Computer Analysis of the Inhibition of ACE2 by Flavonoids and Identification of Their Potential Antiviral Pharmacophore Site
Abstract
:1. Introduction
2. Results and Discussion
2.1. Docking Analysis
2.2. POM Analyses
2.2.1. Osiris Calculations of Compounds 1–17
2.2.2. Molinspiration Calculations of Compounds 1–17
2.2.3. Atomic Charge Calculation of Compounds 1–17
2.2.4. Identification of Antiviral Pharmacophore Sites
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atlas, S.A. The Renin-Angiotensin Aldosterone System: Pathophysiological Role and Pharmacologic Inhibition. J. Manag. Care Pharm. 2007, 13 (Suppl. B), 9–20. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhou, Y.; Liu, Y.; Li, L.; Chen, Y.; Liu, Y.; Chen, Y.; Liu, Y.; Feng, Y.; Yosypiv, I.V.; et al. (Pro)renin receptor regulates lung development via the Wnt/β-catenin signaling pathway. Am. J. Physiol. Lung Cell. Mol. Physiol. 2019, 317, L202–L211. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Rauf, A.; Khan, H.; Abu-Izneid, T. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed. Pharmacother. 2017, 94, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, Z.; Moradi, M.; Nasri, H. A systematic review of the role of renin angiotensin aldosterone system genes in diabetes mellitus, diabetic retinopathy and diabetic neuropathy. J. Res. Med. Sci. 2014, 19, 1090–1098. [Google Scholar]
- Drummond, G.R.; Vinh, A.; Guzik, T.J.; Sobey, C.G. Immune mechanisms of hypertension. Nat. Rev. Immunol. 2019, 19, 517–532. [Google Scholar] [CrossRef]
- Laghlam, D.; Jozwiak, M.; Nguyen, L.S. Renin–Angiotensin–Aldosterone System and Immunomodulation: A State-of-the-Art Review. Cells 2021, 10, 1767. [Google Scholar] [CrossRef]
- Alexandre, J.; Cracowski, J.-L.; Richard, V.; Bouhanick, B. Renin-angiotensin-aldosterone system and COVID-19 infection. Ann. D’endocrinologie 2020, 81, 63–67. [Google Scholar] [CrossRef]
- Bourgonje, A.R.; Abdulle, A.E.; Timens, W.; Hillebrands, J.L.; Navis, G.J.; Gordijn, S.J.; Bolling, M.C.; Dijkstra, G.; Voors, A.A.; Osterhaus, A.D.; et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J. Pathol. 2020, 251, 228–248. [Google Scholar] [CrossRef]
- Vaduganathan, M.; Vardeny, O.; Michel, T.; Mcmurray, V.J.J.; Pfeffer, M.A.; Solomon, S.D. Ren-in-Angiotensin-Aldosterone System Inhibitors in Patients with COVID-19. N. Engl. J. Med. 2020, 382, 1653–1659. [Google Scholar] [CrossRef]
- Shukla, A.K.; Banerjee, M. Angiotensin-Converting-Enzyme 2 and Renin-Angiotensin System Inhibitors in COVID-19: An Update. High Blood Press. Cardiovasc. Prev. 2021, 28, 129–139. [Google Scholar] [CrossRef]
- Hussain, M.; Jabeen, Q.; Ahmad, F.-U.; Rehman, K.U.; Fatima, M.; Shaukat, S.; Majeed, A.; Barkat, M.Q.; Wu, X. COVID-19 and inhibitors of the renin–angiotensin–aldosterone system. Expert Rev. Anti-Infect. Ther. 2020, 19, 815–816. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Tan, Z.; Zhou, L.; Yang, M.; Peng, L.; Liu, J.; Cai, J.; Yang, R.; Han, J.; Huang, Y.; et al. Effects of Angiotensin II Receptor Blockers and ACE (Angioten-sin-Converting Enzyme) Inhibitors on Virus Infection, Inflammatory Status, and Clinical Outcomes in Patients With COVID-19 and Hypertension: A Single-Center Retrospective Study. Hypertension 2020, 76, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Cao, J.; Yao, Y.; Jin, X.; Luo, Z.; Xue, Y.; Zhu, C.; Song, Y.; Wang, Y.; Zou, Y.; et al. The effect of RAS blockers on the clinical characteristics of COVID-19 patients with hypertension. Ann. Transl. Med. 2020, 8, 430. [Google Scholar] [CrossRef] [PubMed]
- Conversano, A.; Melillo, F.; Napolano, A.; Fominskiy, E.; Spessot, M.; Ciceri, F.; Agricola, E. Ren-in-Angiotensin-Aldosterone System Inhibitors and Outcome in Patients with SARS-CoV-2 Pneumonia: A Case Series Study. Hypertension 2020, 76, e10–e12. [Google Scholar] [CrossRef] [PubMed]
- Covino, M.; De Matteis, G.; Burzo, M.L.; Santoro, M.; Fuorlo, M.; Sabia, L.; Sandroni, C.; Gasbarrini, A.; Franceschi, F.; Gambassi, G. Angiotensin-converting enzyme inhibitors or angio-tensin II receptor blockers and prognosis of hypertensive patients hospitalised with COVID-19. Intern. Med. J. 2020, 50, 1483–1491. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, L.V. Overview of Targets and Potential Drugs of SARS-CoV-2 According to the Viral Replication. J. Proteome Res. 2021, 20, 49–59. [Google Scholar] [CrossRef]
