Thymosin Beta 4 Protects Hippocampal Neuronal Cells against PrP (106–126) via Neurotrophic Factor Signaling
Abstract
:1. Introduction
2. Results
2.1. Tβ4 Protects HT22 Cells against PrP (106–126)
2.2. Tβ4 Inhibited Apoptosis Induced by PrP (106–126)
2.3. Tβ4 Induced Neruotrophic Factors Such as NGF and BDNF
2.4. Intrinsic Tβ4 Induced Neurotrophic Factors and Its Own Receptors
2.5. Tβ4 Protects HT22 Cells from PrP (106–126) via Induced Neurotrophic Factors
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Cell Culture
4.3. Small Interfering RNA (siRNA) Rransfection
4.4. Cell Viability
4.5. Intracellular Reactive Oxygen Species Assay
4.6. RNA Preparation and Real-Time (RT)-PCR
4.7. Immunoblotting Analysis
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Haywood, S. Brain–Barrier Regulation, Metal (Cu, Fe) Dyshomeostasis, and Neurodegenerative Disorders in Man and Animals. Inorganics 2019, 7, 108. [Google Scholar] [CrossRef]
- Kendroska, K.; Heinzel, F.P.; Torchia, M.; Stowring, L.; Kretzschmar, H.A.; Kon, A.; Stern, A.; Prusiner, S.B.; DeArmond, S.J. Proteinase-resistant prion protein accumulation in Syrian hamster brain correlates with regional pathology and scrapie infectivity. Neurology 1991, 41, 1482–1490. [Google Scholar] [CrossRef]
- Moon, J.H.; Jeong, J.K.; Hong, J.M.; Seol, J.W.; Park, S.Y. Inhibition of autophagy by captopril attenuates prion peptide-mediated neuronal apoptosis via AMPK activation. Mol. Neurobiol. 2018, 56, 4192–4202. [Google Scholar] [CrossRef]
- Della-Bianca, V.; Rossi, F.; Armato, U.; Dal-Pra, I.; Costantini, C.; Perini, G.; Politi, V.; Della Valle, G. Neruotrophin p75 receptor is involved in neruonal damage by prion peptide-(106–126). J. Biol. Chem. 2001, 276, 38929–38933. [Google Scholar] [CrossRef]
- Melo, J.B.; Agostinho, P.; Oliveira, C.R. Prion protein aggregation and neurotoxicity in cortical neurons. Ann. N. Y. Acad. Sci. 2007, 1096, 220–229. [Google Scholar] [CrossRef]
- Szelenberger, R.; Kostka, J.; Saluk-Bijak, J.; Miller, E. Pharmacological Interventions and Rehabilitation Approach for Enhancing Brain Self-repair and Stroke Recovery. Curr. Neuropharmacol. 2020, 18, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Giacobbo, B.L.; Doorduin, J.; Klein, H.C.; Dierckx, R.A.J.O.; Bromberg, E.; Vries, E.F.J. Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Mol. Neurobiol. 2019, 56, 3295–3312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wu, P.; Chen, F.; Zho, Y.; Li, Y.; He, X.; Huselstein, C.; Ye, Q.; Tong, Z.; Chen, Y. Brain Derived Neurotrophic Factor and Glial Cell Line-Derived Neurotrophic Factor-Transfected Bone Mesenchymal Stem Cells for the Repair of Periphery Nerve Injury. Front. Bioeng. Biotechnol. 2020, 8, 874. [Google Scholar] [CrossRef]
- Ahmadi, N.; Kelly, G.; Low, T.H.; Clark, J.; Gupta, R. Molecular factors governing perineural invasion in malignancy. Surg. Oncol. 2022, 42, 101770. [Google Scholar] [CrossRef]
- Radeke, M.J.; Misko, T.P.; Hsu, C.; Herzenberg, L.A.; Shooter, E.M. Gene transfer and molecular cloning of the rat nerve growth factor receptor. Nature 1987, 325, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Connor, B.; Dragunow, M. The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Res. Brain Res. Rev. 1998, 27, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Li, Q.; Yang, J.; Zhou, X.; Yin, X.; Zhao, D. p75(NTR) activation of NF-kappaB is involved in PrP106–126-induced apoptosis in mouse neuroblastoma cells. Neurosci. Res. 2008, 62, 9–14. [Google Scholar] [CrossRef]
- Lv, S.; Cai, H.; Xu, Y.; Dai, J.; Rong, X.; Zheng, L. Thymosin-β 4 induces angiogenesis in critical limb ischemia mice via regulating Notch/NF-κB pathway. Int J. Mol. Med. 2020, 46, 1347–1358. [Google Scholar] [CrossRef] [PubMed]
- Takase, H.; Washida, K.; Hayakawa, K.; Arai, K.; Wang, X.; Lo, E.H.; Lok, J. Oligodendrogenesis after traumatic brain injury. Behav. Brain Res. 2018, 340, 205–211. [Google Scholar] [CrossRef]
- Lachowicz, J.I.; Jaremko, M.; Jaremko, L.; Pichiri, G.; Coni, P.; Piludu, M. Metal coordination of thymosin β4: Chemistry and possible implications. Coord. Chem. Rev. 2019, 396, 117–123. [Google Scholar] [CrossRef]
- Zhang, G.; Murthy, K.D.; Pare, R.B.; Qian, Y. Protective effect of Tβ4 on central nervous system tissues and its developmental prospects. Eur. J. Inflamm. 2020, 18, 1–11. [Google Scholar] [CrossRef]
- Song, K.; Han, H.J.; Kim, S.; Kwon, J. Thymosin beta 4 attenuates PrP (106–126)-induced human brain endothelial cells dysfunction. Eur. J. Pharmacol. 2020, 869, 172891. [Google Scholar] [CrossRef]
