Robust Self-Supported SnO2-Mn2O3@CC Electrode for Efficient Electrochemical Degradation of Cationic Blue X-GRRL Dye
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Electrochemical Characterization
2.3. Electrochemical Degradation of Cationic Blue X-GRRL
3. Materials and Methods
3.1. Materials
3.2. Preparation of SnO2-Mn2O3@CC
3.3. Characterization Measurements
3.4. Electrochemical Testing
3.5. Electrocatalytic Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ma, D.; Yi, H.; Lai, C.; Liu, X.; Huo, X.; An, Z.; Li, L.; Fu, Y.; Li, B.; Zhang, M.; et al. Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere 2021, 275, 130104. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.J.; Ampiaw, R.E.; Lee, W. Adsorptive removal of dyes from wastewater using a metal-organic framework: A review. Chemosphere 2021, 284, 131314. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-H.; Dong, H.; Zhao, L.; Wang, D.-X.; Meng, D. A review on Fenton process for organic wastewater treatment based on optimization perspective. Sci. Total Environ. 2019, 670, 110–121. [Google Scholar] [CrossRef] [PubMed]
- El Gaayda, J.; Titchou, F.E.; Barra, I.; Karmal, I.; Afanga, H.; Zazou, H.; Yap, P.-S.; Abidin, Z.Z.; Hamdani, M.; Akbour, R.A. Optimization of turbidity and dye removal from synthetic wastewater using response surface methodology: Effectiveness of Moringa oleifera seed powder as a green coagulant. J. Environ. Chem. Eng. 2022, 10, 106988. [Google Scholar] [CrossRef]
- Shao, Z.; Jiang, W.; Meng, H.; Sui, Y.; Meng, Y. Fabrication of the high efficient novel SiC foam based 3D metal oxide anodes with long life to improve electrocatalytic oxidation performance. J. Environ. Chem. Eng. 2023, 11, 109083. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, G.; Guo, L.; Dai, Q.; Ma, X. Electrochemical oxidation of Acid Orange 7 azo dye using a PbO(2) electrode: Parameter optimization, reaction mechanism and toxicity evaluation. Chemosphere 2020, 241, 125010. [Google Scholar] [CrossRef]
- Kanagaraj, T.; Thiripuranthagan, S. Photocatalytic activities of novel SrTiO3-BiOBr heterojunction catalysts towards the degradation of reactive dyes. Appl. Catal. B Environ. 2017, 207, 218–232. [Google Scholar] [CrossRef]
- Yafang, W.; Lin, Y.; Rui, Z.; Jianwu, L.; Anrong, Y.; Hongyan, X.; Shaojian, L. Z-scheme CeO2/Ag/CdS heterojunctions functionalized cotton fibers as highly recyclable and efficient visible light-driven photocatalysts for the degradation of dyes. J. Clean. Prod. 2022, 380, 135012. [Google Scholar]
- Vasiraja, N.; Prabhahar, R.S.S.; Joshua, A. Preparation and Physio–Chemical characterisation of activated carbon derived from prosopis juliflora stem for the removal of methylene blue dye and heavy metal containing textile industry effluent. J. Clean. Prod. 2023, 397, 136579. [Google Scholar] [CrossRef]
- Kim, E.-J.; Lee, C.-S.; Chang, Y.-Y.; Chang, Y.-S. Hierarchically Structured Manganese Oxide-Coated Magnetic Nanocomposites for the Efficient Removal of Heavy Metal Ions from Aqueous Systems. Acs Appl. Mater. Interfaces 2013, 5, 9628–9634. [Google Scholar] [CrossRef]
