Chemical Profile Determination and Quantitative Analysis of Components in Oryeong-san Using UHPLC-Q-Orbitrap-MS and UPLC-TQ-MS/MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of Compounds in ORS via UHPLC-Q-Orbitrap-MS
2.2. Quantitative Analysis of Compounds in ORS Using UPLC-TQ-MS/MS
2.3. Method Validation
2.4. Sample Analysis
3. Materials and Methods
3.1. Materials and Reagents
3.2. Preparation of ORS
3.3. Preparation of Standard and Sample Solutions
3.4. UHPLC-Q-Orbitrap-MS Conditions for Qualitative Analysis
3.5. UPLC-TQ-MS/MS Conditions for Quantitative Analysis
3.6. Method Validation of Quantitative Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.; Weon, J.B.; Lee, B.; Yun, B.-R.; Eom, M.R.; Ma, C.J. Simultaneous determination of six components in the traditional herbal medicine ‘Oryeongsan’ by HPLC-DAD and LC-MS/MS. Nat. Prod. Sci. 2013, 19, 20–27. [Google Scholar]
- Lee, M.Y.; Seo, C.S.; Kim, J.Y.; Shin, H.K. Genotoxicity evaluation of Oryeong-san water extract using in vitro and in vivo tests. BMC Complement. Altern. Med. 2015, 15, 273. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Rong, X.; Jiang, J.M.; Liu, P.Q.; Li, Y. Amelioration of anti-cancer agent adriamycin-induced nephrotic syndrome in rats by Wulingsan (Gorei-San), a blended traditional Chinese herbal medicine. Food Chem. Toxicol. 2008, 46, 1452–1460. [Google Scholar] [CrossRef]
- Kim, J.-H.; Shin, H.-K. Analysis of biological experiment on Oryeong-san (Wuling-san). J. Intern. Korean Med. 2012, 33, 69–82. [Google Scholar]
- Kiga, C.; Goto, H.; Sakurai, H.; Hayashi, K.; Hikiami, H.; Shimada, Y.; Saiki, I. Effects of traditional Japanese (Kampo) medicines (orengedokuto, goreisan and shichimotsukokato) on the onset of stroke and expression patterns of plasma proteins in spontaneously hypertensive stroke-prone rats. J. Trad. Med. 2008, 25, 125–132. [Google Scholar]
- Kim, S.J.; Leem, H.H.; Nam, W.H.; Son, S.M.; Choi, H.M.; Kim, M.J.; Kim, J.O.; Lee, H.D. Effect of anti-inflammation on Oryeong-san formulation for Mix extract tablet. J. Physiol. Pathol. Korean Med. 2020, 34, 348–354. [Google Scholar] [CrossRef]
- Liu, I.M.; Tzeng, T.F.; Liou, S.S.; Chang, C.J. The amelioration of streptozotocin diabetes-induced renal damage by Wu-Ling-San (Hoelen Five Herb Formula), a traditional Chinese prescription. J. Ethnopharmacol. 2009, 124, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Lin, E.; Ho, L.; Lin, M.S.; Huang, M.H.; Chen, W.C. Wu-Ling-San formula prophylaxis against recurrent calcium oxalate nephrolithiasis—A prospective randomized controlled trial. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 199–209. [Google Scholar] [CrossRef]
- Yamada, K.; Yagi, G.; Kanba, S. Effectiveness of Gorei-san (TJ-17) for treatment of SSRI-induced nausea and dyspepsia: Preliminary observations. Clin. Neuropharmacol. 2003, 26, 112–114. [Google Scholar] [CrossRef]
- Nakao, J.; Marushima, A.; Fujita, K.; Fujimori, H.; Mashiko, R.; Kamezaki, T.; Ishikawa, E. Conservative Treatment of Chronic Subdural Hematoma with Gorei-san. Neurol. Med. Chir. 2023, 63, 31–36. [Google Scholar] [CrossRef]
- Chen, D.; Lin, S.; Xu, W.; Huang, M.; Chu, J.; Xiao, F.; Lin, J.; Peng, J. Qualitative and quantitative analysis of the major constituents in Shexiang Tongxin dropping pill by HPLC-Q-TOF-MS/MS and UPLC-QqQ-MS/MS. Molecules 2015, 20, 18597–18619. [Google Scholar] [CrossRef]
- Chen, J.; Yang, Y.; Shi, Y.P. Simultaneous quantification of twelve active components in Yiqing granule by ultra-performance liquid chromatography: Application to quality control study. Biomed. Chromatogr. 2011, 25, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Yang, J.; Yang, L.; Wang, Z.; Wang, R.; Shi, Y. Chemical profiling and marker characterization of Huangqin decoction prepared with three types of peony root by liquid chromatography with electrospray ionization mass spectrometry. J. Sep. Sci. 2020, 43, 2558–2570. [Google Scholar] [CrossRef]
- Wang, D.D.; Liang, J.; Yang, W.Z.; Hou, J.J.; Yang, M.; Da, J.; Wang, Y.; Jiang, B.H.; Liu, X.; Wu, W.Y.; et al. HPLC/qTOF-MS-oriented characteristic components data set and chemometric analysis for the holistic quality control of complex TCM preparations: Niuhuang Shangqing pill as an example. J. Pharm. Biomed. Anal. 2014, 89, 130–141. [Google Scholar] [CrossRef]
- Ministry of Food and Drug Safety of the Republic of Korea. The Korean Pharmacopoeia, 12th ed.; The KFDA Notification: Cheongju, Republic of Korea, 2020.
