Stability Analysis of the Asiatic Acid-COX-2 Complex Using 100 ns Molecular Dynamic Simulations and Its Selectivity against COX-2 as a Potential Anti-Inflammatory Candidate
Abstract
:1. Introduction
2. Results
2.1. Molecular Dynamic Simulation of Asiatic Acid
2.2. Pharmacophore Modelling
2.2.1. Pharmacophore Fit Value
2.2.2. Pharmacophore Modelling and Molecular Interaction
2.3. In Vitro Anti-Inflammatory Activity of Asiatic Acid against COX-2
3. Discussion
3.1. Molecular Dynamic Simulation of Asiatic Acid
3.2. Pharmacophore Modelling
3.3. In Vitro Anti-Inflammatory Activity of Asiatic Acid against COX-2
4. Materials and Methods
4.1. Materials
4.2. Molecular Dynamic Simulation of Asiatic Acid
4.3. Pharmacophore Modelling
4.3.1. Structure Preparation
4.3.2. Database Preparation
4.3.3. Creating Pharmacophore
4.3.4. Validation Pharmacophore
4.3.5. Screening Test Compounds
4.4. In Vitro Anti-Inflammatory Activity of Asiatic Acid against COX-2
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Medzhitov, R. Inflammation 2010: New adventures of an old flame. Cell 2010, 140, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Ferrero-Miliani, L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S.E. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1beta generation. Clin. Exp. Immunol. 2007, 147, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef] [PubMed]
- Calixto, J.B.; Otuki, M.F.; Santos, A.R. Anti-inflammatory compounds of plant origin. Part I. Action on arachidonic acid pathway, nitric oxide and nuclear factor kappa B (NF-kappaB). Planta Med. 2003, 69, 973–983. [Google Scholar] [CrossRef]
- Minghetti, L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol. 2004, 63, 901–910. [Google Scholar] [CrossRef]
- Moita, E.; Gil-Izquierdo, A.; Sousa, C.; Ferreres, F.; Silva, L.R.; Valentão, P.; Domínguez-Perles, R.; Baenas, N.; Andrade, P.B. Integrated Analysis of COX-2 and iNOS Derived Inflammatory Mediators in LPS-Stimulated RAW Macrophages Pre-Exposed to Echium plantagineum L. Bee Pollen Extract. PLoS ONE 2013, 8, e59131. [Google Scholar] [CrossRef]
- Gray, N.E.; Alcazar Magana, A.; Lak, P.; Wright, K.M.; Quinn, J.; Stevens, J.F.; Maier, C.S.; Soumyanath, A. Centella asiatica-Phytochemistry and mechanisms of neuroprotection and cognitive enhancement. Phytochem. Rev. 2018, 17, 161–194. [Google Scholar] [CrossRef]
- Lv, J.; Sharma, A.; Zhang, T.; Wu, Y.; Ding, X. Pharmacological Review on Asiatic Acid and Its Derivatives: A Potential Compound. Slas Technol. Transl. Life Sci. Innov. 2018, 23, 111–127. [Google Scholar] [CrossRef]
- Kamble, S.M.; Patel, H.M.; Goyal, S.N.; Noolvi, M.N.; Mahajan, U.B.; Ojha, S.; Patil, C.R. In silico Evidence for Binding of Pentacyclic Triterpenoids to Keap1-Nrf2 Protein-Protein Binding Site. Comb. Chem. High. Throughput Screen. 2017, 20, 215–234. [Google Scholar] [CrossRef]
- Jeong, B.S. Structure-activity relationship study of asiatic acid derivatives for new wound healing agent. Arch. Pharm. Res. 2006, 29, 556–562. [Google Scholar] [CrossRef]
- Patil, K.R.; Mohapatra, P.; Patel, H.M.; Goyal, S.N.; Ojha, S.; Kundu, C.N.; Patil, C.R. Pentacyclic Triterpenoids Inhibit IKKβ Mediated Activation of NF-κB Pathway: In Silico and In Vitro Evidences. PLoS ONE 2015, 10, e0125709. [Google Scholar] [CrossRef] [PubMed]
- Musfiroh, I.; Nursamsiar, N.; Muhtadi, A.; Kartasasmita, R.; Tjahjono, D.H. In silico study of asiatic acid interaction with Inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Int. J. Pharm. Pharm. Sci. 2013, 5, 204–207. [Google Scholar]
- Kartasasmita, R.; Musfiroh, I.; Muhtadi, A.; Ibrahim, S. Binding Affinity of Asiatic Acid Derivatives Design against Inducible Nitric Oxide Synthase And ADMET Prediction. J. Appl. Pharm. Sci. 2014, 4, 075–089. [Google Scholar] [CrossRef]
