8H6]+ | C7H5O5 | 169.01256 (1%) | ||||||||
13 | Dihydrobaicalein | C15H12O5 | [M+H]+ 273.07617 (28%) | 40 | 0.41 | [(M+H)−H2O]+ | C15H11O4 | 255.06465 (2%) | a,b | [24] |
[(M+H)−C2H2O]+ | C13H11O4 | 231.06482 (1%) | ||||||||
[(M+H)−C8H8]+ | C7H5O5 | 169.01292 (100%) | ||||||||
[(M+H)−C6H6O4]+ | C9H7O | 131.04906 (34%) | ||||||||
[(M+H)−C7H5O5]+ | C8H7 | 103.05447 (4%) | ||||||||
14 | Norwogonina | C15H10O5 | [M+H]+ 271.05969 (100%) | 60 | 0.31 | [(M+H)−H2O]+ | C15H9O4 | 253.04919 (2%) | a,b,c | [27] |
[(M+H)−H2O−CO]+ | C14H9O3 | 225.05435 (4%) | ||||||||
[(M+H)−C8H8]+ | C7H5O5 | 169.01305 (28%) | ||||||||
[(M+H)−C8H8−CO]+ | C6H5O4 | 141.01811 (5%) | ||||||||
[(M+H)−C8H8−CO−H2O]+ | C6H3O3 | 123.00773 (6%) | ||||||||
[(M+H)−C7H5O5]+ | C8H7 | 103.04451 (16%) | ||||||||
15 | Baicalein | C15H10O5 | [M+H]+ 271.05969 (100%) | 60 | 0.41 | [(M+H)−H2O]+ | C15H9O4 | 253.04919 (1%) | a,b,c | [27] |
[(M+H)−H2O−CO]+ | C14H9O3 | 225.05435 (7%) | ||||||||
[(M+H)−C8H6]+ | C7H5O5 | 169.01305 (16%) | ||||||||
[(M+H)−C8H6−CO]+ | C6H5O4 | 141.01811 (11%) | ||||||||
[(M+H)−C8H6−CO−H2O]+ | C6H3O3 | 123.00773 (63%) | ||||||||
[(M+H)−C7H4O5]+ | C8H7 | 103.04451 (10%) | ||||||||
16 | Wogonin | C16H12O5 | [M+H]+ 285.07575 (8%) | 50 | 0.49 | [(M+H)−CH3]+ | C15H10O5 | 270.05176 (100%) | a,b,c | [27] |
[(M+H)−CH3−CO]+ | C14H10O4 | 242.05701 (1%) | ||||||||
[(M+H)−CH3−C8H7]+ | C7H4O5 | 168.07658 (3%) | ||||||||
[(M+H)−CH3−C7H4O5]+ | C8H7 | 103.05444 (2%) | ||||||||
17 | Phenolic diterpene | C20H26O4 | [M-H]− 329.17474 (15%) | 40 | 0.92 | [(M−H)−CH3]− | C19H22O4 | 314.15262 (100%) | a | - |
[(M−H)−2CH3]− | C18H19O4 | 299.12906 (0.1%) | ||||||||
[(M−H)−C3H8]− | C17H17O4 | 285.11313 (0.2%) | ||||||||
[(M−H)−C4H10]− | C16H15O4 | 271.09641 (0.3%) |
Compound | mg Compound/g Dry Extract, Value ± s (n = 3) | ||
---|---|---|---|
S. incarnata | S. coccinea | S. ventenatii × S. incarnata | |
Baicalein | 16.37 ± 0.01 | 18.55 ± 0.04 | 12.80 ± 0.01 |
Baicalin | 278.127 ± 0.005 | 158.3 ± 0.3 | 186.87 ± 0.01 |
Wogonin | 0.159 ± 0.004 | 0.7 ± 0.3 | 14.883 ± 0.006 |
Wogonoside | 1.25 ± 0.06 | 1.241 ± 0.007 | 11.84 ± 0.04 |
Scutellarein | 2 ± 1 | 3.79 ± 0.01 | 0.60 ± 0.02 |
Scutellarin | 33.77 ± 0.02 | 21.400 ± 0.007 | 20.09 ± 0.03 |
Norwogonin | <LOD | <LOD | 4.24 ± 0.04 |
Dihydrobaicalein a | 7.295 ± 0.009 | 8.843 ± 0.006 | 2.21 ± 0.07 |
Dihydrobaicalein glucuronide b | 140.18 ± 0.07 | 51.20 ± 0.02 | 44.89 ± 0.06 |
Norwogonin-glucuronide c | <LOD | <LOD | 29.79 ± 0.04 |
Isocarthamidin-glucuronide d | 13.117 ± 0.005 | 11.419 ± 0.007 | <LOD |
Apigenin-C-glucoside-C-arabinoside (Schaftoside) e | 0.83 ± 0.02 | 0.84 ± 0.02 | 0.43 ± 0.03 |
