Radiolabeled Liposomes for Nuclear Imaging Probes
Abstract
:1. Introduction
2. Why Radiolabeled Liposomes?
3. Radiolabeled Liposomal Nuclear Imaging Probes
4. Conclusions and Future Aspect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Bangham, A.D.; Standish, M.M.; Weissmann, G. The action of steroids and streptolysins on the permeability of phospholipid structures to cations. J. Mol. Biol. 1965, 13, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Allen, T.M. Liposomen. Drugs 1997, 54 (Suppl. 4), 8–14. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Chen, G.; Zhang, J. A Review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules 2022, 27, 1372. [Google Scholar] [CrossRef]
- Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 2010, 148, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Gabizon, A.; Tzemach, D.; Gorin, J.; Mak, L.; Amitay, Y.; Shmeeda, H.; Zalipsky, S. Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models. Cancer Chemother. Pharmacol. 2010, 66, 43–52. [Google Scholar] [CrossRef]
- Harush-Frenkel, O.; Debotton, N.; Benita, S.; Altschuler, Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem. Biophys. Res. Commun. 2007, 353, 26–32. [Google Scholar] [CrossRef]
- Kirchhausen, T. Clathrin. Annu. Rev. Biochem. 2000, 69, 699–727. [Google Scholar] [CrossRef]
- Ponka, P.; Lok, C.N. The transferrin receptor: Role in health and disease. Int. J. Biochem. Cell Biol. 1999, 31, 1111–1137. [Google Scholar] [CrossRef]
- Schmid, E.M.; McMahon, H.T. Integrating molecular and network biology to decode endocytosis. Nature 2007, 448, 883–888. [Google Scholar] [CrossRef]
- Vasir, J.K.; Labhasetwar, V. Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular trafficking of nanoparticles. Biomaterials 2008, 29, 4244–4252. [Google Scholar] [CrossRef]
- Xu, S.; Olenyuk, B.Z.; Okamoto, C.T.; Hamm-Alvarez, S.F. Targeting receptor-mediated endocytotic pathways with nanoparticles: Rationale and advances. Adv. Drug Deliv. Rev. 2013, 65, 121–138. [Google Scholar] [CrossRef] [PubMed]
- Senior, J.; Crawley, J.C.W.; Gregoriadis, G. Tissue distribution of liposomes exhibiting long half-lives in the circulation after intravenous injection. Biochim. Biophys. Acta (BBA) Gen. Subj. 1985, 839, 1–8. [Google Scholar] [CrossRef]
- Liu, D.; Mori, A.; Huang, L. Role of liposome size and RES blockade in controlling biodistribution and tumour uptake of GM1-containing liposomes. Biochim. Biophys. Acta (BBA) Biomembr. 1992, 1104, 95–101. [Google Scholar] [CrossRef]
- Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumour blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011, 63, 136–151. [Google Scholar] [CrossRef]
- Rodrigues, F.C.; Devi, N.G.; Thakur, G. Role of targeted drug delivery in cancer therapeutics. In Advances and Challenges in Pharmaceutical Technology: Materials, Process Development and Drug Delivery Strategies; Academic Press: Cambridge, MA, USA, 2021; pp. 327–354. [Google Scholar] [CrossRef]
- Maeda, H.; Bharate, G.Y.; Daruwalla, J. Polymeric drugs for efficient tumour-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm. 2009, 71, 409–419. [Google Scholar] [CrossRef]
- Allen, T.M. Liposomal drug formulations. Rationale for development and what we can expect for the future. Drugs 1998, 56, 747–756. [Google Scholar] [CrossRef]
- Chamberlain, M.C. Neurotoxicity of intra-CSF liposomal cytarabine (DepoCyt) administered for the treatment of leptomeningeal metastases: A retrospective case series. J. Neuro-Oncol. 2012, 109, 143–148. [Google Scholar] [CrossRef]
- Dawidczyk, C.M.; Kim, C.; Park, J.H.; Russell, L.M.; Lee, K.H.; Pomper, M.G.; Searson, P.C. State-of-the-art in Design Rules for Drug Delivery Platforms: Lessons learned from FDA-approved nanomedicines. J. Control. Release 2014, 187, 133–144. [Google Scholar] [CrossRef]
- Belfiore, L.; Saunders, D.N.; Ranson, M.; Thurecht, K.J.; Storm, G.; Vine, K.L. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. J. Control. Release 2018, 277, 1–13. [Google Scholar] [CrossRef]
- Almeida, B.; Nag, O.K.; Rogers, K.E.; Delehanty, J.B. Recent progress in bioconjugation strategies for liposome-mediated drug delivery. Molecules 2020, 25, 5672. [Google Scholar] [CrossRef]
- Kherlopian, A.R.; Song, T.; Duan, Q.; Neimark, M.A.; Po, M.J.; Gohagan, J.K.; Laine, A.F. A review of imaging techniques for systems biology. BMC Syst. Biol. 2008, 2, 74. [Google Scholar] [CrossRef] [PubMed]
- Key, J.; Leary, J.F. Nanoparticles for multimodal in vivo imaging in nanomedicine. Int. J. Nanomed. 2014, 9, 711–726. [Google Scholar] [CrossRef]
- Yang, C.T.; Hattiholi, A.; Selvan, S.T.; Yan, S.X.; Fang, W.W.; Chandrasekharan, P.; Koteswaraiah, P.; Herold, C.J.; Gulyás, B.; Aw, S.E.; et al. Gadolinium-based bimodal probes to enhance T1-Weighted magnetic resonance/optical imaging. Acta Biomater. 2020, 110, 15–36. [Google Scholar] [CrossRef] [PubMed]
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, FDA. Benefits and Risks. Available online: https://www.fda.gov/radiation-emitting-products/mri-magnetic-resonance-imaging/benefits-and-risks (accessed on 15 January 2023).
