Berberine Inhibited Growth and Migration of Human Colon Cancer Cell Lines by Increasing Phosphatase and Tensin and Inhibiting Aquaporins 1, 3 and 5 Expressions
Abstract
:1. Introduction
2. Results
2.1. MTT Assay
2.2. Flow Cytometry
2.3. Wound Healing Assay
2.4. Transwell Migration and Invasion Assay
2.5. Immunofluorescence Staining of AQP 1, 3 and 5
2.5.1. HT-29
2.5.2. SW-480
2.5.3. HCT-116
2.6. RT-qPCR
2.6.1. PI3K and PTEN Gene Expression
2.6.2. AQP1, AQP3 and AQP5 Gene Expression
2.7. Western Blot
3. Materials and Methods
3.1. Cell Lines Culturing
3.2. MTT Assay
3.3. Apoptosis Assay
3.3.1. Flow Cytometry
3.3.2. Toluidine Blue Staining
3.4. Wound Healing Assay
3.5. Migration Assay
3.6. Invasion Assay
3.7. Staining Protocol for Aquaporins (Immunofluorescence)
3.8. Reverse Transcription—Quantitative PCR (RT-qPCR)
3.9. Western Blot Analyses
3.10. Statistical Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Verkman, S. Aquaporins in clinical medicine. Ann. Rev. Med. 2012, 63, 303–316. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, T.; Ruszkowska, M.; Danielewicz, A.; Niedźwiedzka, E.; Arłukowicz, T.; Przybyłowicz, K. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis. Cancers 2021, 13, 2025. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.; Kim, J.; Lee, S.; Chae, Y.; Jeong, J.; Yoon, G.; Park, S.; Kim, H.; Park, J.; Choi, G. Expression of aquaporin-1, aquaporin-3, and aquaporin-5 correlates with nodal metastasis in colon cancer. Oncology 2015, 88, 369–376. [Google Scholar] [CrossRef]
- Dorward, H.S.; Du, A.; Bruhn, M.A.; Wrin, J.; Pei, J.V.; Evdokiou, A.; Price, T.J.; Yool, A.J.; Hardingham, J.E. Pharmacological blockade of aquaporin-1 water channel by AqB013 restricts migration and invasiveness of colon cancer cells and prevents endothelial tube formation in vitro. J. Exp. Clin. Cancer Res. 2016, 35, 36. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, Q.; Yang, T.; Li, D.; Ding, F.; Sun, H.; Bai, G. Anti-cancer effect of aquaporin 5 silencing in colorectal cancer cells in association with inhibition of Wnt/β-catenin pathway. Cytotechnology 2018, 70, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Lu, D.; Zhang, Y.; Li, J.; Fang, Y.; Li, F.; Sun, J. Critical role of aquaporin-3 in epidermal growth factor-induced migration of colorectal carcinoma cells and its clinical significance. Oncol. Rep. 2013, 29, 535–540. [Google Scholar] [CrossRef]
- Bustanji, Y.; Taha, M.O.; Yousef, A.-M.; Al-Bakri, A.G. Berberine potently inhibits protein tyrosine phosphatase 1B: Investigation by docking simulation and experimental validation. J. Enzym. Inhib. Med. Chem. 2006, 21, 163–171. [Google Scholar] [CrossRef]
- Xiong, G.; Huang, Y.; Wu, X.; Zhou, D.; Yang, J.; Saimaiti, A.; Zhao, N.; Shang, A.; Zhang, J.; Gan, Y.; et al. Anticancer effects and mechanisms of berberine from medicinal herbs: An update review. Molecules 2022, 27, 4523. [Google Scholar] [CrossRef]
- Mohammad, M.; Al-Masri, I.M.; Issa, A.; Khdair, A.; Bustanji, Y. Inhibition of pancreatic lipase by berberine and dihydroberberine: An investigation by docking simulation and experimental validation. Med. Chem. Res. 2013, 22, 2273–2278. [Google Scholar] [CrossRef]