- Tian, T.; Chen, H.; Zhao, Y.Y. Traditional uses, phytochemistry, pharmacology, toxicology and quality control of Alisma orientale (Sam.) Juzep: A review. J. Ethnopharmacol. 2014, 158, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.Y. Traditional uses, phytochemistry, pharmacology, pharmacokinetics and quality control of Polyporus umbellatus (Pers.) Fries: A review. J. Ethnopharmacol. 2013, 149, 35–48. [Google Scholar] [CrossRef]
- Xu, S.; Qi, X.; Liu, Y.; Liu, Y.; Lv, X.; Sun, J.; Cai, Q. UPLC-MS/MS of Atractylenolide I, Atractylenolide II, Atractylenolide III, and Atractyloside A in Rat Plasma after Oral Administration of Raw and Wheat Bran-Processed Atractylodis Rhizoma. Molecules 2018, 23, 3234. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.T.; Long, F.; Wu, C.Y.; Zhou, J.; Zhang, W.; Xu, J.D.; Zhang, Y.Q.; Li, S.L. A dereplication strategy for identifying triterpene acid analogues in Poria cocos by comparing predicted and acquired UPLC-ESI-QTOF-MS/MS data. Phytochem. Anal. 2019, 30, 292–310. [Google Scholar] [CrossRef]
- Liang, Y.; Li, Y.; Sun, A.; Liu, X. Chemical compound identification and antibacterial activity evaluation of cinnamon extracts obtained by subcritical n-butane and ethanol extraction. Food Sci. Nutr. 2019, 7, 2186–2193. [Google Scholar] [CrossRef]
- Seo, C.-S.; Shin, H.-K. Simultaneous determination of cinnamaldehyde and coumarin in Oryeong-san using HPLC with Photodiode array detector. Herb. Formula Sci. 2010, 18, 251–257. [Google Scholar]
- Xiao, S.; Hao, C.; Ai, N.; Luo, K.; Wen, X.; Wang, S.; Fan, X. Deciphering the differentiations of traditional Chinese medicine analogous formulae by parallel liquid chromatography-mass spectrometry coupled with microplate-based assays. Anal. Methods 2014, 6, 9283–9290. [Google Scholar] [CrossRef]
- He, F.; Wang, C.J.; Xie, Y.; Cheng, C.S.; Liu, Z.Q.; Liu, L.; Zhou, H. Simultaneous quantification of nine aconitum alkaloids in Aconiti Lateralis Radix Praeparata and related products using UHPLC-QQQ-MS/MS. Sci. Rep. 2017, 7, 13023. [Google Scholar] [CrossRef]
- Ji, Z.; Jiang, Y.; Lin, H.; Ren, W.; Lin, L.; Guo, H.; Huang, J.; Li, Y. Global identification and quantitative analysis of representative components of Xin-Nao-Kang Capsule, a traditional Chinese medicinal formula, by UHPLC-Q-TOF-MS and UHPLC-TQ-MS. J. Pharm. Biomed. Anal. 2021, 198, 114002. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Xu, X.; Li, X.; Zhang, W.; Lu, H. Precision-characterization and quantitative determination of main compounds in Si-Ni-San with UHPLC-MS/MS based targeted-profiling method. J. Pharm. Biomed. Anal. 2021, 194, 113816. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, X.; Wang, J.; Liu, C.; Pan, J. Simultaneous determination of eight flavonoids in Sedum sarmentosum Bunge from different areas by UHPLC with triple quadrupole MS/MS. Biomed. Chromatogr. 2019, 33, e4601. [Google Scholar] [CrossRef]
- Li, X.Y.; Xu, J.D.; Zhou, S.S.; Kong, M.; Xu, Y.Y.; Zou, Y.T.; Tang, Y.; Zhou, L.; Xu, M.Z.; Xu, J.; et al. Time segment scanning-based quasi-multiple reaction monitoring mode by ultra-performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry for quantitative determination of herbal medicines: Moutan Cortex, a case study. J. Chromatogr. A 2018, 1581–1582, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Lee, S. Drug-likeness and Oral bioavailability for Chemical compounds of Medicinal Materials Constituting Oryeong-san. Korea J. Herbol. 2018, 33, 19–37. [Google Scholar]