- Rashad, M.M.; Ismail, A.A.; Osama, I.; Ibrahim, I.A.; Kandil, A.H.T. Decomposition of Methylene Blue on Transition Metals Doped SnO2 Nanoparticles. CLEAN—Soil Air Water 2014, 42, 657–663. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, R.; Yan, W.; Wu, M.; Zhou, Y.; Gao, C. Antibacterial polyvinyl alcohol nanofiltration membrane incorporated with Cu(OH)2 nanowires for dye/salt wastewater treatment. Sci. Total Environ. 2022, 817, 152897. [Google Scholar] [CrossRef] [PubMed]
- Sadia, M.; Ahmad, I.; Ul-Saleheen, Z.; Zubair, M.; Zahoor, M.; Ullah, R.; Bari, A.; Zekker, I. Synthesis and Characterization of MIPs for Selective Removal of Textile Dye Acid Black-234 from Wastewater Sample. Molecules 2023, 28, 1555. [Google Scholar] [CrossRef]
- Hasan, I.; Albaeejan, M.A.; Alshayiqi, A.A.; Al-Nafaei, W.S.; Alharthi, F.A. In Situ Hydrothermal Synthesis of Ni1-xMnxWO4 Nanoheterostructure for Enhanced Photodegradation of Methyl Orange. Molecules 2023, 28, 1140. [Google Scholar] [CrossRef]
- He, Z.; Chen, J.; Chen, Y.; Makwarimba, C.P.; Huang, X.; Zhang, S.; Chen, J.; Song, S. An activated carbon fiber-supported graphite carbon nitride for effective electro-Fenton process. Electrochim. Acta 2018, 276, 377–388. [Google Scholar] [CrossRef]
- Rodriguez-Narvaez, O.M.; Picos, A.R.; Bravo-Yumi, N.; Pacheco-Alvarez, M.; Martinez-Huitle, C.A.; Peralta-Hernandez, J.M. Electrochemical oxidation technology to treat textile wastewaters. Curr. Opin. Electrochem. 2021, 29, 100806. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, H.; Wang, W.; Zhang, X.; Zuo, Y.; Tang, Y.; Zhao, X. Fabrication of Fe-TiO2-NTs/SnO2-Sb-Ce electrode for electrochemical degradation of aniline. Sep. Purif. Technol. 2021, 268, 118591. [Google Scholar] [CrossRef]
- Zhuo, Q.; Wang, J.; Niu, J.; Yang, B.; Yang, Y. Electrochemical oxidation of perfluorooctane sulfonate (PFOS) substitute by modified boron doped diamond (BDD) anodes. Chem. Eng. J. 2020, 379, 122280. [Google Scholar] [CrossRef]
- Rodrigues de Oliveira, G.; Suely Fernandes, N.; Vieira de Meloa, J.; Ribeiro da Silva, D.; Urgeghe, C.; Martinez-Huitle, C.A. Electrocatalytic properties of Ti-supported Pt for decolorizing and removing dye from synthetic textile wastewaters. Chem. Eng. J. 2011, 168, 208–214. [Google Scholar] [CrossRef]
- Santos, G.d.O.S.; Vasconcelos, V.M.; da Silva, R.S.; Rodrigo, M.A.; Eguiluz, K.I.B.; Salazar-Banda, G.R. New laser-based method for the synthesis of stable and active Ti/SnO2-Sb anodes. Electrochim. Acta 2020, 332, 135478. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, S.; Yu, Z.; Li, L.; Li, C.; Yang, J. Elucidating deactivation mechanisms of Pd-doped and un-doped Ti/SnO2-Sb electrodes. J. Alloy. Compd. 2020, 834, 155184. [Google Scholar] [CrossRef]
- Ahn, Y.Y.; Yang, S.Y.; Choi, C.; Choi, W.; Kim, S.; Park, H. Electrocatalytic activities of Sb-SnO2 and Bi-TiO2 anodes for water treatment: Effects of electrocatalyst composition and electrolyte. Catal. Today 2017, 282, 57–64. [Google Scholar] [CrossRef]
- Kong, J.-T.; Shi, S.-Y.; Zhu, X.-P.; Ni, J.-R. Effect of Sb dopant amount on the structure and electrocatalytic capability of Ti/Sb-SnO2 electrodes in the oxidation of 4-chlorophenol. J. Environ. Sci. 2007, 19, 1380–1386. [Google Scholar] [CrossRef] [PubMed]