- Zhao, Z.; Zeng, J.; Guo, Q.; Pu, K.; Yang, Y.; Chen, N.; Zhang, G.; Zhao, M.; Zheng, Q.; Tang, J.; et al. Berberine suppresses stemness and tumorigenicity of colorectal cancer stem-like cells by inhibiting m6A methylation. Front. Oncol. 2021, 15, 775418. [Google Scholar] [CrossRef]
- Ruan, H.; Zhan, Y.; Hou, J.; Xu, B.; Chen, B.; Tian, Y.; Wu, D.; Zhao, Y.; Zhang, Y.; Chen, X. Berberine binds RXR alpha to suppress beta-catenin signaling in colon cancer cells. Oncogene 2017, 36, 6906–6918. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.; Peng, W.; Wang, L.; Zhong, T.; Zhang, B.; Zeng, L. β-catenin correlates with the progression of colon cancers and berberine inhibits the proliferation of colon cancer cells by regulating the β-catenin signaling pathway. Gene 2022, 818, 146207. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Hao, Z.; Liu, H.; Zhu, B.; Dang, L.; Ma, C.; Xu, Y.; Zhang, Y.; Fan, D.; Sun, S. Quantitative proteomics analysis of berberine-treated colon cancer cells reveals potential therapy targets. Biology 2021, 10, 250. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Hu, X.; Xu, L.; Yang, H.; Zong, L.; Wang, C.; Zhu, J.; Li, Y.; Lu, Z. Berberine inhibits proliferation and migration of colorectal cancer cells by downregulation of GRP78. Anti-Cancer Drugs 2019, 31, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Tao, Z.H.; Zhao, J.; Li, T.; Wu, Z.H.; Zhang, J.F.; Hu, X.C. Glucose regulated protein 78 (GRP78) inhibits apoptosis and attentinutes chemosensitivity of gemcitabine in breast cancer cell via AKT/mitochondrial apoptotic pathway. Biochem. Biophys. Res. Commun. 2016, 474, 612–619. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, C.; Li, Z.; Zhao, Y.; Shan, S.; Shi, T.; Li, J. Reconstructed mung bean trypsin inhibitor targeting cell surface GRP78 induces apoptosis and inhibits tumor growth in colorectal cancer. Int. J. Biochem. Cell Biol. 2014, 47, 68–75. [Google Scholar] [CrossRef]
- Lü, Y.; Han, B.; Yu, H.; Cui, Z.; Li, Z.; Wang, J. Berberine regulates the microRNA-21-ITGΒ4-PDCD4 axis and inhibits colon cancer viability. Oncol. Lett. 2018, 15, 5971–5976. [Google Scholar]
- Okuno, K.; Garg, R.; Cheng Yuan, Y.; Tokunaga, M.; Kinugasaa, Y.; Goel, A. Berberine and oligomeric proanthocyanidins exhibit synergistic efficacy through regulation of PI3K-Akt signaling pathway in colorectal cancer. Front. Oncol. 2022, 12, 855860. [Google Scholar] [CrossRef]
- Nathani, S.; Mishra, R.; Katiyar, P.; Sircar, D.; Roy, P. Zinc acts synergistically with berberine for enhancing its efficacy as an anti-cancer agent by inducing clusterin-dependent apoptosis in HT-29. Colorectal Cancer Cells. Biol. Trace Elem. Res. 2022, 1–19. [Google Scholar] [CrossRef]
- Liao, W.; Li, G.; You, Y.; Wan, H.; Wu, Q.; Wang, C.; Lv, N. Antitumor activity of Notch 1 inhibition in human colorectal carcinoma cells. Oncol. Rep. 2018, 39, 1063–1071. [Google Scholar] [CrossRef]
- Saleh, N.; Mahmoud, H.E.; Eltaher, H.; Helmy, M.; El-Khordagui, L.K.; Hussein, A. Prodigiosin-functionalized probiotic ghosts as a bioinspired combination against colorectal cancer cells. Probiotics Antimicro. Prot. 2022, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.; Alencar Bezerra, M., Jr.; Nascimento, C.; Amorim, L. Anticancer drug screening: Standardization of in vitro wound healing assay. J. Bras. Pathol. Med. Lab. 2019, 55, 606–619. [Google Scholar] [CrossRef]
