New Palladium(II) Complexes Containing Methyl Gallate and Octyl Gallate: Effect against Mycobacterium tuberculosis and Campylobacter jejuni
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Spectroscopic Characterization of Complexes 1–4
2.2. Antimycobacterial Activity
2.3. Selectivity against Campylobacter jejuni
2.4. Impact of Palladium Complexes on the Biomass of Campylobacter jejuni
3. Materials and Methods
3.1. Experimental Section
3.1.1. Starting Materials
3.1.2. Physical Measurements
3.1.3. Synthesis of the Complexes 1–4
- [Pd(meg)(1,10-phen)]·2H2O 1
- [Pd(meg)(PPh3)2] 2
- [Pd(og)(1,10-phen)]·2.5H2O 3
- [Pd(og)(PPh3)2] 4
3.2. Biological Studies
3.2.1. Antitubercular Activity
3.2.2. Anti-Campylobacter Activity
3.2.3. Campylobacter Count
3.2.4. Qualitative Evaluation of Biofilm Reduction in Campylobacter
3.2.5. Scanning Electron Microscopy of Sessile C. jejuni
3.2.6. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosenberg, B.; Van Camp, L.; Krigas, T. Inhibition of Cell Division in Escherichia coli by Electrolysis Products from a Platinum Electrode. Nature 1965, 205, 698–699. [Google Scholar] [CrossRef]
- Souza, W.A.; Ramos, L.M.S.; de Almeida, A.M.; Tezuka, D.Y.; Lopes, C.D.; Moreira, M.B.; Zanetti, R.D.; Netto, A.V.G.; Ferreira, F.B.; de Oliveira, R.J.; et al. Preparation, cytotoxic activity and DNA interaction studies of new platinum(II) complexes with 1,10-phenanthroline and 5-alkyl-1,3,4-oxadiazol-2(3H)-thione derivatives. J. Inorg. Biochem. 2022, 237, 111993. [Google Scholar] [CrossRef] [PubMed]
- Alassadi, S.; Pisani, M.J.; Wheate, N.J. A chemical perspective on the clinical use of platinum-based anticancer drugs. Dalton Trans. 2022, 51, 10835–10846. [Google Scholar] [CrossRef] [PubMed]
- Dasari, S.; Bernard Tchounwou, P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef]
- Medici, S.; Peana, M.; Nurchi, V.M.; Lachowicz, J.I.; Crisponi, G.; Zoroddu, M.A. Noble metals in medicine: Latest advances. Coord. Chem. Rev. 2015, 284, 329–350. [Google Scholar] [CrossRef]
- Ahmad, S.; Isab, A.A.; Ali, S.; Al-Arfaj, A.R. Perspectives in bioinorganic chemistry of some metal based therapeutic agents. Polyhedron 2006, 25, 1633–1645. [Google Scholar] [CrossRef]
- Frei, A.; Zuegg, J.; Elliott, A.G.; Baker, M.; Braese, S.; Brown, C.; Chen, F.; Dowson, C.G.; Dujardin, G.; Jung, N.; et al. Metal complexes as a promising source for new antibiotics. Chem. Sci. 2020, 11, 2627–2639. [Google Scholar] [CrossRef] [PubMed]
- Frei, A. Metal Complexes, an Untapped Source of Antibiotic Potential? Antibiotics 2020, 9, 90. [Google Scholar] [CrossRef] [PubMed]
- Bugaj, A.M. Vascular targeted photochemotherapy using padoporfin and padeliporfin as a method of the focal treatment of localised prostate cancer-clinician’s insight. World J. Methodol. 2016, 6, 65. [Google Scholar] [CrossRef]
- de Souza, R.A.; Stevanato, A.; Treu-Filho, O.; Netto, A.V.G.; Mauro, A.E.; Castellano, E.E.; Carlos, I.Z.; Pavan, F.R.; Leite, C.Q.F. Antimycobacterial and antitumor activities of Palladium(II) complexes containing isonicotinamide (isn): X-ray structure of trans-[Pd(N3)2(isn)2]. Eur. J. Med. Chem. 2010, 45, 4863–4868. [Google Scholar] [CrossRef] [PubMed]