- Yadav, V.R.; Prasad, S.; Sung, B.; Kannappan, R.; Aggarwal, B.B. Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins (Basel) 2010, 2, 2428–2466. [Google Scholar] [CrossRef] [PubMed]
- Case, D.A.; Cerutti, D.S.; Cheatham, T.E.; Darden, T.A.; Duke, R.E.; Giese, T.J.; Gohlke, H.; Goetz, A.W.; Greene, D.; Homeyer, N.; et al. Amber 2016 Reference Manual (Covers Amber16 and AmberTools16); University California: San Francisco, CA, USA, 2016. [Google Scholar]
- Martínez, L. Automatic Identification of Mobile and Rigid Substructures in Molecular Dynamics Simulations and Fractional Structural Fluctuation Analysis. PLoS ONE 2015, 10, e0119264. [Google Scholar] [CrossRef]
- Megantara, S.; Yodha, A.; Sahidin, S.; Diantini, A.; Levita, J. Pharmacophore screening and molecular docking of phytoconstituents in polygonum sagittatum for cyclooxygenase-2 inhibitors discovery. Asian J. Pharm. Clin. Res. 2018, 11, 83. [Google Scholar] [CrossRef]
- Khan, A.; Pervaiz, A.; Ansari, B.; Ullah, R.; Shah, S.M.M.; Khan, H.; Saeed Jan, M.; Hussain, F.; Ijaz Khan, M.; Albadrani, G.M.; et al. Phytochemical Profiling, Anti-Inflammatory, Anti-Oxidant and In-Silico Approach of Cornus macrophylla Bioss (Bark). Molecules 2022, 27, 4081. [Google Scholar] [CrossRef]
- Szczukowski, Ł.; Krzyżak, E.; Wiatrak, B.; Jawień, P.; Marciniak, A.; Kotynia, A.; Świątek, P. New N-Substituted-1,2,4-triazole Derivatives of Pyrrolo[3,4-d]pyridazinone with Significant Anti-Inflammatory Activity—Design, Synthesis and Complementary In Vitro, Computational and Spectroscopic Studies. Int. J. Mol. Sci. 2021, 22, 11235. [Google Scholar] [CrossRef]
- Musfiroh, I.; Khatami, H.; Megantara, S.; Muchtaridi, M. Molecular dynamic simulation of asiatic acid derivatives complex with inducible nitric oxide synthase enzyme as an anti-inflammatory. Int. J. Appl. Pharm. 2021, 13, 32–38. [Google Scholar] [CrossRef]
- Sohilait, M.R.; Pranowo, H.D.; Haryadi, W. Molecular docking analysis of curcumin analogues with COX-2. Bioinformation 2017, 13, 356–359. [Google Scholar] [CrossRef]
- Nussinov, R.; Tsai, C.J. The different ways through which specificity works in orthosteric and allosteric drugs. Curr. Pharm. Des. 2012, 18, 1311–1316. [Google Scholar] [CrossRef] [PubMed]
- Dror, R.O.; Green, H.F.; Valant, C.; Borhani, D.W.; Valcourt, J.R.; Pan, A.C.; Arlow, D.H.; Canals, M.; Lane, J.R.; Rahmani, R.; et al. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature 2013, 503, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Christopoulos, A. Allosteric binding sites on cell-surface receptors: Novel targets for drug discovery. Nat. Rev. Drug. Discov. 2002, 1, 198–210. [Google Scholar] [CrossRef]
- Abroshan, H.; Akbarzadeh, H.; Parsafar, G.A. Molecular dynamics simulation and MM–PBSA calculations of sickle cell hemoglobin in dimer form with Val, Trp, or Phe at the lateral contact. J. Phys. Org. Chem. 2010, 23, 866–877. [Google Scholar] [CrossRef]
- Seidel, T.; Ibis, G.; Bendix, F.; Wolber, G. Strategies for 3D pharmacophore-based virtual screening. Drug. Discov. Today Technol. 2010, 7, e221–e228. [Google Scholar] [CrossRef]
- Rouzer, C.A.; Marnett, L.J. Structural and Chemical Biology of the Interaction of Cyclooxygenase with Substrates and Non-Steroidal Anti-Inflammatory Drugs. Chem. Rev. 2020, 120, 7592–7641. [Google Scholar] [CrossRef]
- Garg, R.; Kurup, A.; Mekapati, S.B.; Hansch, C. Cyclooxygenase (COX) inhibitors: A comparative QSAR study. Chem. Rev. 2003, 103, 703–732. [Google Scholar] [CrossRef]