- Srivastava, K.; Singh, M.K. Drug repurposing in COVID-19: A review with past, present and future. Metab. Open 2021, 12, 100121. [Google Scholar] [CrossRef]
- Sahoo, B.M.; Kumar, B.V.V.R.; Sruti, J.; Mahapatra, M.K.; Banik, B.K.; Borah, P. Drug Repurposing Strategy (DRS): Emerging Approach to Identify Potential Therapeutics for Treatment of Novel Coronavirus Infection. Front. Mol. Biosci. 2021, 8, 628144. [Google Scholar] [CrossRef]
- Towler, P.; Staker, B.; Prasad, S.G.; Menon, S.; Tang, J.; Parsons, T.; Ryan, D.; Fisher, M.; Williams, D.; Dales, N.A.; et al. ACE2 X-ray Structures Reveal a Large Hinge-bending Motion Important for Inhibitor Binding and Catalysis. J. Biol. Chem. 2004, 279, 17996–18007. [Google Scholar] [CrossRef]
- Dutta, K. Allosteric Site of ACE-2 as a Drug Target for COVID-19. ACS Pharmacol. Transl. Sci. 2022, 5, 179–182. [Google Scholar] [CrossRef]
- Dutta, K.; Elmezayen, A.D.; Al-Obaidi, A.; Zhu, W.; Morozova, O.V.; Shityakov, S.; Khalifa, I. Seq12, Seq12m, and Seq13m, peptide analogues of the spike glycoprotein shows antiviral properties against SARS-CoV-2: An in silico study through molecular docking, molecular dynamics simulation, and MM-PB/GBSA calculations. J. Mol. Struct. 2021, 1246, 131113. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J. Virol. 2020, 94, e00127-20. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020, 367, 1444–1448. [Google Scholar] [CrossRef] [PubMed]
- Rbaa, M.; Haida, S.; Tuzun, B.; Hichar, A.; El Hassane, A.; Kribii, A.; Lakhrissi, Y.; Ben Hadda, T.; Zarrouk, A.; Lakhrissi, B.; et al. Molecular docking, DFT and POM analyses. J. Mol. Struct. 2022, 1258, 132688. [Google Scholar] [CrossRef]
- Kawsar, S.M.A.; Almalki, F.A.; Ben Hadd, T.; Laaroussi, H.; Khan, M.A.R.; Hosen, M.A.; Mahmud, S.; Aounti, A.; Maideen, N.M.P.; Heidarizadeh, F.; et al. Potential antifungal activity of novel carbohydrate derivatives validated by POM, molecular docking and molecular dynamic simulations analyses. Mol. Simul. 2023, 49, 60–75. [Google Scholar] [CrossRef]
- Akkoc, S.; Karatas, H.; Muhammed, M.T.; Kökbudak, Z.; Ceylan, A.; Almalki, F.; Laaroussi, H.; Ben Hadda, T. Drug design of new therapeutic agents: Molecular docking, molecular dynamics simulation, DFT and POM analyses of new Schiff base ligands and impact of substituents on bioactivity of their potential antifungal pharmacophore site. J. Biomol. Struct. Dyn. 2022, 1–14. [Google Scholar] [CrossRef]
- Abdellattif, M.H.; Elkamhawy, A.; Hagar, M.; Ben Hadda, T.; Shehab, W.S.; Mansy, W.; Belal, A.; Arief, M.M.H.; Hussien, M.A. Novel saccharin analogs as promising antibacterial and anticancer agents: Synthesis, DFT, POM analysis, molecular docking, molecular dynamic simulations, and cell-based assay. Front. Pharmacol. 2022, 13, 958379. [Google Scholar] [CrossRef]
- Majid, S.A.; Mir, J.M.; Bhat, M.A.; Shalla, A.H.; Pandey, A.; Ben Hadda, T.; Abdellattif, M.H. A pair of carbazate derivatives as novel Schiff base ligands: DFT and POM theory supported spectroscopic and biological evaluation. J. Biomol. Struct. Dyn. 2022, 1–17. [Google Scholar] [CrossRef]
- Djouad, S.-E.; Berredjem, M.; Aoul, F.Z.H.; Bouchareb, F.; Guerfi, M.; Ben Hadda, T.; Aissaoui, M.; Belhani, B. In silico drug design and molecular docking of novel amidophosphonates and sulfamidophosphonates as inhibitors of urokinase-type plasminogen activator. J. Indian Chem. Soc. 2022, 99, 100650. [Google Scholar] [CrossRef]
- Munia, N.S.; Hosen, M.A.; Azzam, K.M.A.; Al-Ghorbani, M.; Baashen, M.; Hossain, M.K.; Ali, F.; Mahmud, S.; Shimu, M.S.S.; Almalki, F.A.; et al. Synthesis, antimicrobial, SAR, PASS, molecular docking, molecular dynamics and pharmacokinetics studies of 5′-O-uridine derivatives bearing acyl moieties: POM study and identification of the pharmacophore sites. Nucleosides Nucleotides Nucleic Acids 2022, 41, 1036–1083. [Google Scholar] [CrossRef]