- Asiri, A.M.; Khan, S.A. Palladium(II) Complexes of NS Donor Ligands Derived from Steroidal Thiosemicarbazones as Antibacterial Agents. Molecules 2010, 15, 4784. [Google Scholar] [CrossRef] [PubMed]
- Vieira, L.M.M.; de Almeida, M.V.; Lourenço, M.C.S.; Bezerra, F.A.F.M.; Fontes, A.P.S. Synthesis and antitubercular activity of palladium and platinum complexes with fluoroquinolones. Eur. J. Med. Chem. 2009, 44, 4107–4111. [Google Scholar] [CrossRef] [PubMed]
- Guerra, W.; de Andrade Azevedo, E.; de Souza Monteiro, A.R.; Bucciarelli-Rodriguez, M.; Chartone-Souza, E.; Nascimento, A.M.A.; Fontes, A.P.S.; Le Moyec, L.; Pereira-Maia, E.C. Synthesis, characterization, and antibacterial activity of three palladium(II) complexes of tetracyclines. J. Inorg. Biochem. 2005, 99, 2348–2354. [Google Scholar] [CrossRef] [PubMed]
- Choubey, S.; Varughese, L.R.; Kumar, V.; Beniwal, V. Medicinal importance of gallic acid and its ester derivatives: A patent review. Pharm. Pat. Anal. 2015, 4, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Singulani, J.d.L.; Scorzoni, L.; Gomes, P.C.; Nazaré, A.C.; Polaquini, C.R.; Regasini, L.O.; Fusco-Almeida, A.M.; Mendes-Giannini, M.J.S. Activity of gallic acid and its ester derivatives in Caenorhabditis elegans and zebrafish (Danio rerio) models. Future Med. Chem. 2017, 9, 1863–1872. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, Y.; Wang, Y. Deprotonation Mechanism of Methyl Gallate: UV Spectroscopic and Computational Studies. Int. J. Mol. Sci. 2018, 19, 3111. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, H.; Kwon, Y.; Lee, J.-H.; Kim, J.; Shin, M.-K.; Kim, S.-H.; Bae, H. Methyl Gallate Exhibits Potent Antitumor Activities by Inhibiting Tumor Infiltration of CD4+CD25+ Regulatory T Cells. J. Immunol. 2010, 185, 6698–6705. [Google Scholar] [CrossRef]
- Baek, J.; Kim, J.-Y.; Lee, C.; Yoon, K.-H.; Lee, M. Methyl Gallate Inhibits Osteoclast Formation and Function by Suppressing Akt and Btk-PLCγ2-Ca2+ Signaling and Prevents Lipopolysaccharide-Induced Bone Loss. Int. J. Mol. Sci. 2017, 18, 581. [Google Scholar] [CrossRef]
- Civenni, G.; Iodice, M.G.; Nabavi, S.F.; Habtemariam, S.; Nabavi, S.M.; Catapano, C.V.; Daglia, M. Gallic acid and methyl-3-O-methyl gallate: A comparative study on their effects on prostate cancer stem cells. RSC Adv. 2015, 5, 63800–63806. [Google Scholar] [CrossRef]
- Ooshiro, A.; Kaji, M.; Katoh, Y.; Kawaide, H.; Natsume, M. Antibacterial activity of alkyl gallates and related compounds against Ralstonia solanacearum. J. Pestic. Sci. 2011, 36, 240–242. [Google Scholar] [CrossRef]
- Kang, M.-S.; Oh, J.-S.; Kang, I.-C.; Hong, S.-J.; Choi, C.-H. Inhibitory effect of methyl gallate and gallic acid on oral bacteria. J. Microbiol. 2008, 46, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.-W.; Yuan, G.-Q.; Li, Q.-Q.; Lin, W. Antibacterial mechanisms of methyl gallate against Ralstonia solanacearum. Australas. Plant Pathol. 2014, 43, 1–7. [Google Scholar] [CrossRef]
