Optimization of Physical Refining Process of Camellia Oil for Reduction of 3-Monochloropropane-1,2-Diol (3-MCPD) Ester Formation Using Response Surface Methodology on a Laboratory Scale
Abstract
:1. Introduction
2. Results
2.1. The Influence of Different Refining Processes on the Formation of 3-MCPD Ester
2.2. Design of the 3-MCPD Ester Formation Model Based on RSM
2.3. RSM Analysis
2.4. Effects of Processing Parameters on the Formation of 3-MCPD Ester
2.4.1. Joint Interaction Effects of Activated Clay and Deodorization Temperature (X3X4) on 3-MCPD Ester Reduction
2.4.2. Joint Interaction Effects of Degumming Water and Activated Clay (X1X3) on 3-MCPD Ester Reduction
2.4.3. Joint Interaction Effects of Degumming Water and Deodorization Time (X1X5) on 3-MCPD Ester Reduction
2.4.4. Joint Interaction Effects of Deodorization Time and Deodorization Temperature (X4X5) towards 3-MCPD Ester
2.5. Model Evaluation
3. Discussion
4. Materials and Methods
4.1. Samples and Reagents
4.2. The Refining Process of Camellia Oil
4.2.1. The Degumming Process
4.2.2. The Decolorization Process
4.2.3. The Deodorization Process
4.3. Experimental Design and Response Surface Methodology Analysis
4.4. Model Verification and Statistical Analysis
4.5. 3-MCPD Ester Determination Using GC-MS
4.6. Oil Quality Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zeb, A. Triacylglycerols composition, oxidation and oxidation compounds in camellia oil using liquid chromatography–mass spectrometry. Chem. Phys. Lipids 2012, 165, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Bae, C.S.; Seo, N.S.; Na, C.S.; Yoo, H.Y.; Oh, D.S. Camellia japonica oil suppressed asthma occurrence via GATA-3 & IL-4 pathway and its effective and major component is oleic acid. Phytomedicine 2019, 57, 84–94. [Google Scholar]
- Li, C.; Nie, S.P.; Zhou, Y. Exposure assessment of 3-monochloropropane-1,2-diol esters from edible oils and fats in China. Food Chem. Toxicol. 2015, 75, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Zulkurnain, M.; Lai, O.M.; Abdul Latip, R.; Nehdie, I.A.; Ling, T.C.; Tan, C.P. The effects of physical refining on the formation of 3- monochloropropane-1,2-diol esters in relation to palm oil minor components. Food Chem. 2012, 135, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Matthaus, B.; Pudel, F.; Fehling, P.; Vosmann, K.; Freudenstein, A. Strategies for the reduction of 3-MCPD esters and related compounds in vegetable oils. Eur. J. Lipid Sci. Technol. 2011, 113, 380–386. [Google Scholar] [CrossRef]
- Zelinkov, Ã.Z.; SvejkovskÃ, B.; Velà sek, J. Fatty acid esters of 3-chloropropane-1,2-diol in edible oils. Food Addit. Contam. 2006, 23, 1290–1298. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.Q.; Liu, T.Z.; Fan, F.H.; Sun, B.G.; Tian, H.Y.; Zhang, Y.Y. Research progress of chloropropanols esters in foods. J. Food Saf. Qual. (Chin.) 2014, 12, 3962–3970. [Google Scholar]
- Hamlet, C.G.; Asuncion, L.; Velíšek, J.; Doležal, M.; Zelinková, Z.; Crews, C. Formation and occurrence of esters of 3-chloropropane-1,2-diol (3-CPD) in foods: What we know and what we assume. Eur. J. Lipid Sci. Technol. 2011, 113, 279–303. [Google Scholar] [CrossRef]
- Rahn, A.K.K.; Yaylayan, V.A. What do we know about the molecular mechanism of 3-MCPD ester formation? Eur. J. Lipid Sci. Technol. 2011, 113, 323–329. [Google Scholar] [CrossRef]
- Hew, K.S.; Khor, Y.P.; Tan, T.B.; Yusoff, M.M.; Lai, O.M.; Asis, A.J.; Alharthi, F.A.; Nehdi, I.A.; Tan, C.P. Mitigation of 3-monochloropropane-1,2-diol esters and glycidyl esters in refined palm oil: A new and optimized approach. LWT Food Sci. Technol. 2021, 139, 110612. [Google Scholar] [CrossRef]
- Stadler, R.H. Monochloropropane-1,2-diol esters (MCPDEs) and glycidyl esters (GEs): An update. Curr. Opin. Food Sci. 2015, 6, 12–18. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Analysis of occurrence of 3-monochloropropane-1,2-diol (3-MCPD) in food in Europe in the years 2009- 2011 and preliminary exposure assessment, Scientifific report of EFSA. EFSA J. 2013, 11, 3381. [Google Scholar] [CrossRef]
- SCF, Scientifific Committee on Food. Opinion on 3-Monochloro-Propane-1,2-Diol (3-MCPD), Updating the SCF Opinion of 1994 Adopted on 30 May 2001. 2001. Available online: https://ec.europa.eu/food/fs/sc/scf/out91_en.pdf (accessed on 5 September 2013).