- Yang, H.; Tuo, X.; Wang, L.; Tundis, R.; Portillo, M.P.; Simal-Gandara, J.; Deng, J. Bioactive procyanidins from dietary sources: The relationship between bioactivity and polymerization degree. Trends Food Sci. Technol. 2021, 111, 114–127. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, K.; Lu, Q.; Luo, Y.; Zhang, C.; Zheng, Y.; Sha, W. The protective effect of rosavin from Rhodiola rosea on radiation-induced intestinal injury. Chem. Biodivers. 2020, 17, e2000652. [Google Scholar] [CrossRef] [PubMed]
- Stefanachi, A.; Leonetti, F.; Pisani, L.; Catto, M.; Carotti, A. Coumarin: A natural, privileged and versatile scaffold for bioactive compounds. Molecules 2018, 23, 250. [Google Scholar] [CrossRef] [PubMed]
- Ríos, J.L. Chemical constituents and pharmacological properties of Poria cocos. Planta Med. 2011, 77, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Song, T.; Shi, R.; He, M.; Wang, R.; Lv, J.; Jiang, M. Triterpenoids from Alisma species: Phytochemistry, structure modification, and bioactivities. Front. Chem. 2020, 8, 363. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.L.; Chen, Y.J.; Zhou, S.S.; Yip, K.M.; Xu, J.; Chen, H.B.; Zhao, Z.Z. Laser microdissection hyphenated with high performance gel permeation chromatography-charged aerosol detector and ultra performance liquid chromatography-triple quadrupole mass spectrometry for histochemical analysis of polysaccharides in herbal medicine: Ginseng, a case study. Int. J. Biol. Macromol. 2018, 107, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Deshaies, S.; Sommerer, N.; Garcia, F.; Mouls, L.; Saucier, C. UHPLC-Q-Orbitrap/MS2 identification of (+)-Catechin oxidation reaction dimeric products in red wines and grape seed extracts. Food Chem. 2022, 382, 132505. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Han, C.; Liu, B.; Lin, Z.; Zhou, X.; Wang, C.; Zhu, Z. Determination of vanillin, ethyl vanillin, and coumarin in infant formula by liquid chromatography-quadrupole linear ion trap mass spectrometry. J. Dairy Sci. 2014, 97, 679–686. [Google Scholar] [CrossRef]
- Yang, W.; Ye, M.; Liu, M.; Kong, D.; Shi, R.; Shi, X.; Zhang, K.; Wang, Q.; Lantong, Z. A practical strategy for the characterization of coumarins in Radix Glehniae by liquid chromatography coupled with triple quadrupole-linear ion trap mass spectrometry. J. Chromatogr. A 2010, 1217, 4587–4600. [Google Scholar] [CrossRef]
- Zheng, G.; Liu, M.; Chao, Y.; Yang, Y.; Zhang, D.; Tao, Y.; Zhang, J.; Zeng, C.; Wei, M. Identification of lipophilic components in Citri Reticulatae Pericarpium cultivars by supercritical CO2 fluid extraction with ultrahigh-performance liquid chromatography-Q Exactive Orbitrap tandem mass spectrometry. J. Sep. Sci. 2020, 43, 3421–3440. [Google Scholar] [CrossRef]
- Tai, Y.; Zou, F.; Zhang, Q.; Wang, J.; Rao, R.; Xie, R.; Wu, S.; Chu, K.; Xu, W.; Li, X.; et al. Quantitative analysis of eight triterpenoids and two sesquiterpenoids in Rhizoma alismatis by using UPLC-ESI/APCI-MS/MS and its application to optimisation of best harvest time and crude processing temperature. J. Anal. Methods Chem. 2019, 2019, 8320171. [Google Scholar] [CrossRef]