- Choi, J.-G.; Mun, S.-H.; Chahar, H.S.; Bharaj, P.; Kang, O.-H.; Kim, S.-G.; Shin, D.-W.; Kwon, D.-Y. Methyl Gallate from Galla rhois Successfully Controls Clinical Isolates of Salmonella Infection in Both In Vitro and In Vivo Systems. PLoS ONE 2014, 9, e102697. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, R.; Zhu, C.; Xu, M.; Gu, Q.; Ettelaie, R.; Lin, S.; Wang, Y.; Leng, X. Antimicrobial mechanism of alkyl gallates against Escherichia coli and Staphylococcus aureus and its combined effect with electrospun nanofibers on Chinese Taihu icefish preservation. Food Chem. 2021, 346, 128949. [Google Scholar] [CrossRef]
- Naves, M.A.; Graminha, A.E.; Vegas, L.C.; Luna-Dulcey, L.; Honorato, J.; Menezes, A.C.S.; Batista, A.A.; Cominetti, M.R. Transport of the Ruthenium Complex [Ru(GA)(dppe)2]PF 6 into Triple-Negative Breast Cancer Cells Is Facilitated by Transferrin Receptors. Mol. Pharm. 2019, 16, 1167–1183. [Google Scholar] [CrossRef]
- Massoni, M.; Clavijo, J.C.T.; Colina-Vegas, L.; Villarreal, W.; Dias, J.S.M.; da Silva, G.A.F.; Ionta, M.; Soares, M.; Ellena, J.; Dorigueto, A.C.; et al. Propyl gallate metal complexes: Circular dichroism, BSA-binding, antioxidant and cytotoxic activity. Polyhedron 2017, 129, 214–221. [Google Scholar] [CrossRef]
- Graminha, A.E.; Honorato, J.; Correa, R.S.; Cominetti, M.R.; Menezes, A.C.S.; Batista, A.A. A novel ruthenium(ii) gallic acid complex disrupts the actin cytoskeleton and inhibits migration, invasion and adhesion of triple negative breast tumor cells. Dalton Trans. 2021, 50, 323–335. [Google Scholar] [CrossRef]
- Dell’Anna, M.M.; Censi, V.; Carrozzini, B.; Caliandro, R.; Denora, N.; Franco, M.; Veclani, D.; Melchior, A.; Tolazzi, M.; Mastrorilli, P. Triphenylphosphane Pt(II) complexes containing biologically active natural polyphenols: Synthesis, crystal structure, molecular modeling and cytotoxic studies. J. Inorg. Biochem. 2016, 163, 346–361. [Google Scholar] [CrossRef]
- Fogagnolo, M.; Bergamini, P.; Marchesi, E.; Marvelli, L.; Gambari, R.; Lampronti, I. Polytopic carriers for platinum ions: From digalloyl depside to tannic acid. New J. Chem. 2020, 44, 12227–12235. [Google Scholar] [CrossRef]
- Rossi, D.A.; Dumont, C.F.; Santos, A.C.d.S.; Vaz, M.E.d.L.; Prado, R.R.; Monteiro, G.P.; Melo, C.B.d.S.; Stamoulis, V.J.; Santos, J.P.d.; Melo, R.T.d. Antibiotic Resistance in the Alternative Lifestyles of Campylobacter jejuni. Front. Cell. Infect. Microbiol. 2021, 11. [Google Scholar] [CrossRef]
- Tack, D.M.; Marder, E.P.; Griffin, P.M.; Cieslak, P.R.; Dunn, J.; Hurd, S.; Scallan, E.; Lathrop, S.; Muse, A.; Ryan, P.; et al. Preliminary incidence and trends of infections with pathogens transmitted commonly through food—Foodborne Diseases Active Surveillance Network, 10 U.S. sites, 2015–2018. Am. J. Transplant. 2019, 19, 1859–1863. [Google Scholar] [CrossRef]
- CDC. Campylobacter (Campylobacteriosis)-Information for Health Profissionals; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019. Available online: https://www.cdc.gov/campylobacter/technical.html (accessed on 8 April 2022).