- Chalkha, M.; Nakkabi, A.; Ben Hadda, T.; Berredjem, M.; El Moussaoui, A.; Bakhouch, M.; Saadi, M.; El Ammari, L.; Almalki, F.A.; Laaroussi, H.; et al. Crystallographic study, biological assessment and POM/Docking studies of pyrazoles-sulfonamide hybrids (PSH): Identification of a combined Antibacterial/Antiviral pharmacophore sites leading to in-silico screening the anti-COVID-19 activity. J. Mol. Struct. 2022, 1267, 133605. [Google Scholar] [CrossRef] [PubMed]
- Ben Amor, S.; Mekious, S.; Benfekih, L.A.; Abdellattif, M.H.; Boussebaa, W.; Almalki, F.A.; Ben Hadda, T.; Kawsar, S.M.A. Phytochemical Characterization and Bioactivity of Different Honey Samples Collected in the Pre-Saharan Region in Algeria. Life 2022, 12, 927. [Google Scholar] [CrossRef] [PubMed]
- Titi, A.; Touzani, R.; Moliterni, A.; Ben Hadda, T.; Messali, M.; Benabbes, R.; Berredjem, M.; Bouzina, A.; Al-Zaqri, N.; Taleb, M.; et al. Synthesis, structural, biocomputational modeling and antifungal activity of novel armed pyrazoles. J. Mol. Struct. 2022, 1264, 133156. [Google Scholar] [CrossRef]
- Hosen, M.A.; Munia, N.S.; Al-Ghorbani, M.; Baashen, M.; Almalki, F.A.; Ben Hadda, T.; Ali, F.; Mahmud, S.; Saleh, A.; Laaroussi, H.; et al. Synthesis, antimicrobial, molecular docking and molecular dynamics studies of lauroyl thymidine analogs against SARS-CoV-2: POM study and identification of the pharmacophore sites. Bioorg. Chem. 2022, 125, 105850. [Google Scholar] [CrossRef]
- Sana, T.; Qayyum, S.; Jabeen, A.; Siddiqui, B.S.; Begum, S.; Siddiqui, R.A.; Hadda, T.B. Isolation and characterization of anti-inflammatory and anti-proliferative compound, for B-cell Non-Hodgkin lymphoma, from Nyctanthes arbor-tristis Linn. J. Ethnopharmacol. 2022, 293, 115267. [Google Scholar] [CrossRef]
- Bechlem, K.; Berredjem, M.; Djouad, S.E.; Sothea, T.O.; Bouacida, S.; Marminon, C.; Ben Hadda, T.; Lebreton, J.; Bouzina, A. Novel N-acylsulfamoyl-oxazolidin-2ones: Synthesis, antitumor activity, X-ray crystallographic study, molecular docking and POM analyses. J. Mol. Struct. 2022, 1262, 132935. [Google Scholar] [CrossRef]
- Matin, M.M.; Matin, P.; Rahman, R.; Ben Hadda, T.; Almalki, F.A.; Mahmud, S.; Ghoneim, M.M.; Alruwaily, M.; Alshehri, S. Triazoles and Their Derivatives: Chemistry, Synthesis, and Therapeutic Applications. Front. Mol. Biosci. 2022, 9, 303. [Google Scholar] [CrossRef]
- Lakhrissi, Y.; Rbaa, M.; Tuzun, B.; Hichar, A.; Anouar, E.H.; Ounine, K.; Almalki, F.; Ben Hadda, T.; Zarrouk, A.; Lakhrissi, B. Synthesis, structural confirmation, antibacterial properties and bio-informatics computational analyses of new pyrrole based on 8-hydroxyquinoline. J. Mol. Struct. 2022, 1259, 132683. [Google Scholar] [CrossRef]
- Lafridi, H.; Almalki, F.A.; Ben Hadda, T.; Berredjem, M.; Kawsar, S.M.A.; Alqahtani, A.M.; Esharkawy, E.R.; Lakhrissi, B.; Zgou, H. In silico evaluation of molecular interactions between macrocyclic inhibitors with the HCV NS3 protease. Docking and identification of antiviral pharmacophore site. J. Biomol. Struct. Dyn. 2022, 41, 2260–2273. [Google Scholar] [CrossRef]
- Esharkawy, E.R.; Almalki, F.; Ben Hadda, T. In vitro potential antiviral SARS-CoV-19-activity of natural product thymohydroquinone and dithymoquinone from Nigella sativa. Bioorg. Chem. 2022, 120, 105587. [Google Scholar] [CrossRef]
- Hasan, A.H.; Murugesan, S.; Amran, S.I.; Chander, S.; Alanazi, M.M.; Ben Hadda, T.; Shakya, S.; Pratama, M.R.F.; Das, B.; Biswas, S.; et al. Novel thiophene Chalcones-Coumarin as acetylcholinesterase inhibitors: Design, synthesis, biological evaluation, molecular docking, ADMET prediction and molecular dynamics simulation. Bioorg. Chem. 2022, 119, 105572. [Google Scholar] [CrossRef] [PubMed]
- Berredjem, M.; Bouzina, A.; Bahadi, R.; Bouacida, S.; Rastija, V.; Djouad, S.-E.; Sothea, T.O.; Almalki, F.A.; Ben Hadda, T.; Aissaoui, M. Antitumor activity, X-ray crystallography, in silico study of some-sulfamido-phosphonates. Identification of pharmacophore sites. J. Mol. Struct. 2021, 1250, 131886. [Google Scholar] [CrossRef]
- Chalkha, M.; El Moussaoui, A.; Berredjem, M.; Hadda, T.B.; Bouzina, A.; Almalki, F.A.; Saghrouchni, H.; Bakhouch, M.; Saadi, M.; El Ammari, L.E.; et al. Crystallographic Study, Biological Evaluation and DFT/POM/Docking Analyses of Pyrazole Linked Amide Conjugates: Identification of Antimicrobial and Antitumor Pharmaco-phore Sites. J. Mol. Struct. 2021; Accepted & under production. [Google Scholar]