- Zhao, W.; Huang, X.; Li, X.; Zhang, F.; Chen, S.; Ye, M.; Huang, M.; Xu, W.; Wu, S. Qualitative and quantitative analysis of major triterpenoids in Alismatis rhizoma by high performance liquid chromatography/diode-array detector/quadrupole-time-of-flight mass spectrometry and ultra-performance liquid chromatography/triple quadrupole mass spectrometry. Molecules 2015, 20, 13958–13981. [Google Scholar] [CrossRef]
- Chen, L.; Qi, J.; Chang, Y.X.; Zhu, D.; Yu, B. Identification and determination of the major constituents in Traditional Chinese Medicinal formula Danggui-Shaoyao-San by HPLC-DAD-ESI-MS/MS. J. Pharm. Biomed. Anal. 2009, 50, 127–137. [Google Scholar] [CrossRef]
- Shi, Y.Y.; Guan, S.H.; Tang, R.N.; Tao, S.J.; Guo, D.A. Simultaneous determination of atractylenolide II and atractylenolide III by liquid chromatography-tandem mass spectrometry in rat plasma and its application in a pharmacokinetic study after oral administration of Atractylodes macrocephala rhizoma extract. Biomed. Chromatogr. 2012, 26, 1386–1392. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.F.; Wang, K.F.; Mao, X.; Liang, W.Y.; Chen, W.J.; Li, S.; Qi, Q.; Cui, Y.P.; Zhang, L.Z. Screening and analysis of the potential bioactive components of Poria cocos (Schw.) wolf by HPLC and HPLC-MS(n) with the aid of chemometrics. Molecules 2016, 21, 227. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, J.; Wang, Y.; Chen, L.; Liu, H.; Wang, Z.; Wang, B. Screening the Q-markers of TCMs from RA rat plasma using UHPLC-QTOF/MS technique for the comprehensive evaluation of Wu-Wei-Wen-Tong Capsule. J. Mass Spectrom. 2021, 56, e4711. [Google Scholar] [CrossRef] [PubMed]
- Shu, Z.; Pu, J.; Chen, L.; Zhang, Y.; Rahman, K.; Qin, L.; Zheng, C. Alisma orientale: Ethnopharmacology, Phytochemistry and Pharmacology of an Important Traditional Chinese Medicine. Am. J. Chin. Med. 2016, 44, 227–251. [Google Scholar] [CrossRef]
- Jang, S.; Lee, A.; Hwang, Y.H. Qualitative profiling and quantitative analysis of major constituents in Jinmu-tang by UHPLC-Q-Orbitrap-MS and UPLC-TQ-MS/MS. Molecules 2022, 27, 7887. [Google Scholar] [CrossRef] [PubMed]
- Center for Biologics Evaluation and Research (CBER). Guidance for Industry; ICH: Rockville, MD, USA, 1996. [Google Scholar]
No. | Identification | Rt (min) | Formula | Adduct | Predicted (m/z) | Measured (m/z) | Error (ppm) | MS/MS (m/z) |
---|---|---|---|---|---|---|---|---|
1 | Atractyloside A | 4.95 | C21H36O10 | [M + HCO2]− | 493.2290 | 493.2293 | −0.02 | 447.2245, 285.1714, 89.0229 |
2 | Procyanidin B1 | 5.05 | C30H26O12 | [M − H]− | 577.1351 | 577.1352 | −0.34 | 407.0771, 289.0720 125.0230 |
3 | Procyanidin B2 | 5.62 | C30H26O12 | [M − H]− | 577.1351 | 577.1351 | −0.44 | 407.0774, 289.0721 125.0231 |
4 | Umbelliferone | 7.12 | C9H6O3 | [M + H]+ | 163.0390 | 163.0388 | −0.84 | 163.0388 |
5 | Rosavin | 7.40 | C20H28O10 | [M + HCO2]− | 473.1664 | 473.1661 | −1.23 | 293.0878, 89.0228 |
6 | Coumarin | 9.09 | C9H6O2 | [M + H]+ | 147.0441 | 147.0440 | −0.44 | 147.0439, 103.0546 |