- Lu, F.M.; Yuan, Z. PET/SPECT molecular imaging in clinical neuroscience: Recent advances in the investigation of CNS diseases. Quant. Imaging Med. Surg. 2015, 5, 433–447. [Google Scholar] [CrossRef]
- Maurer, A.H. Combined imaging modalities: PET/CT and SPECT/CT. Health Phys. 2008, 95, 571–576. [Google Scholar] [CrossRef]
- Jennings, L.E.; Long, N.J. Cheminform abstract: “Two is better than one”—Probes for dual-modality molecular imaging. ChemInform 2009, 40, 3511–3524. [Google Scholar] [CrossRef]
- Jokerst, J.V.; Gambhir, S.S. Molecular imaging with theranostic nanoparticles. Acc. Chem. Res. 2011, 44, 1050–1060. [Google Scholar] [CrossRef]
- Histed, S.N.; Lindenberg, M.L.; Mena, E.; Turkbey, B.; Choyke, P.L.; Kurdziel, K.A. Review of functional/anatomical imaging in oncology. Nucl. Med. Commun. 2012, 33, 349–361. [Google Scholar] [CrossRef]
- Kiessling, F.; Fokong, S.; Bzyl, J.; Lederle, W.; Palmowski, M.; Lammers, T. Recent advances in molecular, multimodal and Theranostic Ultrasound imaging. Adv. Drug Deliv. Rev. 2014, 72, 15–27. [Google Scholar] [CrossRef]
- Yang, C.T.; Ghosh, K.K.; Padmanabhan, P.; Langer, O.; Liu, J.; Eng, D.N.C.; Halldin, C.; Gulyás, B. PET-MR and SPECT-MR multimodality probes: Development and challenges. Theranostics 2018, 8, 6210–6232. [Google Scholar] [CrossRef]
- Siegel, B.A.; Dehdashti, F.; Mutch, D.G.; Podoloff, D.A.; Wendt, R.; Sutton, G.P.; Burt, R.W.; Ellis, P.R.; Mathias, C.J.; Green, M.A.; et al. Evaluation of 111In-DTPA-folate as a receptor-targeted diagnostic agent for ovarian cancer: Initial clinical results. J. Nucl. Med. 2003, 44, 700–707. [Google Scholar] [PubMed]
- Kunos, C.A.; Mankoff, D.A.; Schultz, M.K.; Graves, S.A.; Pryma, D.A. Radiopharmaceutical chemistry and drug development—what’s changed? Semin. Radiat. Oncol. 2021, 31, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Kane’, S.M.; Davis, D.D. Technetium-99m. In Stat Pearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK559013 (accessed on 1 January 2023).
- Almuhaideb, A.; Papathanasiou, N.; Bomanji, J. 18F-FDG PET/CT imaging in oncology. 18F-FDG PET/CT imaging in oncology. Ann. Saudi Med. 2011, 31, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Glaudemans, A.W.; de Vries, E.F.; Galli, F.; Dierckx, R.A.; Slart, R.H.; Signore, A. The use of 18F-FDG-PET/CT for diagnosis and treatment monitoring of inflammatory and infectious diseases. Clin. Dev. Immunol. 2013, 2013, 623036. [Google Scholar] [CrossRef]
- Kim, J.; Lee, N.; Hyeon, T. Recent development of nanoparticles for molecular imaging. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20170022. [Google Scholar] [CrossRef]
- Ehlerding, E.B.; Grodzinski, P.; Cai, W.; Liu, C.H. Big potential from small agents: Nanoparticles for imaging-based companion diagnostics. ACS Nano 2018, 12, 2106–2121. [Google Scholar] [CrossRef]
- Ailuno, G.; Iacobazzi, R.M.; Lopalco, A.; Baldassari, S.; Arduino, I.; Azzariti, A.; Pastirino, S.; Caviglioli, G.; Denora, N. The pharmaceutical technology approach on imaging innovations from Italian research. Pharmaceutics 2021, 13, 1214. [Google Scholar] [CrossRef]
- Phua, V.J.X.; Yang, C.-T.; Xia, B.; Yan, S.X.; Liu, J.; Aw, S.E.; He, T.; Ng, D.C.E. Nanomaterial probes for nuclear imaging. Nanomaterials 2022, 12, 582. [Google Scholar] [CrossRef]
- McDougall, I.R.; Dunnick, J.K.; Goris, M.L.; Kriss, J.P. In vivo distribution of vesicles loaded with radiopharmaceuticals: A comparison of different routes of administration. Scott. Med. J. 1975, 20, 39. [Google Scholar] [CrossRef]
- Sur, S.; Fries, A.C.; Kinzler, K.W.; Zhou, S.; Vogelstein, B. Remote loading of pre-encapsulated drugs into stealth liposomes. Proc. Natl. Acad. Sci. USA 2014, 111, 2283–2288. [Google Scholar] [CrossRef]
- Peltek, O.O.; Muslimov, A.R.; Zyuzin, M.V.; Timin, A.S. Current outlook on Radionuclide Delivery Systems: From design consideration to translation into clinics. J. Nanobiotechnol. 2019, 17, 90. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.K. Nuclear medicine and infection detection: The relative effectiveness of imaging with 111In-oxine-, 99mTc-HMPAO-, and 99mTc-stannous fluoride colloid-labelled leukocytes and with 67Ga-citrate. J. Nucl. Med. Technol. 2003, 31, 196–201, quiz 203–204. [Google Scholar] [PubMed]
- Altai, M.; Membreno, R.; Cook, B.; Tolmachev, V.; Zeglis, B.M. Pretargeted Imaging and Therapy. J. Nucl. Med. 2017, 58, 1553–1559. [Google Scholar] [CrossRef] [PubMed]
- Paganelli, G.; Chinol, M. Radioimmunotherapy: Is avidin-biotin pretargeting the preferred choice among pretargeting methods? Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 773–776. [Google Scholar] [CrossRef]
- PPastorino, S.; Baldassari, S.; Ailuno, G.; Zuccari, G.; Drava, G.; Petretto, A.; Cossu, V.; Marini, C.; Alfei, S.; Florio, T.; et al. Two novel PET radiopharmaceuticals for endothelial vascular cell adhesion molecule-1 (VCAM-1) targeting. Pharmaceutics 2021, 13, 1025. [Google Scholar] [CrossRef]
- Oku, N.; Tokudome, Y.; Tsukada, H.; Kosugi, T.; Namba, Y.; Okada, S. In vivo trafficking of long-circulating liposomes in tumour-bearing mice determined by positron emission tomography. Biopharm. Drug Dispos. 1996, 17, 435–441. [Google Scholar] [CrossRef]
- Marik, J.; Tartis, M.S.; Zhang, H.; Fung, J.Y.; Kheirolomoom, A.; Sutcliffe, J.L.; Ferrara, K.W. Long-circulating liposomes radiolabeled with [18F]fluorodipalmitin ([18F]FDP). Nucl. Med. Biol. 2007, 34, 165–171. [Google Scholar] [CrossRef]