- Rbaa, M.; Mequedade, M.; Berkiks, I.; Lakhrissi, Y.; Mague, J.; El Hessni, A.; Hadda, T.B.; Warad, I.; Zarrouk, A. Toxicological and Pharmacological Studies of a Crystal Structure Derivative of 8-Hydroxyquinoline. Arab. J. Sci. Eng. 2021, 47, 6889–6900. [Google Scholar] [CrossRef]
- Ben Hadda, T.; Berredjem, M.; Almalki, F.A.; Rastija, V.; Jamalis, J.; Bin Emran, T.; Abu-Izneid, T.; Esharkawy, E.; Rodriguez, L.C.; Alqahtani, A.M. How to face COVID-19: Proposed treatments based on remdesivir and hydroxychloroquine in the presence of zinc sulfate. Docking/DFT/POM structural analysis. J. Biomol. Struct. Dyn. 2021, 40, 9429–9442. [Google Scholar] [CrossRef]
- Khodair, A.I.; El-Barbary, A.A.; Imam, D.R.; Kheder, N.A.; Elmalki, F.; Ben Hadda, T. Synthesis, antiviral, DFT and molecular docking studies of some novel 1,2,4-triazine nucleosides as potential bioactive compounds. Carbohydr. Res. 2021, 500, 108246. [Google Scholar] [CrossRef] [PubMed]
- El Faydy, M.; Dahaieh, N.; Ounine, K.; Rastija, V.; Almalki, F.; Jamalis, J.; Zarrouk, A.; Ben Hadda, T.; Lakhrissi, B. Synthesis and antimicrobial activity evaluation of some new 7-substituted quinolin-8-ol derivatives: POM analyses, docking, and identification of antibacterial pharmacophore sites. Chem. Data Collect. 2020, 31, 100593. [Google Scholar] [CrossRef]
- Rbaa, M.; Hichar, A.; Dohare, P.; Anouar, E.H.; Lakhrissi, Y.; Berredjem, M.; Almalki, F.; Rastija, V.; Rajabi, M.; Ben Hadda, T.; et al. Synthesis, Characterization, Biocomputational Modeling and Antibacterial Study of Novel Pyran Based on 8-Hydroxyquinoline. Arab. J. Sci. Eng. 2021, 46, 5533–5542. [Google Scholar] [CrossRef]
- Bhat, A.R.; Dongre, R.S.; Almalki, F.A.; Berredjem, M.; Aissaoui, M.; Touzani, R.; Hadda, T.B.; Akhter, M.S. Synthesis, Biological Activity and POM/DFT/Docking Analyses of Annulated Pyrano[2,3-d]pyrimidine Derivatives: Identification of Antibacterial and Antitumor Phar-macophore sites. Bioorg. Chem. 2021, 106, 104480. [Google Scholar] [CrossRef]
- Rauf, A.; Bawazeer, S.; Raza, M.; El-Sharkawy, E.; Rahman, H.; El-Esawi, M.A.; Uddin, G.; Siddiqui, B.S.; Khalil, A.A.; Molnar, J.; et al. Reversal of multidrug resistance and antitumor promoting activity of 3-oxo-6β-hydroxy-β-amyrin isolated from Pistacia integerrima. Biocell 2021, 45, 139–147. [Google Scholar] [CrossRef]
- Bawazer, S.; Khan, A.; Rauf, A.; Ben Hadda, T.; Al-Awthan, Y.S.; Bahattab, O.; Rashid, U.; Khan, I.; Nawaz, M.A.; Uddin, S.; et al. POM analysis and computational interactions of 8-hydroxydiospyrin inside active site of protein tyrosine phosphatase 1B. Biocell 2021, 45, 751–759. [Google Scholar] [CrossRef]
- Thasneema, K.; Dipin, T.; Thayyil, M.S.; Sahu, P.K.; Messali, M.; Rosalin, T.; Elyas, K.; Saharuba, P.; Anjitha, T.; Ben Hadda, T. Removal of toxic heavy metals, phenolic compounds and textile dyes from industrial waste water using phosphonium based ionic liquids. J. Mol. Liq. 2020, 303, 114645. [Google Scholar] [CrossRef]
- Khalid, S.; Almalki, F.A.; Hadda, T.B.; Bader, A.; Abu-Izneid, T.; Berredjem, M.; Elsharkawy, E.R.; Alqahtani, A.M. Medicinal Applications of Cannabinoids Extracted from Cannabis sativa (L.): A New Route in the Fight Against COVID-19? Curr. Pharm. Des. 2020, 27, 1564–1578. [Google Scholar] [CrossRef] [PubMed]
- Zaman, Q.; Mahmood Zia, K.M.; Zuber, M.; Jahangir, M.; Almalki, F.; Hadda, T.B.; Rauf, A. A Narrative Study of Herbal Distillates to Evaluate Physicochemical and Microbiological Characteristics. Acad. J. Food Res. 2020, 3, 15–27. [Google Scholar]
- Touzani, R.; Hammouti, B.; El Malki, F.; Benhadda, T. Coronavirus, COVID19, COVID-19 and SARS-CoV: A Global Pandemic, A Short Review. J. Mater. Environ. Sci. 2020, 11, 736–750. [Google Scholar]
- Ben Hadda, T.; Deniz, F.S.S.; Orhan, I.E.; Zgou, H.; Rauf, A.; Mabkhot, Y.N.; Bennani, B.; Emam, D.R.; Kheder, N.A.; Asayari, A.; et al. Spiro Heterocyclic Compounds as Potential Anti-Alzheimer Agents (Part 2): Their Metal Chelation Capacity, POM Analyses and DFT Studies. Med. Chem. 2021, 17, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Ben Hadda, T.; Rastija, V.; AlMalki, F.; Titi, A.; Touzani, R.; Mabkhot, Y.N.; Khalid, S.; Zarrouk, A.; Siddiqui, B.S. Petra/Osiris/Molinspiration and Molecular Docking Analyses of 3-Hydroxy-Indolin-2-one Derivatives as Potential Antiviral Agents. Curr. Comput. Aided-Drug Des. 2020, 16, 1. [Google Scholar] [CrossRef]