- European Food Safety Authority (EFSA). Risk for human health related to the presence of 3- and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA J. 2016, 15, 4426. [Google Scholar]
- Habermeyer, M.; Guth, S.; Eisenbrand, G. Identification of gaps in knowledge concerning toxicology of 3-MCPD and glycidol esters. Eur. J. Lipid Sci. Technol. 2011, 113, 314–318. [Google Scholar] [CrossRef]
- Schilter, B.; Scholz, G.; Seefelder, W. Fatty acid esters of chloropropanols and related compounds in food: Toxicological aspects. Eur. J. Lipid Sci. Technol. 2011, 113, 309–313. [Google Scholar] [CrossRef]
- Chang, L.; Jia, H.; Shen, M.; Wang, Y.; Nie, S.; Chen, Y.; Zhou, Y.; Wang, Y.; Xie, M. Antioxidants Inhibit Formation of 3-Monochloropropane-1,2-diol Esters in Model Reactions. J. Agric. Food Chem. 2015, 63, 9850–9854. [Google Scholar]
- Franke, K.; Strijowski, U.; Fleck, G.; Pudel, F. Inflfluence of chemical refifining process and oil type on bound 3-chloro-1,2-propanediol contents in palm oil and rapeseed oil. Food Sci. Technol. 2009, 42, 1751–1754. [Google Scholar]
- Bertoli, C.; Cauville, F. A Deodorized Edible Oil or Fat with Low Levels of Bound MCPD and Process of Making Using an Inert Gas. Patent Cooperation Treaty Application. Patent No. WO2011/009843, 2011. [Google Scholar]
- Ramli, M.R.; Siew, W.L.; Ibrahim, N.A.; Hussein, R.; Kuntom, A.; Abd Razak, R.A.; Nesaretnam, K. Effects of degumming and bleaching on 3-MCPD esters formation during physical refining. J. Am. Oil Chem. Soc. 2011, 88, 1839–1844. [Google Scholar] [CrossRef]
- Schurz, K. Method for Reducing the 3-MCPD Content in Refined Vegetable Oils. Patent Cooperation Treaty Application. Patent No. WO10063450, 2010. [Google Scholar]
- Bas, D.; Boyacı, I.H. Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 2007, 78, 836–845. [Google Scholar] [CrossRef]
- Martincic, V.; Golob, J.; de Greyt, W.; Verhe, R.; Knez, S.; Hoed, V.V.; Zilnik, L.F.; Potocnik, K.; Hras, A.R.; Ayala, J.V. Optimization of industrial-scale deodorization of high-oleic sunflower oil via response surface methodology. Eur. J. Lipid Sci. Technol. 2008, 110, 245–253. [Google Scholar] [CrossRef]
- Zulkurnain, M.; Lai, O.M.; Tan, S.C. Optimization of Palm Oil Physical Refining Process for Reduction of 3-Monochloropropane-1,2-diol (3-MCPD) Ester Formation. J. Agric. Food Chem. 2013, 61, 3341. [Google Scholar] [CrossRef] [PubMed]
