Functionalization of Framboidal Phenylboronic Acid-Containing Nanoparticles via Aqueous Suzuki–Miyaura Coupling Reactions
Abstract
:1. Introduction
2. Results
2.1. Aqueous Suzuki–Miyaura Coupling Model Reactions
2.2. BNP Modification via Aqueous Suzuki–Miyaura Coupling Reaction
2.3. Framboidal Structures of Suzuki–Miyaura Coupling-Functionalized BNP
2.4. Functionalization of Carboxylate NP (NP-1) with ADT
3. Materials and Methods
3.1. Instrumentation
3.2. Suzuki–Miyaura Coupling Model Reactions with 4-Iodo- and 4-Bromo-Benzoic Acid
3.3. Synthesis of BNPs
3.4. Alizarin Red Fluorescence Assay
3.5. BNP Functionalization with 4-Iodo-Benzoic Acid (NP-1)
3.6. BNP Functionalization with 3-(4-Bromophenyl)propionic Acid (NP-2)
3.7. BNP Functionalization with 4-Iodobenzaldehyde (NP-3)
3.8. BNP Functionalization with Suzuki–Miyaura Coupling Partner 4 (NP-4)
3.9. BNP Functionalization with Suzuki–Miyaura Coupling Partner 5 (NP-5)
3.10. Modification of NP-1 with ADT-NH2 (ADTNP)
3.11. Quantification of ADT
3.12. Cell Lysate Preparation
3.13. Measurement of H2S Release in Cell Lysate via WSP-1 Fluorescent H2S Detection Dye
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hasegawa, U.; Nishida, T.; van der Vlies, A.J. Dual Stimuli-Responsive Phenylboronic Acid-Containing Framboidal Nanoparticles by One-Step Aqueous Dispersion Polymerization. Macromolecules 2015, 48, 4388–4393. [Google Scholar] [CrossRef]
- Alexeev, V.L.; Sharma, A.C.; Goponenko, A.V.; Das, S.; Lednev, I.K.; Wilcox, C.S.; Finegold, D.N.; Asher, S.A. High Ionic Strength Glucose-Sensing Photonic Crystal. Anal. Chem. 2003, 75, 2316–2323. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, U.; Inubushi, R.; Uyama, H.; Uematsu, T.; Kuwabata, S.; van der Vlies, A.J. Mannose-displaying fluorescent framboidal nanoparticles containing phenylboronic acid groups as a potential drug carrier for macrophage targeting. Colloids Surf. B Biointerfaces 2015, 136, 1174–1181. [Google Scholar] [CrossRef] [PubMed]
- Van der Vlies, A.J.; Inubushi, R.; Uyama, H.; Hasegawa, U. Polymeric Framboidal Nanoparticles Loaded with a Carbon Monoxide Donor via Phenylboronic Acid-Catechol Complexation. Bioconj. Chem. 2016, 27, 1500–1508. [Google Scholar] [CrossRef] [PubMed]
- Van der Vlies, A.J.; Morisaki, M.; Neng, H.I.; Hansen, E.M.; Hasegawa, U. Framboidal Nanoparticles Containing a Curcumin–Phenylboronic Acid Complex with Antiangiogenic and Anticancer Activities. Bioconj. Chem. 2019, 30, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998. J. Organomet. Chem. 1999, 576, 147–168. [Google Scholar] [CrossRef]
- Polshettiwar, V.; Decottignies, A.; Len, C.; Fihri, A. Suzuki–Miyaura Cross-Coupling Reactions in Aqueous Media: Green and Sustainable Syntheses of Biaryls. ChemSusChem 2010, 3, 502–522. [Google Scholar] [CrossRef] [PubMed]
- Qiu, P.; Zhao, J.Y.; Shi, X.; Duan, X.H. An efficient water-soluble surfactant-type palladium catalyst for Suzuki cross-coupling reactions in pure water at room temperature. New J. Chem. 2016, 40, 6568–6572. [Google Scholar] [CrossRef]
- Wang, J.-C.; Liu, C.-X.; Kan, X.; Wu, X.-W.; Kan, J.-L.; Dong, Y.-B. Pd@COF-QA: A phase transfer composite catalyst for aqueous Suzuki–Miyaura coupling reaction. Gr. Chem. 2020, 22, 1150–1155. [Google Scholar] [CrossRef]
- Qi, M.; Tan, P.Z.; Xue, F.; Malhi, H.S.; Zhang, Z.-X.; Young, D.J.; Hor, T.S.A. A supramolecular recyclable catalyst for aqueous Suzuki–Miyaura coupling. RSC Adv. 2015, 5, 3590–3596. [Google Scholar] [CrossRef]