- EFSA. The European Union One Health 2020 Zoonoses Report. EFSA J. 2021, 19, e06971. [Google Scholar] [CrossRef]
- Brasil. Ministério da Saúde Surtos de Doenças Transmitidas por Alimentos no Brasil. Informe Sobre Surtos Notificados de Doenças Transmitidas por Água e Alimentos—Brasil, 2016–2019.pdf. Available online: https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/d/dtha/publicacoes/informe-sobre-surtos-notificados-de-doencas-transmitidas-por-agua-e-alimentos-2013-brasil-2016-2019.pdf/view.2018 (accessed on 8 April 2022).
- Rossi, D.A.; Melo, R.T.; Mendonça, E.P.; Monteiro, G.P. Biofilms of Salmonella and Campylobacter in the Poultry Industry. In Poultry Science; InTech: Nappanee, Indiana, 2017. [Google Scholar]
- Gomes, C.N.; Passaglia, J.; Vilela, F.P.; Pereira da Silva, F.M.H.S.; Duque, S.S.; Falcão, J.P. High survival rates of Campylobacter coli under different stress conditions suggest that more rigorous food control measures might be needed in Brazil. Food Microbiol. 2018, 73, 327–333. [Google Scholar] [CrossRef]
- Melo, F.P.d.; Silva, P.O.d.; Clemente, S.M.d.S.; Melo, R.P.B.d.; Silva, J.G.d.; Pinheiro Júnior, J.W.; Fonseca, B.B.; Mendonça, M.; Barros, M.R. Detection of Campylobacter jejuni, Campylobacter coli, and virulence genes in poultry products marketed in Northeastern Brazil. Res. Soc. Dev. 2021, 10, e542101019224. [Google Scholar] [CrossRef]
- Scheik, L.K.; Volcan Maia, D.S.; Würfel, S.d.F.R.; Ramires, T.; Kleinubing, N.R.; Haubert, L.; Lopes, G.V.; da Silva, W.P. Biofilm-forming ability of poultry Campylobacter jejuni strains in the presence and absence of Pseudomonas aeruginosa. Can. J. Microbiol. 2021, 67, 301–309. [Google Scholar] [CrossRef]
- Melo, R.T.; Mendonça, E.P.; Monteiro, G.P.; Siqueira, M.C.; Pereira, C.B.; Peres, P.A.B.M.; Fernandez, H.; Rossi, D.A. Intrinsic and Extrinsic Aspects on Campylobacter jejuni Biofilms. Front. Microbiol. 2017, 8, 1332. [Google Scholar] [CrossRef]
- Frasão, B.S.; Côrtes, L.R.; Nascimento, E.R.; Cunha, N.C.; Almeida, V.L.; Aquino, M.H.C. Detecção de resistência às fluoroquinolonas em Campylobacter isolados de frangos de criação orgânica. Pesqui. Vet. Bras. 2015, 35, 613–619. [Google Scholar] [CrossRef]
- El-Megharbel, S.M.; Hamza, R.Z. Synthesis, spectroscopic characterizations, conductometric titration and investigation of potent antioxidant activities of gallic acid complexes with Ca (II), Cu (II), Zn(III), Cr(III) and Se (IV) metal ions. J. Mol. Liq. 2022, 358, 119196. [Google Scholar] [CrossRef]
- Almeida, J.d.C.; Silva, R.T.C.; Zanetti, R.D.; Moreira, M.B.; Portes, M.C.; Polloni, L.; de Vasconcelos Azevedo, F.V.P.; Von Poelhsitz, G.; Pivatto, M.; Netto, A.V.G.; et al. DNA interactions, antitubercular and cytotoxic activity of heteroleptic CuII complexes containing 1,10-phenanthroline. J. Mol. Struct. 2021, 1235, 130234. [Google Scholar] [CrossRef]
- de Oliveira, L.P.; Carneiro, Z.A.; Ribeiro, C.M.; Lima, M.F.; Paixão, D.A.; Pivatto, M.; de Souza, M.V.N.; Teixeira, L.R.; Lopes, C.D.; de Albuquerque, S.; et al. Three new platinum complexes containing fluoroquinolones and DMSO: Cytotoxicity and evaluation against drug-resistant tuberculosis. J. Inorg. Biochem. 2018, 183, 77–83. [Google Scholar] [CrossRef]