- Özdikicierler, O.; Yemişçioğlu, F.; Gümüşkesen, A.S. Effects of process parameters on 3-MCPD and glycidyl ester formation during steam distillation of olive oil and olive pomace oil. Eur. Food Res. Technol. 2016, 242, 805–813. [Google Scholar] [CrossRef]
- Craft, B.D.; Nagy, K.; Sandoz, L.; Destaillats, F. Factors impacting the formation of monochloropropanediol (MCPD) fatty acid diesters during palm (Elaeis guineensis) oil production. Food Addit. Contam. Part A 2012, 29, 354–361. [Google Scholar] [CrossRef]
- Hrncirik, K.; van Duijn, G. An initial study on the formation of 3-MCPD esters during oil refifining. Eur. J. Lipid Sci. Technol. 2011, 113, 374–379. [Google Scholar] [CrossRef]
- Pudel, F.; Benecke, P.; Fehling, P.; Freudenstein, A.; Matthäus, B.; Schwaf, A. On the necessity of edible oil refining and possible sources of 3-MCPD and glycidyl esters. Eur. J. Lipid Sci. Technol. 2011, 113, 368–373. [Google Scholar] [CrossRef]
- Ermacora, A.; Hrncirik, K. Study on the thermal degradation of 3-MCPD esters in model systems simulating deodorization of vegetable oils. Food Chem. 2014, 150, 158–163. [Google Scholar] [CrossRef]
- Li, C.; Li, L.Y.; Jia, H.B.; Wang, Y.T.; Shen, M.Y.; Nie, S.P.; Xie, M.Y. Formation and reduction of 3-monochloropropane-1,2-diol esters in peanut oil during physical refining. Food Chem. 2016, 199, 605–611. [Google Scholar] [CrossRef]
- Li, C.; Zhou, Y.; Zhu, J. Formation of 3-chloropropane-1,2-diol esters in model systems simulating thermal processing of edible oil. LWT Food Sci. Technol. 2016, 69, 586–592. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, L.; Wu, P. Improvements on the Phenylboronic Acid Derivatization Method in Determination of 3-monochloropropane Fatty Acid Esters in Camellia Oil by N-(n-propyl)ethylenediamine Solid Phase Extraction. Food Anal. Methods 2021, 14, 797–804. [Google Scholar] [CrossRef]
- (GB/T2016) 229; Determination of a Cid Value of Food, National Food Safety Standard of the People’s Republic of China. National Health Commission of the People’s Republic of China: Beijing, China, 2016.
- (GB/T2016) 227; Determination of Peroxide Value of Food, National Food Safety Standard of the People’s Republic of China. National Health Commission of the People’s Republic of China: Beijing, China, 2016.
- GB/T 22460-2008; National Standard of China General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Standardization administration of People’s Republic of China: Beijing, China, 2008.