- Liu, X.; Ji, Q.; Ji, Q.; Ye, N.; Sui, H.; Zhou, L.; Zhu, L.; Fan, Z.; Cai, J.; Li, Q. Berberine inhibits invasion and metastasis of colorectal cancer cells via COX-2/PGE2 mediated JAK2/STAT3 signaling pathway. PLoS ONE 2015, 10, e0123478. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Cai, J.; Lin, J.; Zhou, H.; Peng, J.; Liang, J.; Xia, L.; Yin, Q.; Zou, B.; Zheng, J.; et al. A novel protein encoded by circFNDC3B inhibits tumor progression and EMT through regulating Snail in colon cancer. Mol. Cancer 2020, 2, 71. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Bao, L.Z.; Zheng, X.; Zhao, X.X.; Guo, Z.F. Obestatin downregulating aquaporin 2 plasma membrane distribution through a short-term regulatory effect. Am. J. Med. Sci. 2019, 357, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, J.; Zhong, S.; Li, J.; Du, W. Scutellarein inhibits the development of colon cancer via CDC4 mediated RAGE ubiquitination. Int. J. Mol. Med. 2020, 45, 1059–1072. [Google Scholar] [CrossRef]
- Bierhals, C.; Howard, A.; Hirst, H. Reduction of rapid proliferating tumor cell lines by inhibition of the specific glycine transporter GLYT1. Biomedicines 2021, 9, 1770. [Google Scholar] [CrossRef]
- Samad, A.; Saiman, Z.; Majid, A.; Karsani, A.; Yaacob, S. Berberine inhibits telomerase activity and induces cell cycle arrest and telomere erosion in colorectal cancer cell line, HCT 116. Molecules 2021, 26, 376. [Google Scholar] [CrossRef]
- Motawi, T.M.K.; Bustanji, Y.; El-Maraghy, S.; Taha, M.O.; Al-Ghussein, M.A.S. Evaluation of naproxen and cromolyn activities against cancer cells viability, proliferation, apoptosis, p53 and gene expression of survivin and caspase-3. Enz. Inhib. Med. Chem. 2014, 29, 153–161. [Google Scholar] [CrossRef]
- Hamadneh, L.; Bahader, M.; Abuarqoub, R.; Alhusban, A.; Hikmat, S. PI3K/AKT and MAPK1 molecular changes preceding matrix metallopeptidases overexpression during tamoxifen-resistance development are correlated to poor prognosis in breast cancer patients. Breast Cancer 2020, 28, 1358–1366. [Google Scholar] [CrossRef]
- Shi, H.; Pu, J.; Zhou, L.; Ning, Y.; Bai, C. Silencing long non-coding RNA ROR improves sensitivity of non-small-cell lung cancer to cisplatin resistance by inhibiting PI3K/Akt/mTOR signaling pathway. Tumor Biol. 2017, 39, 1010428317697568. [Google Scholar] [CrossRef]
- Kim, S.; Domon-Dell, C.; Kang, J.; Chung, D.H.; Freund, J.N.; Evers, B.M. Down-regulation of the tumor suppressor PTEN by the tumor necrosis factor-alpha/nuclear factor-kappaB (NF-kappaB)-inducing kinase/NF-kappaB pathway is linked to a default IkappaB-alpha autoregulatory loop. J. Biol. Chem. 2004, 279, 4285–4291. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Ma, M.; Feng, X.; Song, T.; Wei, Q.; Lin, R. Overexpression of aquaporin 2 in renal tubular epithelial cells alleviates pyroptosis. Transl. Androl. Urol. 2021, 10, 2340–2350. [Google Scholar] [CrossRef] [PubMed]
- Namkoong, E.; Shin, Y.H.; Bae, J.S.; Choi, S.; Kim, M.; Kim, N.; Hwang, S.M.; Park, K. Role of sodium bicarbonate cotransporters in intracellular pH regulation and their regulatory mechanisms in human submandibular glands. PLoS ONE 2015, 10, e0138368. [Google Scholar] [CrossRef] [PubMed]