- Souza, W.A.; Demarqui, F.M.; de Almeida, A.M.; Silva, R.T.C.; Alves, D.A.; Araújo, T.G.; Resende, J.A.L.C.; Pavan, F.R.; Dos Santos, H.F.; de Almeida, M.V.; et al. Synthesis and in vitro evaluation of antimycobacterial activity of two palladium(II) complexes based on 5-alkyl-1,3,4-oxadiazol-2(3H)-thione derivatives. J. Mol. Struct. 2022, 1270, 133888. [Google Scholar] [CrossRef]
- do Couto Almeida, J.; Marzano, I.M.; de Paula, F.C.S.; Pivatto, M.; Lopes, N.P.; de Souza, P.C.; Pavan, F.R.; Formiga, A.L.B.; Pereira-Maia, E.C.; Guerra, W. Complexes of platinum and palladium with β-diketones and DMSO: Synthesis, characterization, molecular modeling, and biological studies. J. Mol. Struct. 2014, 1075, 370–376. [Google Scholar] [CrossRef]
- Gama, N.H.; Elkhadir, A.Y.F.; Gordhan, B.G.; Kana, B.D.; Darkwa, J.; Meyer, D. Activity of phosphino palladium(II) and platinum(II) complexes against HIV-1 and Mycobacterium tuberculosis. BioMetals 2016, 29, 637–650. [Google Scholar] [CrossRef]
- da Silva, C.; Ribeiro, L.B.; Furuno, C.C.; da Cunha, G.A.; de Souza, R.F.F.; Netto, A.V.G.; Mauro, A.E.; Frem, R.C.G.; Fernandes, J.A.; Almeida Paz, F.A.; et al. Pyrazolyl Pd(II) complexes containing triphenylphosphine: Synthesis and antimycobacterial activity. Polyhedron 2015, 100, 10–16. [Google Scholar] [CrossRef]
- Aruguete, D.; Miller, K.; Wallace, A.; Blakney, T.; Muccio, D.; Pell, R.; Williamson, C. The effects of palladium coordination complex speciation and concentration upon the ubiquitous bacterial species Pseudomonas aeruginosa. Ecotoxicol. Environ. Saf. 2023, 251, 114512. [Google Scholar] [CrossRef]
- Thakor, K.P.; Lunagariya, M.V.; Bhatt, B.S.; Patel, M.N. Fluorescence and Absorption Titrations of Bio-relevant Imidazole Based Organometallic Pd(II) Complexes with DNA: Synthesis, Characterization, DNA Interaction, Antimicrobial, Cytotoxic and Molecular Docking Studies. J. Inorg. Organomet. Polym. Mater. 2019, 29, 2262–2273. [Google Scholar] [CrossRef]
- Karaky, N.; Kirby, A.; McBain, A.J.; Butler, J.A.; El Mohtadi, M.; Banks, C.E.; Whitehead, K.A. Metal ions and graphene-based compounds as alternative treatment options for burn wounds infected by antibiotic-resistant Pseudomonas aeruginosa. Arch. Microbiol. 2020, 202, 995–1004. [Google Scholar] [CrossRef]
- Adams, C.P.; Walker, K.A.; Obare, S.O.; Docherty, K.M. Size-Dependent Antimicrobial Effects of Novel Palladium Nanoparticles. PLoS ONE 2014, 9, e85981. [Google Scholar] [CrossRef]
- Hueso-Ureña, F.; Moreno-Carretero, M.N.; Salas-Peregrín, J.M.; de Cienfuegos-López, G.A. Silver(I), palladium(II), platinum(II) and platinum (IV) complexes with isoorotate and 2-thioisoorotate ligands: Synthesis, i.r. and n.m.r. spectra, thermal behaviour and antimicrobial activity. Transit. Met. Chem. 1995, 20, 262–269. [Google Scholar] [CrossRef]
- Brown, H.L.; Reuter, M.; Salt, L.J.; Cross, K.L.; Betts, R.P.; van Vliet, A.H.M. Chicken Juice Enhances Surface Attachment and Biofilm Formation of Campylobacter jejuni. Appl. Environ. Microbiol. 2014, 80, 7053–7060. [Google Scholar] [CrossRef]