- Thasneema, K.K.; Thayyil, M.S.; Rosalin, T.; Elyas, K.; Dipin, T.; Sahu, P.K.; Kumar, N.K.; Saheer, V.; Messali, M.; Ben Hadda, T. Thermal and spectroscopic investigations on three phosphonium based ionic liquids for industrial and biological applications. J. Mol. Liq. 2020, 307, 112960. [Google Scholar] [CrossRef]
- Guerfi, M.; Berredjem, M.; Bouzina, A.; Ben Hadda, T.; Marminon, C.; Rachedi, K.O. Novel α-sulfamidophosphonate analogues of fotemustine: Efficient synthesis using ultrasound under solvent-free conditions. Mon. Für Chem.-Chem. Mon. 2020, 151, 1859–1865. [Google Scholar] [CrossRef]
- Farghaly, T.A.; Abbas, I.M.; Hassan, W.M.I.; Lotfy, M.S.; Al-Qurashi, N.T.; Ben Hadda, T. Structure Determination and Quantum Chemical Analysis of 1,3-Dipolar Cycloaddition of Nitrile Imines and New Dipolarophiles and POM Analyses of the Products as Potential Breast Cancer Inhibitors. Russ. J. Org. Chem. 2020, 56, 1258–1271. [Google Scholar] [CrossRef]
- Jamalis, J.; Yusof, F.S.M.; Chander, S.; Wahab, R.A.; Bhagwat, D.P.; Sankaranarayanan, M.; Almalki, F.; Ben Hadda, T. Psoralen Derivatives: Recent Advances of Synthetic Strategy and Pharmacological Properties. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2020, 19, 222–239. [Google Scholar] [CrossRef]
- Rakib, A.; Sami, S.A.; Mimi, N.J.; Chowdhury, M.; Eva, T.A.; Nainu, F.; Paul, A.; Shahriar, A.; Tareq, A.M.; Emon, N.U.; et al. Immunoinformatics-guided design of an epitope-based vaccine against severe acute respiratory syndrome coronavirus 2 spike glycoprotein. Comput. Biol. Med. 2020, 124, 103967. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Rodrıguez, L.; Sanchez, B.; Hochwımmer, B.; Hadda, T.; Almalkı, A.; Dilsiz, N.İ.H.A.T. How to Evaluate Viral Transmission in Enclosed Areas. Medical Geology saving places from COVID-19. J. Biosci. Biomed. Eng. 2020, 1, 1–8. [Google Scholar]
- Bechlem, K.; Aissaoui, M.; Belhani, B.; Rachedi, K.O.; Bouacida, S.; Bahadi, R.; Djouad, S.-E.; Ben Mansour, R.; Bouaziz, M.; Almalki, F.; et al. Synthesis, X-ray crystallographic study and molecular docking of new α-sulfamidophosphonates: POM analyses of their cytotoxic activity. J. Mol. Struct. 2020, 1210, 127990. [Google Scholar] [CrossRef]
- Grib, I.; Berredjem, M.; Rachedi, K.O.; Djouad, S.-E.; Bouacida, S.; Bahadi, R.; Ouk, T.-S.; Kadri, M.; Ben Hadda, T.; Belhani, B. Novel N-sulfonylphthalimides: Efficient synthesis, X-ray characterization, spectral investigations, POM analyses, DFT computations and antibacterial activity. J. Mol. Struct. 2020, 1217, 128423. [Google Scholar] [CrossRef]
- Elsharkawy, E.R.; Almalki, F.; Ben Hadda, T.; Rastija, V.; Lafridi, H.; Zgou, H. DFT calculations and POM analyses of cytotoxicity of some flavonoids from aerial parts of Cupressus sempervirens: Docking and identification of pharmacophore sites. Bioorg. Chem. 2020, 100, 103850. [Google Scholar] [CrossRef]
- Javaid, A.; Hadda, T.B.; Tadjine, N.; Messgo-Moumene, S.; Aissat, A.E.K.; Saddek, D. In vitro evaluation of the antifungal potential of Zizyphus lotus L. against toxigenic molds of hydroponic barley. Mycopath 2019, 17, 33–37. [Google Scholar]
- Bawazeer, S.; Rauf, A.; Ali Shah, S.U.; Ullah, N.; Uddin, G.; Khan, H.; Hadda, T.B. Antioxidant and Enzyme inhibitory activities of extracts and phytochemicals isolated from Pistacia integerrima. Z. Arznei Gewurzpfa 2019, 23, 55–58. [Google Scholar]
- Amirkhanov, V.; Rauf, A.; Ben Hadda, T.; Ovchynnikov, V.; Trush, V.; Saleem, M.; Raza, M.; Rehman, T.; Zgou, H.; Shaheen, U.; et al. Pharmacophores Modeling in Terms of Prediction of Theoretical Physicochemical Properties and Verification by Experimental Correlations of Carbacylamidophosphates (CAPh) and Sulfanylamidophosphates (SAPh) Tested as New Carbonic Anhydrase Inhibitors. Mini-Rev. Med. Chem. 2019, 19, 1015–1027. [Google Scholar] [CrossRef]
- Ben Hadda, T.; Rauf, A.; Zgou, H.; Senol, F.S.; Orhan, I.E.; Mabkhot, Y.N.; Althagafi, I.I.; Farghaly, T.A.; Alterary, S. Drug Design of Inhibitors of Alzheimer’s Disease (AD): POM and DFT Analyses of Cholinesterase Inhibitory Activity of β-amino di-Carbonyl Derivatives. Mini-Rev. Med. Chem. 2019, 19, 688–705. [Google Scholar] [CrossRef]