- Richardson, V.J.; Jeyasingh, K.; Jewkes, R.F.; Ryman, B.E.; Tattersall, M.H. Properties of [99mTc] technetium-labelled liposomes in normal and tumour-bearing rats. Biochem. Soc. Trans. 1977, 5, 290–291. [Google Scholar] [CrossRef]
- Richardson, V.J.; Ryman, B.E.; Jewkes, R.F.; Tattersall, M.H.N.; Newlands, E.S. 99mTc-labelled liposomes preparation of radiopharmaceutical and its distribution in a Hepatoma patient. Int. J. Nucl. Med. Biol. 1978, 5, 118–122. [Google Scholar] [CrossRef]
- Osborne, M.P.; Payne, J.H.; Richardson, V.J.; McCready, V.R.; Ryman, B.E. The preoperative detection of axillary lymph node metastases in breast cancer by isotope imaging. Br. J. Surg. 1983, 70, 141–144. [Google Scholar] [CrossRef]
- Hwang, K.J. Odes of interaction of (In3+)-8-hydroxyquinoline with membrane bilayer. J. Nucl. Med. 1978, 19, 1162–1170. [Google Scholar] [PubMed]
- Beaumier, P.L.; Hwang, K.J. Effects of liposome size on the degradation of bovine brain sphingomyelin/cholesterol liposomes in the mouse liver. Biochim. Biophys. Acta (BBA) Biomembr. 1983, 731, 23–30. [Google Scholar] [CrossRef]
- Beaumier, P.L.; Hwang, K.J. An efficient method for loading indium-111 into liposomes using acetylacetone. J. Nucl. Med. 1982, 23, 810–815. [Google Scholar] [PubMed]
- Essien, H.; Hwang, K.J. Preparation of liposomes entrapping a high specific activity of 111In +-bound inulin. Biochim. Biophys. Acta (BBA) Biomembr. 1988, 944, 329–336. [Google Scholar] [CrossRef]
- Mauk, M.R.; Gamble, R.C. Preparation of lipid vesicles containing high levels of entrapped radioactive cations. Anal. Biochem. 1979, 94, 302–307. [Google Scholar] [CrossRef] [PubMed]
- van der Geest, T.; Laverman, P.; Metselaar, J.M.; Storm, G.; Boerman, O.C. Radionuclide imaging of Liposomal Drug Delivery. Expert Opin. Drug Deliv. 2016, 13, 1231–1242. [Google Scholar] [CrossRef] [PubMed]
- Bao, A.; Goins, B.; Klipper, R.; Negrete, G.; Phillips, W.T. 186Re-liposome labelling using 186Re-SNS/S complexes: In vitro stability, imaging, and biodistribution in rats. J. Nucl. Med. 2003, 44, 1992–1999. [Google Scholar] [PubMed]
- Li, S.; Goins, B.; Phillips, W.T.; Bao, A. Remote-loading labelling of liposomes with 99mTc-BMEDA and its stability evaluation: Effects of lipid formulation and pH/chemical gradient. J. Liposome Res. 2010, 21, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.I.; Severin, G.W.; Hansen, A.E.; Fliedner, F.P.; Eliasen, R.; Parhamifar, L.; Kjær, A.; Andresen, T.L.; Henriksen, J.R. Remote-loading of liposomes with manganese-52 and in vivo evaluation of the stabilities of 52Mn-DOTA and 64CU-DOTA using radiolabelled liposomes and PET imaging. J. Control. Release 2018, 269, 100–109. [Google Scholar] [CrossRef]
- Petersen, A.L.; Binderup, T.; Rasmussen, P.; Henriksen, J.R.; Elema, D.R.; Kjær, A.; Andresen, T.L. 64Cu loaded liposomes as positron emission tomography imaging agents. Biomaterials 2011, 32, 2334–2341. [Google Scholar] [CrossRef]
- Locke, L.W.; Mayo, M.W.; Yoo, A.D.; Williams, M.B.; Berr, S.S. PET imaging of tumour associated macrophages using mannose coated 64Cu liposomes. Biomaterials 2012, 33, 7785–7793. [Google Scholar] [CrossRef]
- Pérez-Medina, C.; Abdel-Atti, D.; Zhang, Y.; Longo, V.A.; Irwin, C.P.; Binderup, T.; Ruiz-Cabello, J.; Fayad, Z.A.; Lewis, J.S.; Mulder, W.J.M.; et al. A modular labelling strategy for in vivo pet and near-infrared fluorescence imaging of Nanoparticle Tumour targeting. J. Nucl. Med. 2014, 55, 1706–1711. [Google Scholar] [CrossRef]
- Hnatowich, D.J.; Friedman, B.; Clancy, B.; Novak, M. Labelling of preformed liposomes with Ga-67 and Tc-99m by chelation. J. Nucl. Med. 1981, 22, 810–814. [Google Scholar] [PubMed]
- Laverman, P.; Dams, E.T.; Oyen, W.J.; Storm, G.; Koenders, E.B.; Prevost, R.; van der Meer, J.W.; Corstens, F.H.; Boerman, O.C. A novel method to label liposomes with 99mTc by the hydrazino nicotinyl derivative. J. Nucl. Med. 1999, 40, 192–197. [Google Scholar] [PubMed]
- Seo, J.W.; Zhang, H.; Kukis, D.L.; Meares, C.F.; Ferrara, K.W. A novel method to label preformed liposomes with 64Cu for positron emission tomography (PET) imaging. Bioconjugate Chem. 2008, 19, 2577–2584. [Google Scholar] [CrossRef] [PubMed]
- Kostarelos, K.; Emfietzoglou, D. Liposomes as carriers of radionuclides: From imaging to therapy. J. Liposome Res. 1999, 9, 429–460. [Google Scholar] [CrossRef]
- Biechlin, M.L.; du Moulinet d’Hardemare, A.; Fraysse, M.; Gilly, F.-N.; Bonmartin, A. Improvement in radiolabelling proteins with the99mTc-tricarbonyl-core [99mTc(CO)3]+, by thiol-derivatization with iminothiolane: Application to γ-Globulins and Annexin V. J. Label. Compd. Radiopharm. 2005, 48, 873–885. [Google Scholar] [CrossRef]
- Biechlin, M.L.; Bonmartin, A.; Gilly, F.N.; Fraysse, M.; du Moulinet d’Hardemare, A. Radiolabelling of annexin A5 with 99mTc: Comparison of hynic-TC vs. IMINOTHIOLANE-TC-tricarbonyl conjugates. Nucl. Med. Biol. 2008, 35, 679–687. [Google Scholar] [CrossRef]
- Varga, Z.; Szigyártó, I.C.; Gyurkó, I.; Dóczi, R.; Horváth, I.; Máthé, D.; Szigeti, K. Radiolabelling and quantitative in vivo SPECT/CT Imaging Study of liposomes using the novel iminothiolane-99mTc-tricarbonyl complex. Contrast Media Mol. Imaging 2017, 2017, 4693417. [Google Scholar] [CrossRef]
- Duan, Y.; Wei, L.; Petryk, J.; Ruddy, T. Formulation, characterization and tissue distribution of a novel pH-sensitive long-circulating liposome-based theranostic suitable for molecular imaging and drug delivery. Int. J. Nanomed. 2016, 11, 5697–5708. [Google Scholar] [CrossRef]