- Alaboudi, A.R.; Malkawi, I.M.; Osaili, T.M.; Abu-Basha, E.A.; Guitian, J. Prevalence, antibiotic resistance and genotypes of Campylobacter jejuni and Campylobacter coli isolated from chickens in Irbid governorate, Jordan. Int. J. Food Microbiol. 2020, 327, 108656. [Google Scholar] [CrossRef] [PubMed]
- PEYRAT, M.; SOUMET, C.; MARIS, P.; SANDERS, P. Recovery of Campylobacter jejuni from surfaces of poultry slaughterhouses after cleaning and disinfection procedures: Analysis of a potential source of carcass contamination. Int. J. Food Microbiol. 2008, 124, 188–194. [Google Scholar] [CrossRef]
- García-Sánchez, L.; Melero, B.; Jaime, I.; Rossi, M.; Ortega, I.; Rovira, J. Biofilm formation, virulence and antimicrobial resistance of different Campylobacter jejuni isolates from a poultry slaughterhouse. Food Microbiol. 2019, 83, 193–199. [Google Scholar] [CrossRef]
- Jothipandiyan, S.; Suresh, D.; Sankaran, S.V.; Thamotharan, S.; Shanmugasundaram, K.; Vincent, P.; Sekaran, S.; Gowrishankar, S.; Pandian, S.K.; Paramasivam, N. Heteroleptic pincer palladium(II) complex coated orthopedic implants impede the AbaI/AbaR quorum sensing system and biofilm development by Acinetobacter baumannii. Biofouling 2022, 38, 55–70. [Google Scholar] [CrossRef]
- Chiang, W.-C.; Schroll, C.; Hilbert, L.R.; Møller, P.; Tolker-Nielsen, T. Silver-Palladium Surfaces Inhibit Biofilm Formation. Appl. Environ. Microbiol. 2009, 75, 1674–1678. [Google Scholar] [CrossRef]
- Dechouk, L.F.; Bouchoucha, A.; Abdi, Y.; Si Larbi, K.; Bouzaheur, A.; Terrachet-Bouaziz, S. Coordination of new palladium (II) complexes with derived furopyran-3,4-dione ligands: Synthesis, characterization, redox behaviour, DFT, antimicrobial activity, molecular docking and ADMET studies. J. Mol. Struct. 2022, 1257, 132611. [Google Scholar] [CrossRef]
- Vaidya, M.Y.; McBain, A.J.; Butler, J.A.; Banks, C.E.; Whitehead, K.A. Antimicrobial Efficacy and Synergy of Metal Ions against Enterococcus faecium, Klebsiella pneumoniae and Acinetobacter baumannii in Planktonic and Biofilm Phenotypes. Sci. Rep. 2017, 7, 5911. [Google Scholar] [CrossRef]
- Tram, G.; Day, C.J.; Korolik, V. Bridging the Gap: A Role for Campylobacter jejuni Biofilms. Microorganisms 2020, 8, 452. [Google Scholar] [CrossRef]
- İnci, D.; Aydın, R. Structures, hydrolysis, stabilities of palladium(II) complexes containing biologically active ligands and species distribution in aqueous solution. J. Mol. Struct. 2019, 1187, 23–37. [Google Scholar] [CrossRef]
- Palomino, J.-C.; Martin, A.; Camacho, M.; Guerra, H.; Swings, J.; Portaels, F. Resazurin Microtiter Assay Plate: Simple and Inexpensive Method for Detection of Drug Resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2002, 46, 2720–2722. [Google Scholar] [CrossRef]
- Weinstein, M.P.; Lewis Ii, J.S.; Bobenchik, A.M.; Campeau, S.; Cullen, S.K.; Galas, M.F.; Gold, H.; Humphries, R.M.; Kirn, T.J.; Limbago, B.; et al. Performance Standards for Antimicrobial Susceptibility. Clinical and Laboratory Standards Institute (CLSI) supplement M100. J. Clin. Microbiol. 2021, 59, e00213-21. [Google Scholar]
- ISO/DIS 10272-1:2015; Microbiology of the Food Chain–HorizontalMethod for Detection and Enumeration of Campylobacter–Part 1: Detection Method. International Organization for Standardization: London, UK, 2015.