- ELMeskini, I.; Toupet, L.; Daoudi, M.; Kerbal, A.; Moreira, D.R.; Hadda, T.B. Is It Possible for the 2-[(4-chloro-phenyl)-(3,5-dimethylpyrazol-1-yl)-methyl]-malonic acid diethyl ester to Present a Potential Candidate HIV-Integrase Inhibitor on the Basis of Its (O,N,O)-Ligand Structure. Moroc. J. Heterocycl. Chem. 2019, 18, 36–45. [Google Scholar] [CrossRef]
- Rachedi, K.O.; Ouk, T.-S.; Bahadi, R.; Bouzina, A.; Djouad, S.-E.; Bechlem, K.; Zerrouki, R.; Ben Hadda, T.; Almalki, F.; Berredjem, M. Synthesis, DFT and POM analyses of cytotoxicity activity of α-amidophosphonates derivatives: Identification of potential antiviral O,O-pharmacophore site. J. Mol. Struct. 2019, 1197, 196–203. [Google Scholar] [CrossRef]
- Rbaa, M.; Jabli, S.; Lakhrissi, Y.; Ouhssine, M.; Almalki, F.; Hadda, T.B.; Messgo-Moumene, S.; Zarrouk, A.; Lakhrissi, B. Synthesis, antibacterial properties and bioinformatics computationalanalyses of novel 8-hydroxyquinoline derivatives. Heliyon 2019, 5, e026892. [Google Scholar] [CrossRef] [PubMed]
- Rachedi, K.O.; Bahadi, R.; Aissaoui, M.; Ben Hadda, T.; Belhani, B.; Bouzina, A.; Berredjem, M. DFT Study, POM Analyses and Molecular Docking of Novel Oxazaphosphinanes: Identification of Antifungal Pharmacophore Site. Indones. J. Chem. 2020, 20, 440–450. [Google Scholar] [CrossRef]
- Titi, A.; Messali, M.; Alqurashy, B.A.; Touzani, R.; Shiga, T.; Oshio, H.; Fettouhi, M.; Rajabi, M.; Almalki, F.A.; Ben Hadda, T. Synthesis, characterization, X-ray crystal study and bioctivities of pyrazole derivatives: Identification of antitumor, antifungal and antibacterial pharmacophore sites. J. Mol. Struct. 2020, 1205, 127625. [Google Scholar] [CrossRef]
- Rbaa, M.; Oubihi, A.; Anouar, E.H.; Ouhssine, M.; Almalki, F.; Ben Hadda, T.; Zarrouk, A.; Lakhrissi, B. Synthesis of new heterocyclic systems oxazino derivatives of 8-Hydroxyquinoline: Drug design and POM analyses of substituent effects on their potential antibacterial properties. Chem. Data Collect. 2019, 24, 100306. [Google Scholar] [CrossRef]
- Jarrahpour, A.; Heiran, R.; Sinou, V.; Latour, C.; Bouktab, L.D.; Brunel, J.M.; Sheikh, J.; Ben Hadda, T. Synthesis of New β-Lactams Bearing the Biologically Important Morpholine Ring and POM Analyses of Their Antimicrobial and Antimalarial Activities. Iran. J. Pharm. Res. 2019, 18, 34–48. [Google Scholar] [CrossRef]
- Kamal, A.M.; Abdelhady, M.; Ben Hadda, T. Two Novel Flavone C-Glycosides Isolated from Afrocarpus Gracilior: Pom Analyses and in Vitro Cytotoxic Activity Aganist Hepatocellular Carcinoma. Int. J. Pharm. Pharm. Sci. 2019, 11, 57–62. [Google Scholar] [CrossRef]
- Dongre, R.S.; Meshram, J.S.; Selokar, R.S.; Almalki, F.A.; Ben Hadda, T. Antibacterial activity of synthetic pyrido[2,3-d]pyrimidines armed with nitrile groups: POM analysis and identification of pharmacophore sites of nitriles as important pro-drugs. New J. Chem. 2018, 42, 15610–15617. [Google Scholar] [CrossRef]
- Ben Hadda, T.; Talhi, O.; Silva, A.S.; Senol, F.S.; Orhan, I.E.; Rauf, A.; Mabkhot, Y.; Bachari, K.; Warad, I.; Farghaly, T.A.; et al. Cholinesterase Inhibitory Activity of Some semi-Rigid Spiro Heterocycles: POM Analyses and Crystalline Structure of Pharmacophore Site. Mini-Rev. Med. Chem. 2018, 18, 711–716. [Google Scholar] [CrossRef]
- Ullah, M.A.; Adeel, M.; Tahir, M.N.; Rauf, A.; Akram, M.; Hadda, T.B.; Mabkhot, Y.; Muhammad, N.; Naseer, F.; Mubarak, M.S. Synthesis, Structural Characterization and Antinociceptive Activities of New Arylated Quinolines via Suzuki-Miyaura Cross Coupling Reaction. Med. Chem. 2017, 13, 780–786. [Google Scholar] [CrossRef]
- Khan, H.; Khan, Z.; Amin, S.; Mabkhot, Y.N.; Mubarak, M.S.; Ben Hadda, T.; Maione, F. Plant bioactive molecules bearing glycosides as lead compounds for the treatment of fungal infection: A review. Biomed. Pharmacother. 2017, 93, 498–509. [Google Scholar] [CrossRef] [PubMed]