- Monteiro, L.O.F.; Fernandes, R.S.; Oda, C.M.R.; Lopes, S.C.; Townsend, D.M.; Cardoso, V.N.; Oliveira, M.C.; Leite, E.A.; Rubello, D.; de Barros, A.L.B. Paclitaxel-loaded folate-coated long circulating and pH-sensitive liposomes as a potential drug delivery system: A biodistribution study. Biomed. Pharmacother. 2018, 97, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Panwar, P.; Pandey, B.; Lakhera, P.C.; Singh, K.P. Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes. Int. J. Nanomed. 2010, 5, 101–108. [Google Scholar] [CrossRef]
- Richardson, V.J.; Ryman, B.E.; Jewkes, R.F.; Jeyasingh, K.; Tattersall, M.N.; Newlands, E.S.; Kaye, S.B. Tissue distribution and tumour localization of 99m-technetium-labelled liposomes in cancer patients. Br. J. Cancer 1979, 40, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.R.; Williams, L.A.; Howard, C.B. Technetium-labelled liposome imaging for deep-seated infection. Br. J. Radiol. 1985, 58, 35–39. [Google Scholar] [CrossRef]
- Goins, B.; Klipper, R.; Rudolph, A.S.; Cliff, R.O.; Blumhardt, R.; Phillips, W.T. Biodistribution and imaging studies of technetium-99m-labelled liposomes in rats with focal infection. J. Nucl. Med. 1993, 34, 2160–2168. [Google Scholar] [PubMed]
- Turker, S.; Erdogan, S.; Ozer, A.; Ergun, E.; Tuncel, M.; Bilgili, H.; Deveci, S. Scintigraphic imaging of radiolabelled drug delivery systems in rabbits with arthritis. Int. J. Pharm. 2005, 296, 34–43. [Google Scholar] [CrossRef]
- Ogawa, M.; Umeda, I.O.; Kosugi, M.; Kawai, A.; Hamaya, Y.; Takashima, M.; Yin, H.; Kudoh, T.; Seno, M.; Magata, Y. Development of 111In-labelled liposomes for vulnerable atherosclerotic plaque imaging. J. Nucl. Med. 2013, 55, 115–120. [Google Scholar] [CrossRef]
- Ogawa, M.; Uchino, R.; Kawai, A.; Kosugi, M.; Magata, Y. Peg modification on 111In-labelled phosphatidyl serine liposomes for imaging of atherosclerotic plaques. Nucl. Med. Biol. 2015, 42, 299–304. [Google Scholar] [CrossRef]
- Goins, B.; Phillips, W.T.; Klipper, R. Blood-pool imaging using technetium-99m-labelled liposomes. J. Nucl. Med. 1996, 37, 1374–1379. [Google Scholar] [PubMed]
- Morgan, J.R.; Williams, K.E.; Davies, R.L.L.; Leach, K.; Thomson, M.; Williams, L.A. Localisation of experimental staphylococcal abscesses by 99mTc-technetium-labelled liposomes. J. Med. Microbiol. 1981, 14, 213–217. [Google Scholar] [CrossRef]
- Turner, A.; Presant, C.A.; Proffitt, R.T.; Williams, L.E.; Winsor, D.W.; Werner, J.L. In-111-labelled liposomes: Dosimetry and tumour depiction. Radiology 1988, 166, 761–765. [Google Scholar] [CrossRef] [PubMed]
- Caride, V.J. Technical and biological considerations on the use of radiolabelled liposomes for diagnostic imaging. Int. J. Radiat. Appl. Instrum. Part B Nucl. Med. Biol. 1990, 17, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Phillips, W.T.; Rudolph, A.S.; Goins, B.; Timmons, J.H.; Klipper, R.; Blumhardt, R. A simple method for producing a technetium-99m-labelled liposome which is stable in vivo. Int. J. Radiat. Appl. Instrum. Part B Nucl. Med. Biol. 1992, 19, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Richardson, V.J.; Jeyasingh, K.; Jewkes, R.F.; Ryman, B.E.; Tattersall, M.H. Possible tumour localization of Tc-99m-labelled liposomes: Effects of lipid composition, charge, and liposome size. J. Nucl. Med. 1978, 19, 1049–1054. [Google Scholar] [PubMed]
- Chang, C.H.; Chang, M.C.; Chang, Y.J.; Chen, L.C.; Lee, T.W.; Ting, G. Translation Research for the Radiotheranostics of Nanotargeted 188Re-Liposome. Int. J. Mol. Sci. 2021, 22, 3868. [Google Scholar] [CrossRef] [PubMed]
- Uccelli, L.; Martini, P.; Urso, L.; Ghirardi, T.; Marvelli, L.; Cittanti, C.; Carnevale, A.; Giganti, M.; Bartolomei, M.; Boschi, A. Rhenium Radioisotopes for Medicine, a Focus on Production and Applications. Molecules 2022, 27, 5283. [Google Scholar] [CrossRef]
- Laverman, P.; Boerman, O.C.; Storm, G. Radiolabeling of liposomes for Scintigraphic imaging. Methods Enzymol. 2003, 373, 234–248. [Google Scholar] [CrossRef]
- Smith, S.V. Molecular imaging with Copper-64. J. Inorg. Biochem. 2004, 98, 1874–1901. [Google Scholar] [CrossRef]
- Caride, V.J.; Zaret, B.L. Liposome accumulation in regions of experimental myocardial infarction. Science 1977, 198, 735–738. [Google Scholar] [CrossRef]
- Palmer, T.N.; Caride, V.J.; Fernandez, L.A.; Twickler, J. Liposome accumulation in ischaemic intestine following experimental mesenteric occlusion. Biosci. Rep. 1981, 1, 337–344. [Google Scholar] [CrossRef]
- Oku, N.; Namba, Y.; Takeda, A.; Okada, S. Tumour imaging with technetium-99m-dtpa encapsulated in RES-avoiding liposomes. Nucl. Med. Biol. 1993, 20, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Corvo, M.L.; Boerman, O.C.; Oyen, W.J.; Jorge, J.C.; Cruz, M.E.; Crommelin, D.J.; Storm, G. Subcutaneous Administration of Superoxide Dismutase Entrapped in Long Circulating Liposomes: In Vivo Fate and Therapeutic Activity in an Inflammation Model. Pharm. Res. 2000, 17, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Soares, D.C.; de Oliveira, M.C.; dos Santos, R.G.; Andrade, M.S.; Vilela, J.M.; Cardoso, V.N.; Ramaldes, G.A. Liposomes radiolabelled with 159GD-DTPA-BMA: Preparation, physicochemical characterization, release profile and in vitro cytotoxic evaluation. Eur. J. Pharm. Sci. 2011, 42, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Sofou, S.; Thomas, J.L.; Lin, H.; McDevitt, M.R.; Scheinberg, D.A.; Sgouros, G. Engineered liposomes for potential alpha-particle therapy of metastatic cancer. J. Nucl. Med. 2004, 45, 253–260. [Google Scholar] [PubMed]