- Watts, R.J.; Wyeth, M.S.; Finn, D.D.; Teel, A.L. Optimization of Ti/SnO2-Sb2O5 anode preparation for electrochemical oxidation of organic contaminants in water and wastewater. J. Appl. Electrochem. 2008, 38, 31–37. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, L.; Yang, T.; He, Q.; Zhou, P.; He, P.; Dong, F.; Zhang, H.; Jia, B. Thermal decomposition based fabrication of dimensionally stable Ti/SnO(2)-RuO(2) anode for highly efficient electrocatalytic degradation of alizarin cyanin green. Chemosphere 2020, 261, 128201. [Google Scholar] [CrossRef]
- Yang, K.; Liu, Y.; Qiao, J. Electrodeposition preparation of Ce-doped Ti/SnO2-Sb electrodes by using selected addition agents for efficient electrocatalytic oxidation of methylene blue in water. Sep. Purif. Technol. 2017, 189, 459–466. [Google Scholar] [CrossRef]
- Chen, A.; Xia, S.; Pan, H.; Xi, J.; Qin, H.; Lu, H.; Ji, Z. A promising Ti/SnO2 anodes modified by Nb/Sb co-doping. J. Electroanal. Chem. 2018, 824, 169–174. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, H.; Wei, X.; Du, R.; Hu, X. Fabrication and Electrochemical Properties of a SnO2-Sb Anode Doped with Ni-Nd for Phenol Oxidation. J. Electrochem. Soc. 2015, 162, H590–H596. [Google Scholar] [CrossRef]
- Man, S.; Zeng, X.; Yin, Z.; Yang, H.; Bao, H.; Xu, K.; Wang, L.; Ge, X.; Mo, Z.; Yang, W.; et al. Preparation of a novel Ce and Sb co-doped SnO2 nanoflowers electrode by a two-step (hydrothermal and thermal decomposition) method for organic pollutants electrochemical degradation. Electrochim. Acta 2022, 411, 140066. [Google Scholar] [CrossRef]
- Le Luu, T.; Ngan, P.T.K. Fabrication of high performance Ti/SnO2-Nb2O5 electrodes for electrochemical textile wastewater treatment. Sci. Total Environ. 2023, 860, 160366. [Google Scholar] [CrossRef]
- Koventhan, C.; Vinothkumar, V.; Chen, S.-M. Rational design of manganese oxide/tin oxide hybrid nanocomposite based electrochemical sensor for detection of prochlorperazine (Antipsychotic drug). Microchem. J. 2022, 175, 107082. [Google Scholar] [CrossRef]
- Li, G.; Li, G.; Wang, H.; Xiang, C.; Zhuang, J.; Liu, Q.; Tang, H. Preparation of Sb Doped Nano SnO2/Porous Ti Electrode and Its Degradation of Methylene Orange. Rare Met. Mater. Eng. 2015, 44, 1326–1330. [Google Scholar]
- Xu, L.; Lian, Y. A Ti/SnO2-Sb Nanorods Anode for Electrochemical Degradation of CI Acid Red 73. J. Electrochem. Soc. 2016, 163, H1144–H1150. [Google Scholar] [CrossRef]
- Deng, S.; Dai, Y.; Situ, Y.; Liu, D.; Huang, H. Preparation of nanosheet-based spherical Ti/SnO2-Sb electrode by in-situ hydrothermal method and its performance in the degradation of methylene blue. Electrochim. Acta 2021, 398, 139335. [Google Scholar] [CrossRef]
- Chen, Z.; Dong, S.; Wang, M.; Hu, Z.; Chen, H.; Han, Y.; Yuan, D. Construction of 3D Hierarchical Co(3)O(4)@CoFe-LDH Heterostructures with Effective Interfacial Charge Redistribution for Rechargeable Liquid/Solid Zn-Air Batteries. Inorg Chem 2023, 62, 2826–2837. [Google Scholar] [CrossRef]
- Hu, Z.; Guo, C.; Wang, P.; Guo, R.; Liu, X.; Tian, Y. Electrochemical degradation of methylene blue by Pb modified porous SnO2 anode. Chemosphere 2022, 305, 135447. [Google Scholar] [CrossRef]