- Huang, S.S.; Chiu, C.S.; Chen, H.J.; Hou, W.C.; Sheu, M.J.; Lin, Y.C.; Shie, P.H.; Huang, G.J. Antinociceptive activities and the mechanisms of anti-inflammation of asiatic Acid in mice. Evid. Based Complement Altern. Med. 2011, 2011, 895857. [Google Scholar] [CrossRef]
- Bhala, N.; Emberson, J.; Merhi, A.; Abramson, S.; Arber, N.; Baron, J.A.; Bombardier, C.; Cannon, C.; Farkouh, M.E.; FitzGerald, G.A.; et al. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: Meta-analyses of individual participant data from randomised trials. Lancet 2013, 382, 769–779. [Google Scholar] [CrossRef]
- Duggan, K.C.; Walters, M.J.; Musee, J.; Harp, J.M.; Kiefer, J.R.; Oates, J.A.; Marnett, L.J. Molecular basis for cyclooxygenase inhibition by the non-steroidal anti-inflammatory drug naproxen. J. Biol. Chem. 2010, 285, 34950–34959. [Google Scholar] [CrossRef]
- Rifaldi, F.; Mumpuni, E.; Kumala, S.; Yantih, N.; Aulena, D.N.; Nafisa, S. Molecular docking of Cymbopogon nardus (L.) rendle compounds as a protease inhibitor of SARS-CoV-2. Int. J. Appl. Pharm. 2022, 14, 112–115. [Google Scholar] [CrossRef]
- Ge, X.; Sun, C.; Feng, Y.; Wang, L.; Peng, J.; Che, Q.; Gu, Q.; Zhu, T.; Li, D.; Zhang, G. Anthraquinone Derivatives from a Marine-Derived Fungus Sporendonema casei HDN16-802. Mar. Drugs 2019, 17, 334. [Google Scholar] [CrossRef] [PubMed]
- Seidel, T.; Bryant, S.D.; Ibis, G.; Poli, G.; Langer, T. 3D Pharmacophore Modeling Techniques in Computer-Aided Molecular Design Using LigandScout. Tutor. Chemoinformatics 2017, 279–309. [Google Scholar]
Components (kcal/mol) | Asiatic Acid–COX-2 |
---|---|
Van der Waals Interaction | −3.891 |
Electrostatic Energy | −39.870 |
Electrostatic Contribution to Solvation-Free Energy (EGB) | −4.928 |
Nonpolar Contribution to Solvation-Free Energy (ESURF) | 177.4419 |
ΔGgas (VdW + EEL) | −2.619 |
ΔGsolv (EGB + ESURF) | −4.751 |
ΔGTOTAL (VdW + EEL + EGB + ESURF) | −7.371 |
Compound | Pharmacophore-Fit Score | Energy (kcal/mol) |
---|---|---|
Acetosal | 34.61 | −7.00 |
Asiatic acid | 31.25 | −9.80 |
No. | Concentration (μM) | % Enzyme Activity | SD |
---|---|---|---|
1 | 24.5 | 86.27 | 0.012 |
2 | 40.1 | 69.15 | 0.012 |
3 | 73.64 | 59.74 | 0.008 |
4 | 91.18 | 51.89 | 0.012 |
5 | 147.27 | 47.58 | 0.008 |
IC50 | 120.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musfiroh, I.; Kartasasmita, R.E.; Ibrahim, S.; Muchtaridi, M.; Hidayat, S.; Ikram, N.K.K. Stability Analysis of the Asiatic Acid-COX-2 Complex Using 100 ns Molecular Dynamic Simulations and Its Selectivity against COX-2 as a Potential Anti-Inflammatory Candidate. Molecules 2023, 28, 3762. https://doi.org/10.3390/molecules28093762
Musfiroh I, Kartasasmita RE, Ibrahim S, Muchtaridi M, Hidayat S, Ikram NKK. Stability Analysis of the Asiatic Acid-COX-2 Complex Using 100 ns Molecular Dynamic Simulations and Its Selectivity against COX-2 as a Potential Anti-Inflammatory Candidate. Molecules. 2023; 28(9):3762. https://doi.org/10.3390/molecules28093762
Chicago/Turabian StyleMusfiroh, Ida, Rahmana E. Kartasasmita, Slamet Ibrahim, Muchtaridi Muchtaridi, Syahrul Hidayat, and Nur Kusaira Khairul Ikram. 2023. "Stability Analysis of the Asiatic Acid-COX-2 Complex Using 100 ns Molecular Dynamic Simulations and Its Selectivity against COX-2 as a Potential Anti-Inflammatory Candidate" Molecules 28, no. 9: 3762. https://doi.org/10.3390/molecules28093762
APA StyleMusfiroh, I., Kartasasmita, R. E., Ibrahim, S., Muchtaridi, M., Hidayat, S., & Ikram, N. K. K. (2023). Stability Analysis of the Asiatic Acid-COX-2 Complex Using 100 ns Molecular Dynamic Simulations and Its Selectivity against COX-2 as a Potential Anti-Inflammatory Candidate. Molecules, 28(9), 3762. https://doi.org/10.3390/molecules28093762