- Holmberg, E.; Maruyama, K.; Litzinger, D.C.; Wright, S.; Davis, M.; Kabalka, G.W.; Kennel, S.J.; Huang, L. Highly efficient immunoliposomes prepared with a method which is compatible with various lipid compositions. Biochem. Biophys. Res. Commun. 1989, 165, 1272–1278. [Google Scholar] [CrossRef]
- Phillips, W.; Andrews, T.; Liu, H.L.; Klipper, R.; Landry, A.J.; Blumhardt, R.; Goins, B. Evaluation of [99mTc] liposomes as lymphoscintigraphic agents: Comparison with [99mTc] sulfur colloid and [99mTc] human serum albumin. Nucl. Med. Biol. 2001, 28, 435–444. [Google Scholar] [CrossRef]
- Presant, C.A.; Ksionski, G.; Crossley, R. 111In labelled liposomes for tumour imaging: Clinical results of the International Liposome Imaging Study. J. Liposome Res. 1990, 1, 431–436. [Google Scholar] [CrossRef]
- Presant, C.A.; Blayney, D.; Kennedy, P.; Wiseman, C.; Gala, K.; Presant, S.L.; Proffit, R.T.; Crossley, R.J.; Preiss, S.J.; Ksionski, G.E.; et al. Preliminary report: Imaging of Kaposi sarcoma and lymphoma in AIDS with indium-111-labelled liposomes. Lancet 1990, 335, 1307–1309. [Google Scholar] [CrossRef]
- Khalifa, A.; Dodds, D.; Rampling, R.; Paterson, J.; Murray, T. Liposomal distribution in malignant glioma. Nucl. Med. Commun. 1997, 18, 17–23. [Google Scholar] [CrossRef]
- Presant, C.A.; Turner, A.F.; Proffitt, R.T. Potential for improvement in clinical decision-making: Tumour imaging with In-111 labelled liposomes results of a phase II–III study. J. Liposome Res. 1994, 4, 985–1008. [Google Scholar] [CrossRef]
- Goins, B.; Bao, A.; Phillips, W.T. Techniques for loading technetium-99m and rhenium-186/188 radionuclides into preformed liposomes for diagnostic imaging and Radionuclide Therapy. In Liposomes; Methods in Molecular Biology Book Series (MIMB, Volume 1522); Humana Press: New York, NY, USA, 2016; pp. 155–178. [Google Scholar] [CrossRef]
- Bao, A.; Goins, B.; Klipper, R.; Negrete, G.; Mahindaratne, M.; Phillips, W.T. A novel liposome radiolabelling method using 99mTc-“sns/S” complexes: In vitro and in vivo evaluation. J. Pharm. Sci. 2003, 92, 1893–1904. [Google Scholar] [CrossRef]
- Sikkink, C.J.J.M.; Reijnen, M.M.P.J.; Laverman, P.; Oyen, W.J.G.; van Goor, H. TC-99m-peg-liposomes target both adhesions and abscesses and their reduction by hyaluronate in rats with fecal peritonitis. J. Surg. Res. 2009, 154, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Hamamichi, S.; Asano, M.; Hori, Y.; Matsui, J.; Iwata, M.; Funahashi, Y.; Umeda, I.O.; Fujii, H. Radiolabelled liposome imaging determines an indication for liposomal anticancer agent in Ovarian Cancer mouse xenograft models. Cancer Sci. 2015, 107, 60–67. [Google Scholar] [CrossRef]
- Emfietzoglou, D.; Kostarelos, K.; Sgouros, G. An analytic dosimetry study for the use of radionuclide-liposome conjugates in internal radiotherapy. J. Nucl. Med. 2001, 42, 499–504. [Google Scholar] [PubMed]
- Chang, Y.J.; Chang, C.H.; Chang, T.J.; Yu, C.Y.; Chen, L.C.; Jan, M.L.; Luo, T.Y.; Lee, T.W.; Ting, G. Biodistribution, pharmacokinetics and microSPECT/CT imaging of 188Re-bMEDA-liposome in a C26 murine colon carcinoma solid tumour animal model. Anticancer. Res. 2007, 27, 2217–2225. [Google Scholar] [PubMed]
- Chen, L.C.; Wu, Y.H.; Liu, I.H.; Ho, C.L.; Lee, W.C.; Chang, C.H.; Lan, K.L.; Ting, G.; Lee, T.W.; Shien, J.H. Pharmacokinetics, dosimetry and comparative efficacy of 188Re-liposome and 5-FU in a CT26-luc lung-metastatic mice model. Nucl. Med. Biol. 2012, 39, 35–43. [Google Scholar] [CrossRef]
- Lin, L.T.; Chang, C.H.; Yu, H.L.; Liu, R.S.; Wang, H.E.; Chiu, S.J.; Chen, F.D.; Lee, T.W.; Lee, Y.J. Evaluation of the therapeutic and diagnostic effects of pegylated liposome-embedded 188Re on human non-small cell lung cancer using an orthotopic small-animal model. J. Nucl. Med. 2014, 55, 1864–1870. [Google Scholar] [CrossRef]
- Hsu, W.C.; Cheng, C.N.; Lee, T.W.; Hwang, J.J. Cytotoxic Effects of PEGylated Anti-EGFR Immunoliposomes Combined with Doxorubicin and Rhenium-188 against Cancer Cells. Anticancer. Res. 2015, 35, 4777–4788. [Google Scholar] [PubMed]
- Chen, L.C.; Chang, C.H.; Yu, C.Y.; Chang, Y.J.; Hsu, W.C.; Ho, C.L.; Yeh, C.H.; Luo, T.Y.; Lee, T.W.; Ting, G. Biodistribution, pharmacokinetics and imaging of 188Re-BMEDA-labelled pegylated liposomes after intraperitoneal injection in a C26 colon carcinoma ascites mouse model. Nucl. Med. Biol. 2007, 34, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.J.; Chang, C.H.; Yu, C.Y.; Chang, T.J.; Chen, L.C.; Chen, M.H.; Lee, T.W.; Ting, G. Therapeutic efficacy and microspect/CT imaging of 188Re-DXR-liposome in a C26 murine colon carcinoma solid tumour model. Nucl. Med. Biol. 2010, 37, 95–104. [Google Scholar] [CrossRef]
- Chang, Y.J.; Yu, C.Y.; Hsu, C.H.W.; Lee, W.C.; Chen, S.J.; Chang, C.H.; Lee, T.W. Molecular imaging and therapeutic efficacy of 188Re-(DXR)-liposome-BBN in AR42J pancreatic tumour-bearing mice. Oncol. Rep. 2012, 28, 1736–1742. [Google Scholar] [CrossRef]
- Hsu, C.W.; Chang, Y.J.; Chang, C.H.; Chen, L.C.; Lan, K.L.; Ting, G.; Lee, T.W. Comparative therapeutic efficacy of rhenium-188 radiolabelled-liposome and 5-fluorouracil in LS-174T human colon carcinoma solid tumour xenografts. Cancer Biother. Radiopharm. 2012, 27, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Urakami, T.; Akai, S.; Katayama, Y.; Harada, N.; Tsukada, H.; Oku, N. Novel amphiphilic probes for [18F]-radiolabelling preformed liposomes and determination of liposomal trafficking by Positron Emission Tomography. J. Med. Chem. 2007, 50, 6454–6457. [Google Scholar] [CrossRef]