7 | Polyporusterone A | 12.02 | C28H46O6 | [M + H]+ | 479.3365 | 479.3365 | −0.40 | 95.0861 |
8 | Alisol C | 15.16 | C30H46O5 | [M + H]+ | 487.3418 | 487.3417 | −0.18 | 415.2840 |
9 | Atractylenolide III | 15.79 | C15H20O3 | [M + H]+ | 249.1485 | 249.1483 | −0.88 | 231.1379, 163.0753 |
10 | Alisol C 23-acetate | 17.07 | C32H48O6 | [M + H]+ | 529.3524 | 529.3526 | 0.44 | 451.3205 |
11 | Atractylenolide II | 17.69 | C15H20O2 | [M + H]+ | 233.1536 | 233.1535 | −0.57 | 233.1535, 215.1431 187.1481, 151.0754 |
12 | Alisol A | 18.12 | C30H50O5 | [M + HCO2]− | 535.3640 | 535.3643 | −0.01 | 471.3499 |
13 | 16α-Hydroxytrametenolic acid | 18.13 | C30H48O4 | [M + H]+ | 473.3625 | 473.3625 | −0.03 | 437.3433, 295.2415 |
14 | Atractylenolide I | 18.79 | C15H18O2 | [M + H]+ | 231.1380 | 231.1379 | −0.27 | 231.1379 |
15 | Alisol A 24-acetate | 18.93 | C32H52O6 | [M + HCO2]− | 577.3746 | 577.3748 | −0.02 | 169.0408, 59.0122 |
16 | Alisol B | 19.82 | C30H48O4 | [M + HCO2]− | 517.3535 | 517.3535 | −0.48 | 241.4872, 100.0714 |
17 | 3-O-Acetyl-16α-hydroxytrametenolic acid | 20.42 | C32H50O5 | [M + H]+ | 515.3731 | 515.3730 | −0.09 | 437.3416, 295.2421 133.0860, 89.0603 |
18 | Alisol B 23-acetate | 20.62 | C32H50O5 | [M + H]+ | 515.3731 | 515.3729 | −0.33 | 339.2672, 151.1116 97.0653 |
19 | Pachymic acid | 20.82 | C33H52O5 | [M − H]− | 527.3742 | 527.3740 | −0.90 | 527.3741 |
No. | Compound | Rt (min) | MW | MRM Transition (m/z) | Collision Energy (V) |
---|---|---|---|---|---|
1 | Atractyloside A | 3.63 | 448.5 | 493.2 → 447.2 | 14 |
2 | Procyanidin B1 | 3.68 | 578.5 | 579.1 → 127.0 | 30 |
3 | Procyanidin B2 | 4.09 | 578.5 | 579.1 → 127.0 | 30 |
4 | Umbelliferone | 5.67 | 162.1 | 163.0 → 107.0 | 22 |
5 | Rosavin | 5.84 | 428.4 | 446.2 → 117.0 | 14 |
6 | Coumarin | 7.55 | 146.1 | 147.1 → 91.1 | 26 |
7 | Polyporusterone A | 10.34 | 478.7 | 479.3 → 95.1 | 30 |
8 | Alisol C | 13.48 | 486.7 | 487.3 → 415.3 | 18 |
9 | Atractylenolide III | 14.18 | 248.3 | 249.2 → 231.1 | 10 |
10 | Alisol C 23-acetate | 15.59 | 528.7 | 529.3 → 451.3 | 18 |
11 | Atractylenolide II | 16.28 | 232.3 | 233.1 → 187.1 | 14 |
12 | Alisol A | 16.62 | 490.7 | 473.3 → 383.3 | 10 |
13 | 16α-Hydroxytrametenolic acid | 16.71 | 472.7 | 455.4 → 437.3 | 18 |
14 | Atractylenolide I | 17.40 | 230.3 | 231.0 → 185.1 | 18 |
15 | Alisol A 24-acetate | 17.50 | 532.8 | 515.3 → 497.3 | 10 |
16 | Alisol B | 18.41 | 472.7 | 455.4 → 383.3 | 10 |
17 | 3-O-Acetyl-16α-hydroxytrametenolic acid | 19.06 | 514.7 | 497.3 → 437.3 | 18 |
18 | Alisol B 23-acetate | 19.24 | 514.7 | 497.4 → 201.1 | 22 |
19 | Pachymic acid | 19.45 | 528.8 | 511.3 → 451.3 | 18 |
IS1 | Warfarin | 13.64 | 307.1 | 309.0 → 163.0 | 14 |
IS2 | Warfarin | 13.64 | 307.1 | 307.0 → 250.0 | 22 |
No. | Compound | Calibration Curves | R2 | Linear Range (ng/mL) | LLOQ (ng/mL) |
---|---|---|---|---|---|
1 | Atractyloside A | y = 1.5739x + 0.0418 | 0.9995 | 0.10–25.00 | 0.10 |
2 | Procyanidin B1 | y = 0.2186x − 0.0094 | 0.9991 | 0.10–12.50 | 0.10 |
3 | Procyanidin B2 | y = 0.2277x − 0.0083 | 0.9994 | 0.10–12.50 | 0.10 |
4 | Umbelliferone | y = 3.7074x − 0.0012 | 0.9996 | 0.01–3.13 | 0.01 |
5 | Rosavin | y = 2.4065x − 0.0108 | 0.9993 | 0.02–3.13 | 0.02 |
6 | Coumarin | y = 3.9901x + 0.1995 | 0.9994 | 0.10–50.00 | 0.10 |