- Čipak Gašparović, A.; Milković, L.; Rodrigues, C.; Mlinarić, M.; Soveral, G. Peroxiporins Are Induced upon Oxidative Stress Insult and Are Associated with Oxidative Stress Resistance in Colon Cancer Cell Lines. Antioxidants 2021, 10, 1856. [Google Scholar] [CrossRef]
- Kang, R.; Yang, H.; Chung, R.; Kim, W.; Kim, Y. Cell surface GRP78 as a biomarker and target for suppressing glioma cells. Sci. Rep. 2016, 6, 34922. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q.; Liu, Z. Berberine, a genotoxic alkaloid, induces ATM-Chk1 mediated G2 arrest in prostate cancer cells. Mut. Res. 2012, 734, 20–29. [Google Scholar] [CrossRef]
- Zou, K.; Li, Z.; Zhang, Y. Advances in the study of berberine and its derivatives: A focus on anti-inflammatory and anti-tumor effects in the digestive system. Acta Pharm. Sin. 2017, 38, 157–167. [Google Scholar] [CrossRef]
- Kaboli, J.; Rahmat, A.; Ismail, P. Targets and mechanisms of berberine, a natural drug with potential to treat cancer with special focus on breast cancer. Eur. J. Pharmacol. 2014, 740, 584–595. [Google Scholar] [CrossRef]
- Tillhon, M.; Guamán Ortiz, M.; Lombardi, P. Berberine: New perspectives for old remedies. Biochem. Pharmacol. 2012, 84, 1260–1267. [Google Scholar] [CrossRef]
- Gu, S.; Song, X.; Xie, R.; Ouyang, C.; Xie, L.; Li, Q.; Su, T.; Xu, M.; Xu, T.; Huang, D.; et al. Berberine inhibits cancer cells growth by suppressing fatty acid synthesis and biogenesis of extracellular vesicles. Life Sci. 2020, 257, 118122. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Jiang, Z.; Jiang, M.; Sun, Y. Berberine as a potential agent for the treatment of colorectal cancer. Front. Med. 2022, 28, 886996. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Roy, S.; Wang, C.; Goel, A. A Combined treatment with berberine and Andrographis exhibits enhanced anti-cancer activity through suppression of DNA replication in colorectal cancer. Pharmaceuticals 2022, 15, 262. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Mu, Y.; Cui, L.; Li, Y.; Chen, P.; Xie, J.; Wang, X. Berberine promotes apoptosis of colorectal cancer via regulation of the long non-coding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2)/AU-binding factor 1 (AUF1)/B-cell CLL/Lymphoma 2 (Bcl-2) axis. Med. Sci. Monit. 2019, 25, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, C.M.; Singh, A.T.K. Apoptosis: A Target for anticancer therapy. Int. J. Mol. Sci. 2018, 19, 448. [Google Scholar] [CrossRef]
- Voss, A.K.; Strasser, A. The essentials of developmental apoptosis. F1000Research 2020, 9, 148. [Google Scholar] [CrossRef]
- Tan, K.; Liu, C.; Chen, A.; Ding, Y.; Jin, H.; Seow-Choen, F. The role of traditional Chinese medicine in colorectal cancer treatment. Tech. Coloproctol. 2008, 12, 1–6. [Google Scholar] [CrossRef]
- Park, J.; Seo, M.; Kim, J.; Lee, J.; Ko, G.; Ha, J.; Lee, M. Berberine inhibits human colon cancer cell migration via AMP-activated protein kinase-mediated downregulation of integrin β1 signaling. Biochem. Biophys. Res. Commun. 2012, 426, 461–467. [Google Scholar] [CrossRef]
- Salvatore, L.; Calegari, M.A.; Loupakis, F.; Fassan, M.; Di Stefano, B.; Bensi, M.; Bria, E.; Tortora, G. PTEN in colorectal cancer: Shedding light on its role as predictor and Target. Cancers 2019, 11, 1765. [Google Scholar] [CrossRef]