- Helbok, A.; Decristoforo, C.; Dobrozemsky, G.; Rangger, C.; Diederen, E.; Stark, B.; Prassl, R.; von Guggenberg, E. Radiolabelling of lipid-based nanoparticles for diagnostics and therapeutic applications: A comparison using different radiometals. J. Liposome Res. 2009, 20, 219–227. [Google Scholar] [CrossRef]
- Lamichhane, N.; Dewkar, G.; Sundaresan, G.; Mahon, R.; Zweit, J. [18F]-fluorinated carboplatin and [111In]-liposome for image-guided drug delivery. Int. J. Mol. Sci. 2017, 18, 1079. [Google Scholar] [CrossRef]
- Emmetiere, F.; Irwin, C.; Viola-Villegas, N.T.; Longo, V.; Cheal, S.M.; Zanzonico, P.; Pillarsetty, N.V.K.; Weber, W.A.; Lewis, J.S.; Reiner, T. 18F-labelled-bioorthogonal liposomes for in vivo targeting. Bioconjugate Chem. 2013, 24, 1784–1789. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.W.; Mahakian, L.M.; Kheirolomoom, A.; Zhang, H.; Meares, C.F.; Ferdani, R.; Anderson, C.J.; Ferrara, K.W. Liposomal CU-64 labelling method using bifunctional chelators: Poly(ethylene glycol) spacer and chelator effects. Bioconjugate Chem. 2010, 21, 1206–1215. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.W.; Qin, S.; Mahakian, L.M.; Watson, K.D.; Kheirolomoom, A.; Ferrara, K.W. Positron emission tomography imaging of the stability of Cu-64 labelled dipalmitoyl and distearoyl lipids in liposomes. J. Control. Release 2011, 151, 28–34. [Google Scholar] [CrossRef]
- Mahakian, L.M.; Farwell, D.G.; Zhang, H.; Seo, J.W.; Poirier, B.; Tinling, S.P.; Afify, A.M.; Haynam, E.M.; Shaye, D.; Ferrara, K.W. Comparison of PET imaging with 64Cu-liposomes and 18F-FDG in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch model of oral dysplasia and squamous cell carcinoma. Mol. Imaging Biol. 2013, 16, 284–292. [Google Scholar] [CrossRef]
- Lee, H.; Zheng, J.; Gaddy, D.; Orcutt, K.D.; Leonard, S.; Geretti, E.; Hesterman, J.; Harwell, C.; Hoppin, J.; Jaffray, D.A.; et al. A gradient-loadable 64Cu-chelator for quantifying tumour deposition kinetics of nanoliposomal therapeutics by Positron Emission Tomography. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 155–165. [Google Scholar] [CrossRef]
- Lee, H.; Gaddy, D.; Ventura, M.; Bernards, N.; de Souza, R.; Kirpotin, D.; Wickham, T.; Fitzgerald, J.; Zheng, J.; Hendriks, B.S. Companion Diagnostic 64Cu-Liposome Positron Emission Tomography Enables Characterization of Drug Delivery to Tumors and Predicts Response to Cancer Nanomedicines. Theranostics 2018, 8, 2300–2312. [Google Scholar] [CrossRef]
- Lee, S.-g.; Gangangari, K.; Kalidindi, T.M.; Punzalan, B.; Larson, S.M.; Pillarsetty, N.V. Copper-64 labelled liposomes for imaging bone marrow. Nucl. Med. Biol. 2016, 43, 781–787. [Google Scholar] [CrossRef]
- Clausen, A.S.; Østergaard, D.E.; Holmberg, P.; Henriksen, J.R.; Tham, J.; Damborg, P.P.; Jensen, A.I.; Kjaer, A.; Hansen, A.E.; Andresen, T.L. Quantitative determination of 64Cu-liposome accumulation at inflammatory and infectious sites: Potential for future Theranostic system. J. Control. Release 2020, 327, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.W.; Mahakian, L.M.; Tam, S.; Qin, S.; Ingham, E.S.; Meares, C.F.; Ferrara, K.W. The pharmacokinetics of ZR-89 labelled liposomes over extended periods in a murine tumour model. Nucl. Med. Biol. 2015, 42, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Polyak, A.; Bankstahl, J.P.; Besecke, K.F.W.; Hozsa, C.; Triebert, W.; Pannem, R.R.; Manstein, F.; Borcholte, T.; Furch, M.; Zweigerdt, R.; et al. Simplified 89Zr-Labelling Protocol of Oxine (8-Hydroxyquinoline) Enabling Prolonged Tracking of Liposome-Based Nanomedicines and Cells. Pharmaceutics 2021, 13, 1097. [Google Scholar] [CrossRef]
- Barbosa, M.V.; Monteiro, L.O.; Carneiro, G.; Malagutti, A.R.; Vilela, J.M.; Andrade, M.S.; Oliveira, M.C.; Carvalho-Junior, A.D.; Leite, E.A. Experimental design of a liposomal lipid system: A potential strategy for paclitaxel-based breast cancer treatment. Colloids Surf. B Biointerfaces 2015, 136, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Foo, J.B.; Ng, L.S.; Lim, J.H.; Tan, P.X.; Lor, Y.Z.; Loo, J.S.; Low, M.L.; Chan, L.C.; Beh, C.Y.; Leong, S.W.; et al. Induction of cell cycle arrest and apoptosis by copper complex Cu(SBCM)2 towards oestrogen-receptor positive MCF-7 breast cancer cells. RSC Adv. 2019, 9, 18359–18370. [Google Scholar] [CrossRef]
- Petersen, A.L.; Binderup, T.; Jølck, R.I.; Rasmussen, P.; Henriksen, J.R.; Pfeifer, A.K.; Kjær, A.; Andresen, T.L. Positron emission tomography evaluation of somatostatin receptor targeted 64Cu-Tate-liposomes in a human neuroendocrine carcinoma mouse model. J. Control. Release 2012, 160, 254–263. [Google Scholar] [CrossRef]
- Keliher, E.J.; Yoo, J.; Nahrendorf, M.; Lewis, J.S.; Marinelli, B.; Newton, A.; Pittet, M.J.; Weissleder, R. 89Zr-labelled dextran nanoparticles allow in vivo macrophage imaging. Bioconjugate Chem. 2011, 22, 2383–2389. [Google Scholar] [CrossRef]
Imaging Technique | Advantages [23,24] | Disadvantages [23,24] | Imaging Probes [24,25] |
---|---|---|---|
PET | γ-ray emission; high sensitivity; unlimited penetration; quantitative imaging | High cost; low spatial resolution (better spatial resolution than SPECT); radiation exposure | Radioisotopes: 18F, 64Cu, 124I, 68Ga, 89Zr, etc. |