- Duan, T.; Chen, Y.; Wen, Q.; Duan, Y. Novel Composition Graded Ti/Ru–Sb–SnO2 Electrode Synthesized by Selective Electrodeposition and Its Application for Electrocatalytic Decolorization of Dyes. J. Phys. Chem. C 2015, 119, 7780–7790. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, S.; Mao, Z.; Lin, Z.; Ren, X.; Yu, Z. High electrochemical activity of a Ti/SnO2-Sb electrode electrodeposited using deep eutectic solvent. Chemosphere 2020, 239, 124715. [Google Scholar] [CrossRef] [PubMed]
- Berenguer, R.; Quijada, C.; Morallon, E. Electrochemical characterization of SnO2 electrodes doped with Ru and Pt. Electrochim. Acta 2009, 54, 5230–5238. [Google Scholar] [CrossRef]
- Zhang, H.; Qian, J.; Zhang, J.; Xu, J. A comparison study of TiO2@ATO@MOx (TAM, M = Mn, Fe, Co, Ni, Cu, and Zn) electrodes on the electrochemical activity and stability. J. Alloy. Compd. 2022, 915, 165302. [Google Scholar] [CrossRef]
- D’Angelo, D.; Filice, S.; Scarangella, A.; Iannazzo, D.; Compagnini, G.; Scalese, S. Bi2O3/Nexar polymer nanocomposite membranes for azo dyes removal by UV–vis or visible light irradiation. Catal. Today 2019, 321, 158–163. [Google Scholar] [CrossRef]
- Exner, K.S.; Anton, J.; Jacob, T.; Over, H. Controlling selectivity in the chlorine evolution reaction over RuO(2)-based catalysts. Angew Chem. Int. Ed. Engl. 2014, 126, 11212–11215. [Google Scholar] [CrossRef]
- Sun, Y.; Xia, R.; Zhang, J.; Xu, J. Preparation of ferric oxide for efficient electrocatalytic oxidation of methylene blue. Inorg. Chem. Commun. 2022, 140, 109364. [Google Scholar] [CrossRef]
Rs (Ω cm2) | Rf (Ω cm2) | Rct (Ω cm2) | Qf (mF cm2) | Qdl (mF cm2) | |
---|---|---|---|---|---|
SnO2-Mn2O3@CC | 5.887 | 1.629 | 8.509 | 1.32 | 2.27 |
SnO2@CC | 6.577 | 4.051 | 70.65 | 0.21 | 0.52 |
Mn2O3@CC | 7.329 | 1.604 | 34.53 | 0.91 | 0.79 |
q*T (mC cm−2) | q*O (mC cm−2) | q*I (mC cm−2) | |
---|---|---|---|
SnO2-Mn2O3@CC | 3.991 | 1.879 | 2.112 |
SnO2@CC | 1.7999 | 1.0491 | 0.7508 |
Mn2O3@CC | 0.6456 | 0.49192 | 0.1537 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Yi, P.; Sun, J.; Wang, X.-A.; Liu, R.; Sun, J. Robust Self-Supported SnO2-Mn2O3@CC Electrode for Efficient Electrochemical Degradation of Cationic Blue X-GRRL Dye. Molecules 2023, 28, 3957. https://doi.org/10.3390/molecules28093957
Li C, Yi P, Sun J, Wang X-A, Liu R, Sun J. Robust Self-Supported SnO2-Mn2O3@CC Electrode for Efficient Electrochemical Degradation of Cationic Blue X-GRRL Dye. Molecules. 2023; 28(9):3957. https://doi.org/10.3390/molecules28093957
Chicago/Turabian StyleLi, Caiyun, Peng Yi, Junwei Sun, Xi-Ao Wang, Rongzhan Liu, and Jiankun Sun. 2023. "Robust Self-Supported SnO2-Mn2O3@CC Electrode for Efficient Electrochemical Degradation of Cationic Blue X-GRRL Dye" Molecules 28, no. 9: 3957. https://doi.org/10.3390/molecules28093957
APA StyleLi, C., Yi, P., Sun, J., Wang, X. -A., Liu, R., & Sun, J. (2023). Robust Self-Supported SnO2-Mn2O3@CC Electrode for Efficient Electrochemical Degradation of Cationic Blue X-GRRL Dye. Molecules, 28(9), 3957. https://doi.org/10.3390/molecules28093957