7 | Polyporusterone A | y = 0.9290x − 0.0015 | 0.9998 | 0.10–25.00 | 0.10 |
8 | Alisol C | y = 1.2274x − 0.0099 | 0.9993 | 0.05–6.25 | 0.05 |
9 | Atractylenolide III | y = 2.9593x − 0.0390 | 0.9996 | 0.10–25.00 | 0.10 |
10 | Alisol C 23-acetate | y = 5.9883x + 0.0233 | 0.9992 | 0.01–3.13 | 0.01 |
11 | Atractylenolide II | y = 7.2963x + 0.0235 | 0.9995 | 0.01–3.13 | 0.01 |
12 | Alisol A | y = 1.4905x − 0.0296 | 0.9995 | 0.10–25.00 | 0.10 |
13 | 16α-Hydroxytrametenolic acid | y = 0.6745x − 0.0043 | 0.9991 | 0.02–3.13 | 0.02 |
14 | Atractylenolide I | y = 3.8661x + 0.0091 | 0.9993 | 0.01–3.13 | 0.01 |
15 | Alisol A 24-acetate | y = 1.2214x − 0.0693 | 0.9993 | 0.20–25.00 | 0.20 |
16 | Alisol B | y = 0.2495x − 0.0075 | 0.9992 | 0.20–25.00 | 0.20 |
17 | 3-O-Acetyl-16α-hydroxytrametenolic acid | y = 0.5743x − 0.0036 | 0.9994 | 0.02–3.13 | 0.02 |
18 | Alisol B 23-acetate | y = 0.5967x + 0.0013 | 0.9992 | 0.05–12.50 | 0.05 |
19 | Pachymic acid | y = 1.1861x − 0.0156 | 0.9991 | 0.05–6.25 | 0.05 |
No. | Compound | Spiked Concentration (ng/mL) | Measured Concentration (ng/mL) | Recovery (%) | RSD (%) |
---|---|---|---|---|---|
1 | Atractyloside A | 10.671 | 10.160 | 95.21 | 1.09 |
4.421 | 4.349 | 98.39 | 0.90 | ||
2.858 | 2.891 | 101.17 | 1.67 | ||
2 | Procyanidin B1 | 4.351 | 3.998 | 91.89 | 1.18 |
1.226 | 1.245 | 101.60 | 1.29 | ||
0.445 | 0.468 | 105.29 | 1.13 | ||
3 | Procyanidin B2 | 4.458 | 3.982 | 89.32 | 0.91 |
1.333 | 1.255 | 94.11 | 2.38 | ||
0.552 | 0.550 | 99.60 | 1.33 | ||
4 | Umbelliferone | 1.051 | 1.011 | 96.20 | 0.81 |
0.270 | 0.272 | 100.93 | 1.30 | ||
0.075 | 0.069 | 92.96 | 1.73 | ||
5 | Rosavin | 1.223 | 1.215 | 99.39 | 1.09 |
0.442 | 0.438 | 99.09 | 0.76 | ||
0.246 | 0.238 | 96.82 | 1.64 | ||
6 | Coumarin | 11.404 | 10.354 | 90.79 | 0.97 |
5.154 | 5.686 | 110.32 | 0.47 | ||
3.592 | 3.713 | 103.37 | 0.91 | ||
7 | Polyporusterone A | 8.429 | 7.874 | 93.41 | 1.02 |
2.179 | 2.154 | 98.86 | 0.66 | ||
0.617 | 0.568 | 92.02 | 0.61 | ||
8 | Alisol C | 2.322 | 2.281 | 98.22 | 1.20 |
0.759 | 0.756 | 99.55 | 1.25 | ||
0.369 | 0.363 | 98.44 | 0.63 | ||
9 | Atractylenolide III | 10.491 | 10.006 | 95.37 | 0.83 |
4.241 | 4.164 | 98.19 | 1.08 | ||
2.678 | 2.629 | 98.14 | 0.70 | ||
10 | Alisol C 23-acetate | 2.312 | 2.359 | 102.03 | 0.56 |
1.531 | 1.590 | 103.90 | 0.73 | ||
1.335 | 1.456 | 109.02 | 0.99 | ||
11 | Atractylenolide II | 1.482 | 1.463 | 98.71 | 2.57 |
0.700 | 0.716 | 102.23 | 1.98 | ||
0.505 | 0.537 | 106.31 | 3.15 | ||
12 | Alisol A | 8.927 | 8.475 | 94.94 | 0.44 |
2.677 | 2.521 | 94.21 | 0.51 | ||
1.114 | 1.050 | 94.28 | 0.87 | ||
13 | 16α-Hydroxytrametenolic acid | 1.067 | 1.058 | 99.18 | 1.32 |
0.286 | 0.280 | 97.95 | 1.53 | ||
0.091 | 0.084 | 92.76 | 3.07 | ||
14 | Atractylenolide I | 1.115 | 1.036 | 92.90 | 1.81 |
0.334 | 0.334 | 99.95 | 1.47 | ||
0.139 | 0.146 | 105.17 | 0.48 | ||
15 | Alisol A 24-acetate | 8.635 | 7.766 | 89.94 | 0.11 |
2.385 | 2.214 | 92.84 | 0.65 | ||
0.822 | 0.776 | 94.43 | 0.43 | ||
16 | Alisol B | 8.966 | 8.620 | 96.14 | 1.17 |
2.716 | 2.517 | 92.67 | 1.71 | ||
1.153 | 1.055 | 91.51 | 2.49 | ||
17 | 3-O-Acetyl-16α-hydroxytrametenolic acid | 1.094 | 1.069 | 97.66 | 1.06 |
0.313 | 0.308 | 98.29 | 0.65 | ||
0.118 | 0.107 | 90.68 | 2.20 | ||