- Kudirkienė, E.; Cohn, M.T.; Stabler, R.A.; Strong, P.C.R.; Šernienė, L.; Wren, B.W.; Nielsen, E.M.; Malakauskas, M.; Brøndsted, L. Phenotypic and Genotypic Characterizations of Campylobacter jejuni Isolated from the Broiler Meat Production Process. Curr. Microbiol. 2012, 65, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Naves, P.; del Prado, G.; Huelves, L.; Gracia, M.; Ruiz, V.; Blanco, J.; Rodrguez-Cerrato, V.; Ponte, M.C.; Soriano, F. Measurement of biofilm formation by clinical isolates of Escherichia coli is method-dependent. J. Appl. Microbiol. 2008, 105, 585–590. [Google Scholar] [CrossRef]
Compound | MIC μg/mL |
---|---|
meg | >25 |
1 | 11.31 ± 0.32 |
2 | 3.28 ± 0.40 |
og | 22.93 ± 0.46 |
3 | >25 |
4 | 9.06 ± 0.16 |
Rifampicin | 0.10 ± 0.00 |
Isoniazid | 0.23 ± 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, R.T.C.; Guidotti-Takeuchi, M.; Peixoto, J.L.M.; Demarqui, F.M.; Mori, A.P.; Dumont, C.F.; Ferreira, G.R.A.; Pereira, G.d.M.; Rossi, D.A.; Corbi, P.P.; et al. New Palladium(II) Complexes Containing Methyl Gallate and Octyl Gallate: Effect against Mycobacterium tuberculosis and Campylobacter jejuni. Molecules 2023, 28, 3887. https://doi.org/10.3390/molecules28093887
Silva RTC, Guidotti-Takeuchi M, Peixoto JLM, Demarqui FM, Mori AP, Dumont CF, Ferreira GRA, Pereira GdM, Rossi DA, Corbi PP, et al. New Palladium(II) Complexes Containing Methyl Gallate and Octyl Gallate: Effect against Mycobacterium tuberculosis and Campylobacter jejuni. Molecules. 2023; 28(9):3887. https://doi.org/10.3390/molecules28093887
Chicago/Turabian StyleSilva, Raphael Tristão Cruvinel, Micaela Guidotti-Takeuchi, Jéssica Laura Miranda Peixoto, Fernanda Manaia Demarqui, Ananda Paula Mori, Carolyne Ferreira Dumont, Gabriella Rayane Aparecida Ferreira, Gabriele de Menezes Pereira, Daise Aparecida Rossi, Pedro Paulo Corbi, and et al. 2023. "New Palladium(II) Complexes Containing Methyl Gallate and Octyl Gallate: Effect against Mycobacterium tuberculosis and Campylobacter jejuni" Molecules 28, no. 9: 3887. https://doi.org/10.3390/molecules28093887
APA StyleSilva, R. T. C., Guidotti-Takeuchi, M., Peixoto, J. L. M., Demarqui, F. M., Mori, A. P., Dumont, C. F., Ferreira, G. R. A., Pereira, G. d. M., Rossi, D. A., Corbi, P. P., Pavan, F. R., Rezende Júnior, C. d. O., Melo, R. T. d., & Guerra, W. (2023). New Palladium(II) Complexes Containing Methyl Gallate and Octyl Gallate: Effect against Mycobacterium tuberculosis and Campylobacter jejuni. Molecules, 28(9), 3887. https://doi.org/10.3390/molecules28093887