- Hakkou, Z.; Maciuk, A.; Leblais, V.; Bouanani, N.E.; Mekhfi, H.; Bnouham, M.; Aziz, M.; Ziyyat, A.; Rauf, A.; Hadda, T.B.; et al. Antihypertensive and vasodilator effects of methanolic extract of Inula viscosa: Biological evaluation and POM analysis of cynarin, chlorogenic acid as potential hypertensive. Biomed. Pharmacother. 2017, 93, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Chander, S.; Tang, C.-R.; Al-Maqtari, H.M.; Jamalis, J.; Penta, A.; Ben Hadda, T.; Sirat, H.M.; Zheng, Y.-T.; Sankaranarayanan, M. Synthesis and study of anti-HIV-1 RT activity of 5-benzoyl-4-methyl-1,3,4,5-tetrahydro-2H-1,5-benzodiazepin-2-one derivatives. Bioorg. Chem. 2017, 72, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Al-Maqtari, H.M.; Jamalis, J.; Ben Hadda, T.; Sankaranarayanan, M.; Chander, S.; Ahmad, N.A.; Sirat, H.M.; Althagafi, I.I.; Mabkhot, Y.N. Synthesis, characterization, POM analysis and antifungal activity of novel heterocyclic chalcone derivatives containing acylated pyrazole. Res. Chem. Intermed. 2016, 43, 1893–1907. [Google Scholar] [CrossRef]
- Mabkhot, Y.; Arfan, M.; Zgou, H.; Genc, Z.K.; Genc, M.; Rauf, A.; Bawazeer, S.; Ben Hadda, T. How to improve antifungal bioactivity: POM and DFT study of some chiral amides derivatives of diacetyl-L-tartaric acid and amines. Res. Chem. Intermed. 2016, 42, 8055–8068. [Google Scholar] [CrossRef]
- Rauf, A.; Uddin, G.; Siddiqui, B.S.; Khan, H.; Shah, S.U.A.; Ben Hadda, T.; Mabkhot, Y.N.; Farooq, U.; Khan, A. Antinociceptive and anti-inflammatory activities of flavonoids isolated from Pistacia integerrima galls. Complement. Ther. Med. 2016, 25, 132–138. [Google Scholar] [CrossRef]
- Sajid, Z.; Ahmad, M.; Aslam, S.; Ashfaq, U.A.; Zahoor, A.F.; Saddique, F.A.; Parvez, M.; Hameed, A.; Sultan, S.; Zgou, H.; et al. Novel Armed Pyrazolobenzothiazine Derivatives: Synthesis, X-ray Crystal Structure and POM analyses of Biological Activity Against Drug Resistant Clinical Isolate of Staphylococcus aureus. Pharm. Chem. J. 2016, 50, 172–180. [Google Scholar] [CrossRef]
- Mabkhot, Y.N.; Alatibi, F.; El-Sayed, N.N.E.; Al-Showiman, S.; Kheder, N.A.; Wadood, A.; Rauf, A.; Bawazeer, S.; Ben Hadda, T. Antimicrobial Activity of Some Novel Armed Thiophene Derivatives and Petra/Osiris/Molinspiration (POM) Analyses. Molecules 2016, 21, 222. [Google Scholar] [CrossRef]
- Tatar, E.; Şenkardeş, S.; Sellitepe, H.E.; Küçükgüzel, G.; Karaoğlu, A.; Bozdeveci, A.; DE Clercq, E.; Pannecouque, C.; BEN Hadda, T.; Küçükgüzel, I. Synthesis, and prediction of molecular properties and antimicrobial activity of some acylhydrazones derived from N-(arylsulfonyl)methionine. Turk. J. Chem. 2016, 40, 510–534. [Google Scholar] [CrossRef]
- Hadda, T.B. Ranking for Scientists. 2023. Available online: https://www.adscientificindex.com/scientist/taibi-ben-hadda/91200 (accessed on 27 April 2023).
- Hadda, T.B. Research Excellence Awards. 2018. Available online: https://www.maroc.ma/fr/actua-lites/research-excellence-awards-une-vingtaine-de-travaux-de-recherche-et-dinnovation-primes (accessed on 27 April 2023).
- Mooers, B.H.M.; Brown, M.E. Templates for writing PyMOL scripts. Protein Sci. 2021, 30, 262–269. [Google Scholar] [CrossRef]
- Barber, R.D. Software to Visualize Proteins and Perform Structural Alignments. Curr. Protoc. 2021, 1, e292. [Google Scholar] [CrossRef] [PubMed]
- Mooers, B.H.M. Shortcuts for faster image creation in PyMOL. Protein Sci. 2020, 29, 268–276. [Google Scholar] [CrossRef]
- Goodsell, D.S.; Sanner, M.F.; Olson, A.J.; Forli, S. The AutoDock suite at 30. Protein Sci. 2021, 30, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, K.; Yazdanpanah, N.; Saghazadeh, A.; Rezaei, N. Computational drug discovery and repurposing for the treatment of COVID-19: A systematic review. Bioorg. Chem. 2021, 106, 104490. [Google Scholar] [CrossRef]
- Tang, S.; Chen, R.; Lin, M.; Lin, Q.; Zhu, Y.; Ding, J.; Hu, H.; Ling, M.; Wu, J. Accelerating AutoDock Vina with GPUs. Molecules 2022, 27, 3041. [Google Scholar] [CrossRef]
- Kwofie, S.K.; Broni, E.; Asiedu, S.O.; Kwarko, G.B.; Dankwa, B.; Enninful, K.S.; Tiburu, E.K.; Wilson, M.D. Cheminformatics-Based Identification of Potential Novel Anti-SARS-CoV-2 Natural Compounds of African Origin. Molecules 2021, 26, 406. [Google Scholar] [CrossRef] [PubMed]
No. | Ligand | Binding Energy (kcal/mol) |
---|---|---|
1 | Rhamnetin (3,3′,4′,5-Tetrahydroxy-7-methoxyflavone) | −8.1 |
2 | Patuletin (3,3′,4′,5,7-Pentahydroxy-6-methoxyflavone) | −7.7 |