- He, Y.; Sun, M.M.; Zhang, G.G.; Yang, J.; Chen, K.S.; Xu, W.W.; Li, B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target. Ther. 2021, 6, 425. [Google Scholar] [CrossRef]
- Molinari, F.; Frattini, M. Functions and regulation of the PTEN gene in colorectal cancer. Front. Oncol. 2014, 3, 326. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yu, X.; Martin, T.C.; Bansal, A.; Cheung, K.; Lubin, A.; Stratikopoulos, E.; Cahuzac, K.M.; Wang, L.; Xie, L.; et al. AKT degradation selectively inhibits the growth of PI3K/PTEN pathway–mutant cancers with wild-type KRAS and BRAF by destabilizing aurora kinase B. Cancer Discov. 2021, 11, 3064–3089. [Google Scholar] [CrossRef] [PubMed]
- Hervieu, A.; Kermorgant, S. The Role of PI3K in met driven cancer: A Recap. Front. Mol. Biosci. 2018, 5, 86. [Google Scholar] [CrossRef]
- Li, G.; Zhang, C.; Liang, W.; Zhang, Y.; Shen, Y.; Tian, X. Berberine regulates the Notch1/PTEN/PI3K/AKT/mTOR pathway and acts synergistically with 17-AAG and SAHA in SW480 colon cancer cells. Pharm. Biol. 2021, 59, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.K.; Chae, Y.K.; Woo, J. Role of human aquaporin 5 in colorectal carcinogenesis. Am. J Pathol. 2008, 173, 518–525. [Google Scholar] [CrossRef]
- Jiang, Y. Aquaporin-1 activity of plasma membrane affects HT20 colon cancer cell migration. IUBMB Life 2009, 61, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
Target Gene | Primer Sequence | Reference |
---|---|---|
PI3K | Forward: 5′ GAAGTTGCTCTACCCAGTGTCC 3′ Reverse: 5′ GATAGCCGTTCTTTCATTTGG 3′ | [31] |
PTEN | Forward: 5′ CAAGATGATGTTTGAAACTAT 3′ Reverse: 5′ CTTTAGCTGGCAGACCACAA 3′ | [32] |
AQP1 | Forward: 5′ ATT TTCTGG GTG GGGCCATT 3′ Reverse: 5′ GGG CCAGACCCCTTC TAT TT 3′ | [33] |
AQP3 | Forward: 5′ ACC CCT CTG GAC ACT TGG AT 3′ Reverse: 5′ GGGTTG TTGTAG GGGTCAA 3′ | [33] |
AQP5 | Forward: 5′ TCC ATTGGCCTGTCTGTCAC 3′ Reverse: 5′ CTT TGATGATGGCCACACGC 3′ | [34] |
GAPDH | Forward: 5′ CATCACTGC CACCCAGAA GA 3′ Reverse: 5′ GTCAAAGGTGGAGGAGTGGG 3′ | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarawneh, N.; Hamadneh, L.; Abu-Irmaileh, B.; Shraideh, Z.; Bustanji, Y.; Abdalla, S. Berberine Inhibited Growth and Migration of Human Colon Cancer Cell Lines by Increasing Phosphatase and Tensin and Inhibiting Aquaporins 1, 3 and 5 Expressions. Molecules 2023, 28, 3823. https://doi.org/10.3390/molecules28093823
Tarawneh N, Hamadneh L, Abu-Irmaileh B, Shraideh Z, Bustanji Y, Abdalla S. Berberine Inhibited Growth and Migration of Human Colon Cancer Cell Lines by Increasing Phosphatase and Tensin and Inhibiting Aquaporins 1, 3 and 5 Expressions. Molecules. 2023; 28(9):3823. https://doi.org/10.3390/molecules28093823
Chicago/Turabian StyleTarawneh, Noor, Lama Hamadneh, Bashaer Abu-Irmaileh, Ziad Shraideh, Yasser Bustanji, and Shtaywy Abdalla. 2023. "Berberine Inhibited Growth and Migration of Human Colon Cancer Cell Lines by Increasing Phosphatase and Tensin and Inhibiting Aquaporins 1, 3 and 5 Expressions" Molecules 28, no. 9: 3823. https://doi.org/10.3390/molecules28093823
APA StyleTarawneh, N., Hamadneh, L., Abu-Irmaileh, B., Shraideh, Z., Bustanji, Y., & Abdalla, S. (2023). Berberine Inhibited Growth and Migration of Human Colon Cancer Cell Lines by Increasing Phosphatase and Tensin and Inhibiting Aquaporins 1, 3 and 5 Expressions. Molecules, 28(9), 3823. https://doi.org/10.3390/molecules28093823