SPECT | γ-ray emission; high sensitivity; unlimited penetration depth; radiotherapy | Low spatial resolution; radiation exposure | Radioisotopes: 99mTc, 111In, 67Ga, 123I, 177Lu, etc. |
CT | X-ray attenuation; high spatial resolution; anatomical imaging | Radiation exposure; limited application | Iodine, barium sulfate, gold particles |
MRI | Proton density and relaxation time; high spatial temporal resolution; soft tissue imaging; unlimited penetration | Low sensitivity; long imaging acquisition time; gadolinium health effects [26] | Paramagnetic, superparamagnetic iron oxide nanoparticles, Gd complexes; Gd-based nanoparticles, etc. |
Radiolabeling Method | Radioisotope | Chelator/Other Molecules | Advantages | Disadvantages | Ref. |
---|---|---|---|---|---|
Passive encapsulation | 99mTc | - | Direct incubation during liposome manufacturing | Limited encapsulating capacity, low loading efficiency, low stability, requires freshly prepared liposomes | [42] |
18F-fludeoxyglucose (18F-FDG) | - | [49,50] | |||
Membrane labeling | 99mTc | SnCl2 (reducing agent) | High labeling efficiency | Low in vivo stability | [51,52,53] |
Remote labeling—ionophore | 111In, 67Ga, 99mTc | nitrilotriacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA), tetraxetan, 2,2′,2′′,2′′′-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA) Ionophore: A23187, small molecular weight ionophore (oxine) | Labeling efficiency between 60 and 90% | Additional step required for purification procedures | [54,55,56,57,58] |
Remote labeling—lipophilic chelator | 99mTc | hexamethylpropyleneamine oxime (HMPAO) | Higher labeling efficiency than passive encapsulation | Additional step required for purification procedures | [59] |
99mTc, 188Re, 186Re | N,N-bis(2-mercapatoethly)-N’,N’-diethylenediamine (BMEDA) | [60,61] | |||
64Cu, 52Mn | DOTA | - | Poor loading efficiency | [62] | |
64Cu | Oxine, DOTA | High labeling efficiency and stability; the addition of oxine facilitates the transport of 64Cu into liposomes | Synthesis of preformed liposomes that contain oxine | [63,64] | |
Remote labeling—surface chelator | 89Zr | Deferoxamine (DFO) | High stability in vitro | Low labeling yield (~44%) | [65] |
99mTc, 67Ga | DTPA conjugated to stearylamine | High labeling efficiency | Low in vitro and in vivo stability | [66,67] | |
64Cu | 4-(N-hydroxyamino)-2R-isobuty-2S-(2-thienylthiomethyl)succinyl-l-phenylalanine-N-methylamide (BAT) | Additional heating step (>70 °C) required for the incorporation of 64Cu into BAT | [68] | ||
99mTc, 111In | N-hydroxy succinimidyl hydrazine nicotinate hydrochloride (HYNIC) conjugated to 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) | High stability and labeling efficiency (>95%), rapid labeling procedure without purification required | Limited radionuclide choices | [67,69] | |
99mTc-tricarbonyl complex | 2-iminothiolane | High labeling efficiency (>90%) and stability | Tedious preparation method required for the synthesis of 99mTc-tricarbonyl (99mTc-(CO3+)) | [54,55,56,57,58,63,64,68,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84] | |
64Cu, 52Mn, 68Ga | DOTA conjugated to DSPEIonophore: oxine | Labeling needs to be performed at pH 4 due to the use of ethanol for oxine solubility | [62,63,68] |
Liposomal Probe Name | Isotope | Application and Research Outcomes | Ref. |
---|---|---|---|
99mTc-labeled liposome | 99mTc | In vivo biodistribution study, similar biodistribution in normal tissues of humans and rats | [76] |
99mTc-labeled liposome | 99mTc | Diagnostic imaging for deep-seated infection | [77] |
99mTc-liposomes | 99mTc | Diagnostic imaging for focal infection | [78] |
99mTc-labeled L1 | 99mTc | Drug delivery evaluation, potential SPECT imaging probe for arthritis | [79] |
111In- hosphatidylserine100 (PS100); 111In-PS200; 111In-labeled phosphatidyl-d-serine100 (DPS100); 111In-labeled DPS200; 111In- Phosphatidylcholine100 (PC100); 111In-PC200 | 111In | Diagnostic imaging for atherosclerotic plaque, high uptake of PS liposomes due to recognition by macrophages | [80] |
[111In]1% Polyethylene glycols (PEG)2000PS100; [111In]5%PEg2000PS100; [111In]1%PEG5000PS100; [111In]5%PEG5000PS100; [111In]PS100; [111In]PS200 | 111In | Diagnostic imaging for atherosclerotic plaques, in vivo biodistribution study, slow blood clearance due to PEG modification on the surface of liposomes | [81] |
99mTc-labeled liposome | 99mTc | Blood pool imaging probe with high in vivo stability | [82] |
99mTc-labeled liposomes | 99mTc | Diagnostic imaging for staphylococcal abscesses, negatively charged 99mTc-labeled liposomes may be specific for naturally occurring abscesses | [83] |
111In-labeled liposomes | 111In | Diagnostic imaging for suspected and unsuspected tumors, in vivo biodistribution study | [84] |
111In-labeled liposomes (VesCan®) | 111In | Diagnostic imaging for primary tumors or metastases with 70–80% overall sensitivity, in vivo biodistribution study | [100] |
111In-labeled liposomes | 111In | Diagnostic imaging for Kaposi sarcoma and lymphoma in AIDS, liposomal encapsulation reduced the toxicity of chemotherapeutics toward healthy tissues | [101] |
111In-labeled liposomes | 111In | Diagnostic imaging for malignant glioma, distinct tumor image with no toxicity, low overall brain uptake | [102] |
111In-labeled VS102 liposomes (VesCan®) | 111In | Diagnostic imaging for carcinomas and in vivo biodistribution | [103] |