3 | Isorhamnetin (3,4′,5,7-Tetrahydroxy-3′-methoxyflavone) | −7.7 |
4 | Tamarixetin (3,3′,5,7-Tetrahydroxy-4′-methoxyflavone) | −7.8 |
5 | Quercetin (3,3′,4′,5,7-Pentahydroxyflavone) | −7.6 |
6 | Corniculatusin (3,3′,4′,5,7-Pentahydroxy-8-methoxyflavone) | −8.2 |
7 | Dillenetin (3,4-Dimethoxy-3,5,7-trihydroxyflavone) | −7.5 |
8 | Nobiletin (3′,4′,5,6,7,8-Hexamethoxyflavone) | −7.8 |
9 | Hesperidin (7-Rhamnoglucoside) | −9.6 |
10 | Baicalein (5,6,7-Trihydroxyflavone) | −8.1 |
11 | Ayanin (5,3′-Dihydroxy-3,7,4′-trimethoxyflavone) | −7.4 |
12 | Azaleatin (3,3′,4′,7-Tetrahydroxy-5-methoxyflavone) | −7.6 |
13 | Ombuin (4′,7-Dimethoxy-3,3′,5-trihydroxyflavone) | −7.8 |
14 | Pachypodol (4′,5-Dihydroxy-3,3′,7-trimethoxyflavone) | −7.2 |
15 | Retusin (5-Hydroxy-3,3′,4′,7-tetramethoxyflavone) | −7.3 |
16 | Rhamnazin (Dimethoxyflavone) | −7.8 |
17 | Eupatolitin (3,3′,4′,5-Tetrahydroxy-6,7-dimethoxyflavone) | −7.8 |
18 | Captopril | −6.5 |
19 | MLN4760 | −7.4 |
20 | Lisinopril | −8.0 |
21 | Amlodipin | −7.3 |
No. | Hydrogen Bonds | Van der Waals Force | Allosteric Site Surrounding Amino Acids Residues |
---|---|---|---|
1 | Asp206, Trp566, Asn210 | Asn397, Lys562, Ala99, Ala396, Glu208, Pro565, Leu95, Val212, Val209 | 2 |
2 | Tyr196, Glu564, Ala396, Lys562, Glu208 | Leu95, Pro565, Asp206, Glu98, Gly205, Gln98, Gln102, Tyr202 | 2 |
3 | Gly208, Tyr196, Gly205, Lys502 | Asp206, Ala99, Leu392, Leu95 | 2 |
4 | Tyr385, Asp350, Asp382, Aka348 | His378, Arg393, Phe390, Phe40, Asn394, His401 | 3 |
5 | Asp206, Asn210, Trp566 | Asn397, Lys562, Ala396, Gln208, Val212, Leu95, Val209, Pro565 | 2 |
6 | Asp206, Asp210, Trp566 | Ala396, Asn397, Lys562, Gln98, Pro565, Val209, Gln208, Leu95, Val212 | 2 |
7 | Trp566, Lys562 | Val209, Gln564, Pro565, Leu95, Gln98, Asp206, gln208, Gly205, Tyr196, Tyr202, Gln102 | 2 |
8 | Asn210 | Val212, Val209, Leu95, Pro565, Lys562, Gln205, Asp206, Tyr202, Tyr196, Gln208, Gln91, Lys94, Gln102 | 2 |
9 | Ala248, Gln402, Glu375, Tyr385, Asp350, Ser47, Ser43 | Trp69, Gly68, Phe40, Asp382, Asn394, Trp349, His401, His378, Thr347 | 3 |
10 | Trp566, Ala396, Asp206 | Lys562, Leu95, Val209, Asn210, Pro565, Glu564, Asn397 | 2 |
11 | Tyr196 | Trp203, Gln102, Tyr202, Gly205, Asp206, Gln98, Leu95, Lys562, Glu208 | 2 |
12 | Asp509, Ser511, Tyr199, Tyr196, Gln102 | Tyr510, Trp203, Asp514, Asp206, Tyr202 | 2 |
13 | Asp350, Asp382, Ala348 | Arg393, Phe390, Phe40, Asn394, His401, His378, Tyr385 | 3 |
14 | Lys562, Tyr196 | Trp566, Pro565, Val209, Gln208, Leu392, Leu95, Ala99, Glu208 | 2 |
15 | Tyr196 | Tyr202, Trp203, Asp206, Gly205, Leu95, Glu564, Lys562, Gln208, Gln98, Ala396 | 2 |
16 | Trp566, Ala396, Gln102 | Asn210, Val209, Asp206, Lys562, Pro565 | 2 |
17 | Trp566, Glu564, Lys562, Gln98, Tyr196 | Pro565, Leu95, Asp206, Gln102, Tyr202 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogoyavlenskiy, A.; Alexyuk, M.; Alexyuk, P.; Berezin, V.; Almalki, F.A.; Ben Hadda, T.; Alqahtani, A.M.; Ahmed, S.A.; Dall’Acqua, S.; Jamalis, J. Computer Analysis of the Inhibition of ACE2 by Flavonoids and Identification of Their Potential Antiviral Pharmacophore Site. Molecules 2023, 28, 3766. https://doi.org/10.3390/molecules28093766
Bogoyavlenskiy A, Alexyuk M, Alexyuk P, Berezin V, Almalki FA, Ben Hadda T, Alqahtani AM, Ahmed SA, Dall’Acqua S, Jamalis J. Computer Analysis of the Inhibition of ACE2 by Flavonoids and Identification of Their Potential Antiviral Pharmacophore Site. Molecules. 2023; 28(9):3766. https://doi.org/10.3390/molecules28093766
Chicago/Turabian StyleBogoyavlenskiy, Andrey, Madina Alexyuk, Pavel Alexyuk, Vladimir Berezin, Faisal A. Almalki, Taibi Ben Hadda, Alaa M. Alqahtani, Saleh A. Ahmed, Stefano Dall’Acqua, and Joazaizulfazli Jamalis. 2023. "Computer Analysis of the Inhibition of ACE2 by Flavonoids and Identification of Their Potential Antiviral Pharmacophore Site" Molecules 28, no. 9: 3766. https://doi.org/10.3390/molecules28093766
APA StyleBogoyavlenskiy, A., Alexyuk, M., Alexyuk, P., Berezin, V., Almalki, F. A., Ben Hadda, T., Alqahtani, A. M., Ahmed, S. A., Dall’Acqua, S., & Jamalis, J. (2023). Computer Analysis of the Inhibition of ACE2 by Flavonoids and Identification of Their Potential Antiviral Pharmacophore Site. Molecules, 28(9), 3766. https://doi.org/10.3390/molecules28093766