18 | Alisol B 23-acetate | 6.990 | 6.709 | 95.98 | 1.05 |
3.865 | 3.890 | 100.65 | 1.56 | ||
3.084 | 3.171 | 102.83 | 1.30 | ||
19 | Pachymic acid | 2.186 | 2.092 | 95.68 | 1.36 |
0.624 | 0.603 | 96.66 | 1.11 | ||
0.233 | 0.227 | 97.36 | 2.88 |
No. | Compound | Concentration (ng/mL) | Intra-Day | Inter-Day | ||
---|---|---|---|---|---|---|
Precision (%) | Accuracy (%) | Precision (%) | Accuracy (%) | |||
1 | Atractyloside A | 16.67 | 1.39 | 105.13 | 3.01 | 102.02 |
4.17 | 2.46 | 105.61 | 3.97 | 101.06 | ||
1.04 | 2.42 | 108.63 | 7.03 | 101.57 | ||
2 | Procyanidin B1 | 8.33 | 1.73 | 96.24 | 2.53 | 96.19 |
2.08 | 7.32 | 91.29 | 0.40 | 90.99 | ||
0.52 | 1.72 | 94.25 | 9.44 | 97.56 | ||
3 | Procyanidin B2 | 8.33 | 1.43 | 96.55 | 1.99 | 98.25 |
2.08 | 1.52 | 89.43 | 1.82 | 88.86 | ||
0.52 | 4.31 | 92.04 | 0.97 | 91.15 | ||
4 | Umbelliferone | 2.08 | 1.14 | 104.94 | 1.01 | 106.14 |
0.52 | 0.77 | 102.78 | 2.25 | 105.50 | ||
0.13 | 0.87 | 95.94 | 4.41 | 95.53 | ||
5 | Rosavin | 2.08 | 0.72 | 96.17 | 4.09 | 98.06 |
0.52 | 1.35 | 95.38 | 2.95 | 96.38 | ||
0.13 | 0.98 | 99.75 | 3.51 | 98.32 | ||
6 | Coumarin | 16.67 | 0.44 | 103.09 | 3.35 | 107.23 |
4.17 | 1.52 | 108.42 | 1.66 | 107.39 | ||
1.04 | 0.95 | 108.28 | 2.40 | 106.47 | ||
7 | Polyporusterone A | 16.67 | 0.65 | 107.98 | 6.53 | 105.20 |
4.17 | 0.59 | 104.15 | 5.62 | 102.74 | ||
1.04 | 0.97 | 93.65 | 3.49 | 97.52 | ||
8 | Alisol C | 4.17 | 1.23 | 101.40 | 0.35 | 101.56 |
1.04 | 1.36 | 104.58 | 1.65 | 103.01 | ||
0.26 | 1.28 | 104.09 | 4.13 | 103.30 | ||
9 | Atractylenolide III | 16.67 | 1.36 | 109.94 | 2.78 | 106.52 |
4.17 | 0.77 | 106.08 | 1.32 | 104.49 | ||
1.04 | 0.64 | 90.99 | 1.70 | 92.68 | ||
10 | Alisol C 23-acetate | 2.08 | 0.93 | 108.62 | 6.55 | 104.88 |
0.52 | 0.55 | 108.14 | 3.27 | 106.80 | ||
0.13 | 1.14 | 98.57 | 1.79 | 99.63 | ||
11 | Atractylenolide II | 2.08 | 1.33 | 109.62 | 3.45 | 106.47 |
0.52 | 3.25 | 112.34 | 2.87 | 110.20 | ||
0.13 | 2.62 | 99.07 | 2.11 | 98.06 | ||
12 | Alisol A | 16.67 | 0.85 | 106.82 | 3.93 | 103.79 |
4.17 | 0.96 | 102.06 | 4.29 | 99.09 | ||
1.04 | 0.94 | 92.37 | 2.65 | 94.02 | ||
13 | 16α-Hydroxytrametenolic acid | 2.08 | 2.29 | 100.72 | 9.09 | 101.95 |
0.52 | 2.67 | 89.17 | 6.92 | 93.24 | ||
0.13 | 3.91 | 98.91 | 3.27 | 97.03 | ||
14 | Atractylenolide I | 2.08 | 0.62 | 107.66 | 1.80 | 105.46 |
0.52 | 1.14 | 109.94 | 4.81 | 107.22 | ||
0.13 | 2.57 | 93.70 | 1.52 | 95.15 | ||
15 | Alisol A 24-acetate | 16.67 | 0.76 | 111.72 | 6.84 | 108.29 |
4.17 | 0.83 | 99.21 | 5.50 | 97.96 | ||
1.04 | 1.52 | 93.60 | 3.05 | 94.06 | ||
16 | Alisol B | 16.67 | 1.48 | 109.18 | 5.11 | 106.96 |
4.17 | 1.33 | 101.20 | 4.18 | 99.03 | ||
1.04 | 1.23 | 94.37 | 1.12 | 93.73 | ||
17 | 3-O-Acetyl-16α-hydroxytrametenolic acid | 2.08 | 1.16 | 93.66 | 3.90 | 96.65 |
0.52 | 1.75 | 101.84 | 5.62 | 95.74 | ||
0.13 | 1.09 | 100.28 | 2.29 | 98.15 | ||
18 | Alisol B 23-acetate | 8.33 | 1.06 | 110.55 | 7.93 | 106.71 |
2.08 | 3.74 | 111.31 | 8.95 | 106.38 | ||
0.52 | 2.38 | 92.11 | 1.83 | 93.99 | ||
19 | Pachymic acid | 4.17 | 1.56 | 95.04 | 7.22 | 98.00 |
1.04 | 0.98 | 94.44 | 3.02 | 92.49 | ||
0.26 | 1.04 | 95.46 | 2.37 | 98.11 |
No. | Compound | ORS-1 | ORS-2 | ORS-3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean (ng/g) | SD | CV (%) | Mean (ng/g) | SD | CV (%) | Mean (ng/g) | SD | CV (%) | ||