Verbascoside f | 33.72 ± 0.04 | 32.17 ± 0.06 | 41.54 ± 0.03 |
Umbelliferone-hexoside-pentoside g | 0.423 ± 0.008 | 0.60 ± 0.05 | 0.395 ± 0.003 |
Apigenin-7-glucuronide b | <LOD | <LOD | 9.24 ± 0.03 |
Isoliquiritin h | <LOD | 1.56 ± 0.05 | <LOD |
Extracts/Compounds | Antioxidant Activity Assay | |||
---|---|---|---|---|
ORAC, µmol Trolox®/g Extract ± s, (n = 3) | ABTS+., µmol Trolox®/g Extract ± s, (n = 3) | Online HPLC-ABTS+•, µmol Trolox®/g Extract ± s, (n = 2) * | β-Carotene, µmol Trolox®/g Extract ± s, (n = 3) | |
S. coccinea | 3830 ± 3 a | 750 ± 1 a | 931 ± 3 a | 74.3 ± 0.8 a |
S. incarnata | 2510 ± 2 c | 680 ± 1 b | 844 ± 2 b | 70 ± 1 b |
S. ventenatii × S. incarnata | 2900 ± 2 b | 420 ± 1 c | 503 ± 2 c | 34 ± 1 c |
Baicalein | 7150 ± 1 | 11,920.3 ± 0.3 | 11,560 ± 1 | − |
Baicalin | 4736.0 ± 0.9 | 2570 ± 1 | 3522.12 ± 0.06 | − |
Scutellarein | 22,830 ± 1 | 11,090 ± 1 | 12,124.9 ± 0.3 | − |
Scutellarin | 12,004.9 ± 0.8 | 1744.5 ± 0.7 | 640 ± 1 | − |
Wogonin | 9060 ± 1 | 5503.4 ± 0.5 | 90 ± 3 | − |
Wogonoside | 3710 ± 1 | 1120 ± 2 | − | − |
Apigenin | 29,420 ± 3 | 4100 ± 1 | − | − |
Apigenin glucuronide | 10,670 ± 3 | 520 ± 1 | − | − |
Norwogonin | 6100 ± 3 | 6323.4 ± 0.6 | − | − |
Quercetin | 25,691.2 ± 0.6 | 11,100 ± 1 | 9228.3 ± 0.4 | 100 ± 1 |
Quercetin [31,32] | 35,550 ± 1 | 10,000 ± 1 | 13,900 ± 99 | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porras, S.M.; Saavedra, R.A.; Sierra, L.J.; González, R.T.; Martínez, J.R.; Stashenko, E.E. Chemical Characterization and Determination of the Antioxidant Properties of Phenolic Compounds in Three Scutellaria sp. Plants Grown in Colombia. Molecules 2023, 28, 3474. https://doi.org/10.3390/molecules28083474
Porras SM, Saavedra RA, Sierra LJ, González RT, Martínez JR, Stashenko EE. Chemical Characterization and Determination of the Antioxidant Properties of Phenolic Compounds in Three Scutellaria sp. Plants Grown in Colombia. Molecules. 2023; 28(8):3474. https://doi.org/10.3390/molecules28083474
Chicago/Turabian StylePorras, Silvia M., Rogerio A. Saavedra, Lady J. Sierra, Robert T. González, Jairo R. Martínez, and Elena E. Stashenko. 2023. "Chemical Characterization and Determination of the Antioxidant Properties of Phenolic Compounds in Three Scutellaria sp. Plants Grown in Colombia" Molecules 28, no. 8: 3474. https://doi.org/10.3390/molecules28083474
APA StylePorras, S. M., Saavedra, R. A., Sierra, L. J., González, R. T., Martínez, J. R., & Stashenko, E. E. (2023). Chemical Characterization and Determination of the Antioxidant Properties of Phenolic Compounds in Three Scutellaria sp. Plants Grown in Colombia. Molecules, 28(8), 3474. https://doi.org/10.3390/molecules28083474