- Shaughnessy, K.H. Hydrophilic Ligands and Their Application in Aqueous-Phase Metal-Catalyzed Reactions. Chem. Rev. 2009, 109, 643–710. [Google Scholar] [CrossRef] [PubMed]
- Karna, P.; Okeke, M.; Meira, D.M.; Finfrock, Z.; Yang, D.-S. Water-Soluble Palladium Nanoclusters as Catalysts in Ligand-Free Suzuki–Miyaura Cross-Coupling Reactions. ACS Appl. Nano Mater. 2022, 5, 3188–3193. [Google Scholar] [CrossRef]
- Jasim, S.A.; Ansari, M.J.; Majdi, H.S.; Opulencia, M.J.C.; Uktamov, K.F. Nanomagnetic Salamo-based-Pd(0) Complex: An efficient heterogeneous catalyst for Suzuki–Miyaura and Heck cross-coupling reactions in aqueous medium. J. Mol. Struct. 2022, 1261, 132930. [Google Scholar] [CrossRef]
- Ryu, J.-H.; Jang, C.-J.; Yoo, Y.-S.; Lim, S.-G.; Lee, M. Supramolecular reactor in an aqueous environment: Aromatic cross Suzuki coupling reaction at room temperature. J. Org. Chem. 2005, 70, 8956–8962. [Google Scholar] [CrossRef] [PubMed]
- Mattiello, S.; Rooney, M.; Sanzone, A.; Brazzo, P.; Sassi, M.; Beverina, L. Suzuki–Miyaura Micellar Cross-Coupling in Water, at Room Temperature, and under Aerobic Atmosphere. Org. Lett. 2017, 19, 654–657. [Google Scholar] [CrossRef] [PubMed]
- Wallow, T.I.; Novak, B.M. In aqua synthesis of water-soluble poly(p-phenylene) derivatives. J. Am. Chem. Soc. 1991, 113, 7411–7412. [Google Scholar] [CrossRef]
- Hasegawa, U.; van der Vlies, A.J. Polymeric micelles for hydrogen sulfide delivery. MedChemComm 2015, 6, 273–276. [Google Scholar] [CrossRef]
- Hasegawa, U.; van der Vlies, A.J. Design and Synthesis of Polymeric Hydrogen Sulfide Donors. Bioconj. Chem. 2014, 25, 1290–1300. [Google Scholar] [CrossRef] [PubMed]
Entry | Pd/B [mol %] 1 | T [°C] 2 | X | Conversion [%] 3 | Yield [%] 4 |
---|---|---|---|---|---|
1 | 1 | 70 | I | 100 | 94 |
2 | 0.1 | 70 | I | 100 | 79 |
3 | 0.01 | 70 | I | 100 | 93 |
4 | 1 | 25 | I | 100 | 98 |
5 | 0.1 | 25 | I | 100 | 91 |
6 | 0.01 | 25 | I | 47 | n.d. |
7 | 1 | 25 | Br | 78 | n.d. |
8 | 1 | 70 | Br | 100 | 98 |
9 | 0.1 | 70 | Br | 100 | 99 |
10 | 0.01 | 70 | Br | 100 | 100 |
DLS before Suzuki | DLS after Suzuki | |||||||
---|---|---|---|---|---|---|---|---|
Entry | Coupling Partner | Pd/B [%] 1 | Time [h] | Conversion [%] 2 | Diameter [nm] 3 | PDI 3 | Diameter [nm] 3 | PDI 3 |
NP-1 | 1 | 32 | 100 | 101.5 | 0.028 | 130.5 | 0.116 | |
NP-2 | 5 | 42 | 97 | 101.7 | 0.058 | 119.2 | 0.091 | |
NP-3 | 1 | 43 | 100 | 237.5 | 0.077 | 234.6 | 0.032 | |
NP-4 | 5 | 42 | 79 | 101.7 | 0.058 | 113.4 | 0.214 | |
NP-5 | 5 | 42 | 72 | 101.7 | 0.058 | 102.4 | 0.080 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Vlies, A.J.; Hasegawa, U. Functionalization of Framboidal Phenylboronic Acid-Containing Nanoparticles via Aqueous Suzuki–Miyaura Coupling Reactions. Molecules 2023, 28, 3602. https://doi.org/10.3390/molecules28083602
van der Vlies AJ, Hasegawa U. Functionalization of Framboidal Phenylboronic Acid-Containing Nanoparticles via Aqueous Suzuki–Miyaura Coupling Reactions. Molecules. 2023; 28(8):3602. https://doi.org/10.3390/molecules28083602
Chicago/Turabian Stylevan der Vlies, André J., and Urara Hasegawa. 2023. "Functionalization of Framboidal Phenylboronic Acid-Containing Nanoparticles via Aqueous Suzuki–Miyaura Coupling Reactions" Molecules 28, no. 8: 3602. https://doi.org/10.3390/molecules28083602
APA Stylevan der Vlies, A. J., & Hasegawa, U. (2023). Functionalization of Framboidal Phenylboronic Acid-Containing Nanoparticles via Aqueous Suzuki–Miyaura Coupling Reactions. Molecules, 28(8), 3602. https://doi.org/10.3390/molecules28083602