Level | Fators | ||||
---|---|---|---|---|---|
X1 (Water Degumming Dosage, %) | X2 (Degumming Temperature, °C) | X3 (Activated Clay Dosage, %) | X4 (Deodorization Temperature, °C) | X5 (Deodorization Time, h) | |
−2 | 0.75 | 40 | 0.5 | 210 | 1 |
−1 | 1.50 | 50 | 1.25 | 230 | 1.5 |
0 | 2.25 | 60 | 2.00 | 250 | 2 |
1 | 3.00 | 70 | 2.75 | 270 | 2.5 |
2 | 3.75 | 80 | 3.50 | 290 | 3 |
X1 (Water Degumming Dosage, %) | X2 (Degumming Temperature, °C) | X3 (Activated Clay Dosage, %) | X4 (Deodorization Temperature, °C) | X5 (Deodorization Time, h) | 3-MCPD Ester Content (mg/kg) | |
---|---|---|---|---|---|---|
1 | 2.25 (0) | 80.00 (2) | 2.00 (0) | 250.00 (0) | 2.00 (0) | 3.88 |
2 | 1.50 (−1) | 70.00 (1) | 2.75 (1) | 270.00 (1) | 1.50 (−1) | 3.49 |
3 | 3.00 (1) | 70.00 (1) | 1.25 (−1) | 270.00 (1) | 1.50 (−1) | 3.63 |
4 | 1.50 (−1) | 70.00 (1) | 1.25 (−1) | 270.00 (1) | 2.50 (1) | 3.79 |
5 | 2.25 (0) | 60.00 (0) | 2.00 (0) | 250.00 (0) | 2.00 (0) | 3.77 |
6 | 2.25 (0) | 60.00 (0) | 2.00 (0) | 250.00 (0) | 2.00 (0) | 3.66 |
7 | 1.50 (−1) | 50.00 (−1) | 1.25 (−1) | 230.00 (−1) | 2.50 (1) | 2.64 |
8 | 1.50 (−1) | 50.00 (−1) | 1.25 (−1) | 270.00 (1) | 1.50 (−1) | 3.23 |
9 | 1.50 (−1) | 70.00 (1) | 1.25 (−1) | 230.00 (−1) | 1.50 (−1) | 1.47 |
10 | 3.00 (1) | 70.00 (1) | 1.25 (−1) | 230.00 (−1) | 2.50 (1) | 2.81 |
11 | 2.25 (0) | 60.00 (0) | 0.50 (−2) | 250.00 (0) | 2.00 (0) | 3.98 |
12 | 2.25 (0) | 40.00 (−2) | 2.00 (0) | 250.00 (0) | 2.00 (0) | 2.99 |
13 | 2.25 (0) | 60.00 (0) | 2.00 (0) | 250.00 (0) | 2.00 (0) | 3.61 |
14 | 3.00 (1) | 50.00 (−1) | 2.75 (1) | 230.00 (−1) | 2.50 (1) | 1.57 |
15 | 3.00 (1) | 50.00 (−1) | 2.75 (1) | 270.00 (1) | 1.50 (−1) | 2.9 |
16 | 2.25 (0) | 60.00 (0) | 2.00 (0) | 250.00 (0) | 2.00 (0) | 3.66 |
17 | 1.50 (−1) | 50.00 (−1) | 2.75 (1) | 270.00 (1) | 2.50 (1) | 4.04 |
18 | 3.00 (1) | 70.00 (1) | 2.75 (1) | 270.00 (1) | 2.50 (1) | 3.63 |
19 | 2.25 (0) | 60.00 (0) | 2.00 (0) | 250.00 (0) | 2.00 (0) | 3.37 |
20 | 0.75 (−2) | 60.00 (0) | 2.00 (0) | 250.00 (0) | 2.00 (0) | 3.71 |
21 | 3.00 (1) | 50.00 (−1) | 1.25 (−1) | 230.00 (−1) | 1.50 (−1) | 2.08 |
22 | 2.25 (0) | 60.00 (0) | 2.00 (0) | 210.00 (−2) | 2.00 (0) | 1.49 |
23 | 2.25 (0) | 60.00 (0) | 2.00 (0) | 250.00 (0) | 1.00 (−2) | 0.98 |
24 | 3.00 (1) | 70.00 (1) | 2.75 (1) | 230.00 (−1) | 1.50 (−1) | 1.09 |
25 | 2.25 (0) | 60.00 (0) | 3.50 (2) | 250.00 (0) | 2.00 (0) | 2.87 |
26 | 1.50 (−1) | 70.00 (1) | 2.75 (1) | 230.00 (−1) | 2.50 (1) | 2.26 |
27 | 2.25 (0) | 60.00 (0) | 2.00 (0) | 250.00 (0) | 2.00 (0) | 3.53 |
28 | 2.25 (0) | 60.00 (0) | 2.00 (0) | 250.00 (0) | 3.00 (2) | 2.47 |
29 | 1.50 (−1) | 50.00 (−1) | 2.75 (1) | 230.00 (−1) | 1.50 (−1) | 0.87 |