- Han, H.J.; Kim, S.; Kwon, J. Thymosin beta 4-induced autophagy increases cholinergic signaling in PrP (106–126)-treated HT22 cells. Neurotox. Res. 2019, 36, 58–65. [Google Scholar] [CrossRef]
- Choi, J.; Cho, Y.; Choi, H.; Lee, S.; Han, H.; Lee, J.; Kwon, J. Thymosin beta 4 inhibits LPS and ATP-induced hepatic stellate cells via the regulation of multiple signaling pathways. Int. J. Mol. Sci. 2023, 24, 3439. [Google Scholar] [CrossRef] [PubMed]
- Osei, J.; Kelly, W.; Toffolo, K.; Donahue, K.; Levy, B.; Bard, J.; Wang, J.; Levy, E.; Nowak, N.; Poulsen, D. Thymosin beta 4 induces significant changes in the plasma miRNA profile following severe traumatic brain injury in the rat lateral fluid percussion injury model. Expert Opin. Biol. Ther. 2018, 18, 159–164. [Google Scholar] [CrossRef]
- Othman, O.; Marshall, H.; Masterson, M.; Winlow, P.; Gibson, G.; Ding, Y.; Pardon, M.C. Thymosin beta 4 prevents systemic lipopolysaccharide-induced plaque load in middle-age APP/PS1 mice. Int. Immunopharmacol. 2023, 117, 109951. [Google Scholar] [CrossRef] [PubMed]
- Sochocka, M.; Donskow-Łysoniewska, K.; Diniz, B.S.; Kurpas, D.; Brzozowska, E.; Leszek, J. The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer’s Disease-a Critical Review. Mol. Neurobiol. 2019, 56, 1841–1851. [Google Scholar] [CrossRef]
- Gómez-Márquez, J.; Anadón, R. The beta-thymosins, small actin-binding peptides widely expressed in the developing and adult cerebellum. Cerebellum 2002, 1, 95–102. [Google Scholar] [CrossRef]
- Carpintero, P.; Anadón, R.; Díaz-Regueria, S.; Gómez-Márquez, J. Expression of thymosin beta4 messenger RNA in normal and kainite-treated rat forebrain. Neuroscience 1999, 90, 1433–1444. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Márquez, J.; Pedrares, J.I.; Anadón, R. Prominent expression of the actin-sequestering peptide Fx gene in the hippocampal region of rat brain. Neruosci. Lett. 1993, 152, 41–44. [Google Scholar] [CrossRef]
- Vartiainen, N.; Pyykönen, I.; Hökfelt, T.; Koistinaho, J. Induction of thymosin beta(4) mRNA following focal brain ischemia. Neuroreport 1996, 7, 1613–1616. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.X.; Lin, S.C.; Morrison-Bogorad, M.; Yin, H.L. Effects of thymosin beta 4 and thymosin 10 on actin structures in living cells. Cell Motil. Cytoskelet. 1994, 27, 13–25. [Google Scholar] [CrossRef]
- Leonard, D.G.; Ziff, E.B.; Greene, L.A. Identification and characterization of mRNAs regulated by nerve growth factor in PC12 cells. Mol. Cell Biol. 1987, 7, 3156–3167. [Google Scholar] [PubMed]
- Barron, R.M. Infectious prions and proteinopathies. Prion 2017, 11, 40–47. [Google Scholar] [CrossRef]
- Khan, A.; Jahan, S.; Imtiyaz, Z.; Alshahrani, S.; Makeen, H.A.; Alshehri, B.M.; Kumar, A.; Arfah, A.; Rehman, M.U. Neuroprotection: Targeting Multiple Pathways by Naturally Occurring Phytochemicals. Biomedicines 2020, 8, 284. [Google Scholar] [CrossRef]
- Al-Yozbaki, M.; Acha-Sagredo, A.; George, A.; Liloglou, T.; Wilson, C.M. Balancing neurotrophin pathway and sortilin function: Its role in human disease. Biochim. Biophys. Acta Rev. Cancer 2020, 1874, 188429. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.Z.A.; Hussain, T.; Zhao, D.; Yang, L. A central role for calcineurin in protein misfolding neurodengerative diseases. Cell Mol. Life Sci. 2017, 74, 1061–1074. [Google Scholar] [CrossRef] [PubMed]
- Shan, S.Z.A.; Zhoa, D.; Hussain, T.; Sabir, N.; Mangi, M.H.; Yang, L. p62-Keap1-NRF2-ARE pathway: A contentious player for selective targeting of autophagy, oxidative stress and mitochondiral dysfunction in prion diseases. Front. Mol. Neurosci. 2018, 11, 310. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Choi, J.; Kwon, J. Thymosin Beta 4 Protects Hippocampal Neuronal Cells against PrP (106–126) via Neurotrophic Factor Signaling. Molecules 2023, 28, 3920. https://doi.org/10.3390/molecules28093920
Kim S, Choi J, Kwon J. Thymosin Beta 4 Protects Hippocampal Neuronal Cells against PrP (106–126) via Neurotrophic Factor Signaling. Molecules. 2023; 28(9):3920. https://doi.org/10.3390/molecules28093920
Chicago/Turabian StyleKim, Sokho, Jihye Choi, and Jungkee Kwon. 2023. "Thymosin Beta 4 Protects Hippocampal Neuronal Cells against PrP (106–126) via Neurotrophic Factor Signaling" Molecules 28, no. 9: 3920. https://doi.org/10.3390/molecules28093920
APA StyleKim, S., Choi, J., & Kwon, J. (2023). Thymosin Beta 4 Protects Hippocampal Neuronal Cells against PrP (106–126) via Neurotrophic Factor Signaling. Molecules, 28(9), 3920. https://doi.org/10.3390/molecules28093920