1 | Atractyloside A | 3.697 | 0.057 | 1.549 | 3.511 | 0.060 | 1.722 | 3.699 | 0.043 | 1.171 |
2 | Procyanidin B1 | 0.265 | 0.004 | 1.320 | 0.263 | 0.001 | 0.349 | 0.264 | 0.004 | 1.514 |
3 | Procyanidin B2 | 0.550 | 0.013 | 2.396 | 0.525 | 0.010 | 1.933 | 0.554 | 0.020 | 3.542 |
4 | Umbelliferone | 0.022 | 0.000 | 2.100 | 0.023 | 0.001 | 2.503 | 0.023 | 0.001 | 2.341 |
5 | Rosavin | 0.276 | 0.004 | 1.530 | 0.264 | 0.006 | 2.403 | 0.280 | 0.001 | 0.226 |
6 | Coumarin | 7.611 | 0.066 | 0.873 | 7.391 | 0.100 | 1.348 | 7.683 | 0.082 | 1.070 |
7 | Polyporusterone A | 0.239 | 0.004 | 1.528 | 0.231 | 0.003 | 1.222 | 0.242 | 0.004 | 1.574 |
8 | Alisol C | 0.395 | 0.004 | 1.112 | 0.382 | 0.007 | 1.843 | 0.400 | 0.006 | 1.390 |
9 | Atractylenolide III | 3.208 | 0.090 | 2.811 | 3.117 | 0.050 | 1.601 | 3.277 | 0.056 | 1.701 |
10 | Alisol C 23-acetate | 2.540 | 0.016 | 0.645 | 2.437 | 0.015 | 0.606 | 2.573 | 0.028 | 1.079 |
11 | Atractylenolide II | 0.749 | 0.009 | 1.256 | 0.726 | 0.015 | 2.056 | 0.770 | 0.014 | 1.857 |
12 | Alisol A | 1.027 | 0.013 | 1.226 | 0.994 | 0.009 | 0.871 | 1.045 | 0.014 | 1.353 |
13 | 16α-Hydroxytrametenolic acid | 0.070 | 0.003 | 3.847 | 0.068 | 0.003 | 4.264 | 0.070 | 0.003 | 4.123 |
14 | Atractylenolide I | 0.108 | 0.003 | 2.979 | 0.104 | 0.002 | 1.737 | 0.108 | 0.004 | 3.866 |
15 | Alisol A 24-acetate | 0.689 | 0.004 | 0.539 | 0.680 | 0.008 | 1.150 | 0.694 | 0.005 | 0.690 |
16 | Alisol B | 1.120 | 0.036 | 3.225 | 1.078 | 0.018 | 1.647 | 1.134 | 0.024 | 2.095 |
17 | 3-O-Acetyl-16α-hydroxytrametenolic acid | 0.102 | 0.001 | 1.420 | 0.099 | 0.002 | 1.923 | 0.101 | 0.005 | 4.674 |
18 | Alisol B 23-acetate | 4.406 | 0.092 | 2.084 | 4.181 | 0.226 | 5.403 | 4.433 | 0.071 | 1.602 |
19 | Pachymic acid | 0.212 | 0.003 | 1.316 | 0.206 | 0.005 | 2.328 | 0.215 | 0.004 | 2.037 |
Scientific Name | Scientific Name | Weight Ratio |
---|---|---|
Alismatis Rhizoma | Alisma orientale Juzepzuk | 5.0 |
Polyporus | Polyporus umbellatus Fries | 3.0 |
Atractylodis Rhizoma Alba | Atractylodes japonica Koidzumi | 3.0 |
Poria Sclerotium | Poria cocos Wolf | 3.0 |
Cinnamomi Cortex | Cinnamomum cassia Presl | 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, S.; Lee, A.; Hwang, Y.-H. Chemical Profile Determination and Quantitative Analysis of Components in Oryeong-san Using UHPLC-Q-Orbitrap-MS and UPLC-TQ-MS/MS. Molecules 2023, 28, 3685. https://doi.org/10.3390/molecules28093685
Jang S, Lee A, Hwang Y-H. Chemical Profile Determination and Quantitative Analysis of Components in Oryeong-san Using UHPLC-Q-Orbitrap-MS and UPLC-TQ-MS/MS. Molecules. 2023; 28(9):3685. https://doi.org/10.3390/molecules28093685
Chicago/Turabian StyleJang, Seol, Ami Lee, and Youn-Hwan Hwang. 2023. "Chemical Profile Determination and Quantitative Analysis of Components in Oryeong-san Using UHPLC-Q-Orbitrap-MS and UPLC-TQ-MS/MS" Molecules 28, no. 9: 3685. https://doi.org/10.3390/molecules28093685
APA StyleJang, S., Lee, A., & Hwang, Y. -H. (2023). Chemical Profile Determination and Quantitative Analysis of Components in Oryeong-san Using UHPLC-Q-Orbitrap-MS and UPLC-TQ-MS/MS. Molecules, 28(9), 3685. https://doi.org/10.3390/molecules28093685