30 | 3.00 (1) | 50.00 (−1) | 1.25 (−1) | 270.00 (1) | 2.50 (1) | 3.37 |
31 | 2.25 (0) | 60.00 (0) | 2.00 (0) | 290.00 (2) | 2.00 (0) | 4.38 |
32 | 3.75 (2) | 60.00 (0) | 2.00 (0) | 250.00 (0) | 2.00 (0) | 2.93 |
Sources of Variation | Sum of Squares | Degree of Freedom | Mean Square | F Value | p Value |
---|---|---|---|---|---|
Model | 29.54 | 20 | 1.48 | 33.56 | <0.0001 ** |
X1 | 0.21 | 1 | 0.21 | 4.88 | 0.0493 * |
X2 | 0.44 | 1 | 0.44 | 10.00 | 0.0090 ** |
X3 | 1.21 | 1 | 1.21 | 27.50 | 0.0003 ** |
X4 | 15.15 | 1 | 15.15 | 344.26 | <0.0001 ** |
X5 | 2.89 | 1 | 2.89 | 65.69 | <0.0001 ** |
X1X2 | 0.064 | 1 | 0.064 | 1.45 | 0.2540 |
X1X3 | 0.31 | 1 | 0.31 | 7.06 | 0.0223 * |
X1X4 | 0.11 | 1 | 0.11 | 2.51 | 0.1413 |
X1X5 | 0.25 | 1 | 0.25 | 5.62 | 0.0371 * |
X2X3 | 0.032 | 1 | 0.032 | 0.72 | 0.4155 |
X2X4 | 0.018 | 1 | 0.018 | 0.40 | 0.5406 |
X3X4 | 0.66 | 1 | 0.66 | 15.00 | 0.0026 ** |
X4X5 | 0.30 | 1 | 0.30 | 6.81 | 0.0243 * |
X12 | 0.26 | 1 | 0.26 | 5.86 | 0.0340 * |
X22 | 0.12 | 1 | 0.12 | 2.82 | 0.1215 |
X32 | 0.13 | 1 | 0.13 | 3.04 | 0.1093 |
X42 | 1.06 | 1 | 1.06 | 24.06 | 0.0005 ** |
X52 | 7.11 | 1 | 7.11 | 161.65 | <0.0001 ** |
Residual error | 0.48 | 11 | 0.044 | ||
Lack of fit | 0.39 | 6 | 0.065 | 3.46 | 0.0973 |
Purely random error | 0.094 | 5 | 0.019 | ||
Overall error | 30.02 | 31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Wu, P.; Xiang, X.; Yang, D.; Wang, L.; Hu, Z. Optimization of Physical Refining Process of Camellia Oil for Reduction of 3-Monochloropropane-1,2-Diol (3-MCPD) Ester Formation Using Response Surface Methodology on a Laboratory Scale. Molecules 2023, 28, 3616. https://doi.org/10.3390/molecules28083616
Zhang L, Wu P, Xiang X, Yang D, Wang L, Hu Z. Optimization of Physical Refining Process of Camellia Oil for Reduction of 3-Monochloropropane-1,2-Diol (3-MCPD) Ester Formation Using Response Surface Methodology on a Laboratory Scale. Molecules. 2023; 28(8):3616. https://doi.org/10.3390/molecules28083616
Chicago/Turabian StyleZhang, Liqun, Pinggu Wu, Xiaoling Xiang, Dajin Yang, Liyuan Wang, and Zhengyan Hu. 2023. "Optimization of Physical Refining Process of Camellia Oil for Reduction of 3-Monochloropropane-1,2-Diol (3-MCPD) Ester Formation Using Response Surface Methodology on a Laboratory Scale" Molecules 28, no. 8: 3616. https://doi.org/10.3390/molecules28083616
APA StyleZhang, L., Wu, P., Xiang, X., Yang, D., Wang, L., & Hu, Z. (2023). Optimization of Physical Refining Process of Camellia Oil for Reduction of 3-Monochloropropane-1,2-Diol (3-MCPD) Ester Formation Using Response Surface Methodology on a Laboratory Scale. Molecules, 28(8), 3616. https://doi.org/10.3390/molecules28083616