99mTc- Glutathione (GSH)-liposomes; 99mTc-ammonium sulfate-liposomes; 186/188Re-GSH-liposomes; 186/188Re-ammonium sulfate-liposomes | 99mTc and 186/188Re | Diagnostic imaging, radiolabeling technique of preformed liposomes with 99mTc or 186/188Re | [104] |
99mTc-BMEDA labeled GSH; 99mTc-BMEDA+BT-labeled GSH; 99mTc-BMBuA-labeled GSH; 99mTc-BMBuA+BT-labeled GSH liposomes | 99mTc | Radiolabeling method optimization using BMEDA | [105] |
99mTc-PEG-HYNIC liposomes | 99mTc | SPECT imaging for inflammation, limited to distinguishing between vascularized early adhesions and early abscesses | [106] |
111In-encapsulated liposomes | 111In | SPECT imaging probe for the therapeutic efficacy of liposomal anticancer agents | [107] |
67Cu-small unilamellar vesicles (SUV); 188Re-SUV; 90Y-SUV; 131I-SUV; 67Cu- multilamellar vesicles (MLV); 188Re-MLV; 188Re-MLV; 67Cu-GM1; 188Re-GM1; 90Y-GM1; 131I-GM1 | 67Cu, 90Y, 188Re, 131I | Liposomal radiopharmaceutical efficacy evaluation | [108] |
188Re-BMEDA-labeled pegylated liposomes | 188Re | In vivo biodistribution study, radiolabeling method of liposomes with 188Re, theranostic benefit | [109] |
186Re-(NH4)2SO4 liposomes; 186Re-cysteine liposomes | 186Re | Radiolabeling method for the optimization of 186Re, theranostic benefit | [60] |
99mTc-BMEDA labeled liposomes with ammonium sulfate, citrate, or GSH | 99mTc | Novel radiolabeling method using 99mTc-BMEDA for the labeling of pH/GSH gradient liposomes | [61] |
188Re-BMEDA-labeled pegylated liposomes | 188Re | In vivo biodistribution, theranostic vehicle with prolonged half-life due to the novel radiolabeling method using BMEDA for 188Re | [110] |
188Re-BMEDA and 188Re-liposome | 188Re | In vivo biodistribution, theranostic vehicle for lung cancer | [111] |
188Re-BMEDA-labeled liposome | 188Re | In vivo biodistribution study, theranostic benefit | [112] |
188Re-BMEDA-labeled liposome | 188Re | In vivo biodistribution study, theranostic benefit with long circulation period due to PEG modification | [113] |
188Re-BMEDA-labeled pegylated liposomal doxorubicin; 188Re-liposomes | 188Re | Therapeutic efficacy study, scintigraphic imaging, in vivo biodistribution, theranostic vehicle | [114] |
188Re- doxorubicin (DXR)-liposome-BBN; 188Re-liposome-BBN | 188Re | Therapeutic efficacy, scintigraphic imaging, theranostic vehicle | [115] |
188Re-liposome | 188Re | Therapeutic efficacy, scintigraphic imaging, theranostic benefit | [116] |
Liposomal 18[F]-fluorodipalmitin (FDP) | 18F | Radiolabeling method for the optimization of liposomes, PET imaging probe | [50] |
Liposomes modified with 18[F]-radiolabeled amphiphilic compounds | 18F | Radiolabeling method for the optimization of liposomes with 18[F]-labeled amphiphilic compounds, PET imaging probe | [117] |
68Ga-DTPA-PEGylated -liposomes (PLP) | 68Ga | In vivo biodistribution of radiolabeled liposomes, PET imaging probe | [118] |
[18F]-fluorinated carboplatin (FCP) encapsulation in [111In]-liposomes | 18F, 111In | Dual-tracer PET and SPECT imaging | [119] |
18F-(E)-cyclooct-4-enyl2,5-dioxo1-pyrrolidinylcarbonate(TCO)-liposomes | 18F | Radiolabeling of liposomes with 18F, theranostic vehicle | [120] |
64Cu-1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA) liposomes; 64Cu-TETA-PEG2k liposomes; 64Cu-CB-1,4,8,11-tetraazabicyclo(6.6.2)hexadecane (TE2A)-PEG2k liposomes | 64Cu | Radiolabeling method optimization using a maleimide lipid and bifunctional chelator, high stability in vitro and in vivo | [121] |
64Cu-DPPE-labeled liposomes; 64Cu-DSPE-labeled liposomes | 64Cu | Radiolabeling method and optimization of 64Cu for liposomes | [122] |
64Cu-TATE-liposomes | 64Cu | Radiolabeling method optimization, in vivo biodistribution study of radiolabeled liposomes, diagnostic imaging for tumors | [123] |
64Cu-liposomes | 64Cu | Diagnostic imaging, comparison between 64Cu-liposomes and 18F-FDG | [124] |
64Cu-MM-302 | 64Cu | Diagnostic imaging, in vivo biodistribution study of radiolabeled liposomes, theranostic vehicle | [125] |
64Cu-liposome | 64Cu | PET imaging probe targeting bone marrow | [126] |
64Cu-liposome | 64Cu | Theranostic benefit with improved therapeutic interventions for inflammatory and infectious disease | [127] |
89Zr-labeled liposomes | 89Zr | Radiolabeling method optimization of 89Zr, in vivo biodistribution study of 89Zr-labeled liposomes, visualization of macrophage biology in vivo; the labeling site and the linkers did not alter labeling stability but did alter blood retention time | [128] |
[89Zr]Zr(oxinate)4-liposome complex | 89Zr | Radiolabeling method optimization of 89Zr, PET imaging probe | [129] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Low, H.Y.; Yang, C.-T.; Xia, B.; He, T.; Lam, W.W.C.; Ng, D.C.E. Radiolabeled Liposomes for Nuclear Imaging Probes. Molecules 2023, 28, 3798. https://doi.org/10.3390/molecules28093798
Low HY, Yang C-T, Xia B, He T, Lam WWC, Ng DCE. Radiolabeled Liposomes for Nuclear Imaging Probes. Molecules. 2023; 28(9):3798. https://doi.org/10.3390/molecules28093798
Chicago/Turabian StyleLow, Ho Ying, Chang-Tong Yang, Bin Xia, Tao He, Winnie Wing Chuen Lam, and David Chee Eng Ng. 2023. "Radiolabeled Liposomes for Nuclear Imaging Probes" Molecules 28, no. 9: 3798. https://doi.org/10.3390/molecules28093798
APA StyleLow, H. Y., Yang, C. -T., Xia, B., He, T., Lam, W. W. C., & Ng, D. C. E. (2023). Radiolabeled Liposomes for Nuclear Imaging Probes. Molecules, 28(9), 3798. https://doi.org/10.3390/molecules28093798