Spider-Venom Peptides: Structure, Bioactivity, Strategy, and Research Applications
Abstract
:1. Introduction
2. Structure
3. Bioactivity
3.1. Antimicrobial Activity
3.2. Anticancer Activity
3.3. Insecticidal Peptides
4. Venom Peptides’ Roles in Spider Survival
5. Enabling Research: Spider-Venom Peptide Applications in the Research of Ion Channel and Pharmacological Mechanisms
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vetter, R.S.; Isbister, G.K. Medical aspects of spider bites. Annu. Rev. Entomol. 2008, 53, 409–429. [Google Scholar] [CrossRef] [PubMed]
- Hauke, T.J.; Herzig, V. Dangerous arachnids—Fake news or reality? Toxicon 2017, 138, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, N.Y.; Sunagar, K. The deep-rooted origin of disulfide-rich spider venom toxins. eLife 2023, 12, e83761. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhang, Z.; Liao, Q.; Meng, E.; Mwangi, J.; Lai, R.; Rong, M. LCTX-F2, a Novel Potentiator of Coagulation Factors from the Spider Venom of Lycosa singoriensis. Front. Pharmacol. 2020, 11, 896. [Google Scholar] [CrossRef] [PubMed]
- Meng, P.; Huang, H.; Wang, G.; Yang, S.; Lu, Q.; Liu, J.; Lai, R.; Rong, M. A Novel Toxin from Haplopelma lividum Selectively Inhibits the Na(V)1.8 Channel and Possesses Potent Analgesic Efficacy. Toxins 2016, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Rash, L.D.; Hodgson, W.C. Pharmacology and biochemistry of spider venoms. Toxicon 2002, 40, 225–254. [Google Scholar] [CrossRef]
- Saez, N.J.; Herzig, V. Versatile spider venom peptides and their medical and agricultural applications. Toxicon 2019, 158, 109–126. [Google Scholar] [CrossRef]
- Escoubas, P.; Sollod, B.; King, G.F. Venom landscapes: Mining the complexity of spider venoms via a combined cDNA and mass spectrometric approach. Toxicon 2006, 47, 650–663. [Google Scholar] [CrossRef]
- Saez, N.J.; Senff, S.; Jensen, J.E.; Er, S.Y.; Herzig, V.; Rash, L.D.; King, G.F. Spider-venom peptides as therapeutics. Toxins 2010, 2, 2851–2871. [Google Scholar] [CrossRef]
- Vassilevski, A.A.; Kozlov, S.A.; Grishin, E.V. Molecular diversity of spider venom. Biochemistry 2009, 74, 1505–1534. [Google Scholar] [CrossRef]
- King, G.F.; Hardy, M.C. Spider-venom peptides: Structure; pharmacology, and potential for control of insect pests. Annu. Rev. Entomol. 2013, 58, 475–496. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.C.; Sun, F.D.; Zhang, L.; Huang, B.; An, H.L.; Rong, M.Q.; Du, C.W. General mechanism of spider toxin family I acting on sodium channel Nav1.7. Zool. Res. 2022, 43, 886–896. [Google Scholar] [CrossRef] [PubMed]
- Jian-Yi, P.A.N.; Wei-Jun, H.U.; Song-Ping, L. Purification, Sequencing and Characterization of Hainantoxin-VI, a Neuro Toxin from the Chinese Bird Spider Selenocosmia hainana. Zool. Res. 2002, 23, 280–283. [Google Scholar]
- Wang, Z.; Chen, J.; Babicheva, A.; Jain, P.P.; Rodriguez, M.; Ayon, R.J.; Ravellette, K.S.; Wu, L.; Balistrieri, F.; Tang, H.; et al. Endothelial upregulation of mechanosensitive channel Piezo1 in pulmonary hypertension. Am. J. Physiol.-Cell Physiol. 2021, 321, C1010–C1027. [Google Scholar] [CrossRef] [PubMed]
- Diniz, M.R.V.; Paiva, A.L.B.; Guerra-Duarte, C.; Nishiyama, M.Y., Jr.; Mudadu, M.A.; Oliveira, U.; Borges, M.H.; Yates, J.R.; Junqueira-de-Azevedo, I.L. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PLoS ONE 2018, 13, e0200628. [Google Scholar] [CrossRef] [PubMed]
- Clemencon, B.; Kuhn-Nentwig, L.; Langenegger, N.; Kopp, L.; Peigneur, S.; Tytgat, J.; Nentwig, W.; Lüscher, B.P. Neurotoxin Merging: A Strategy Deployed by the Venom of the Spider Cupiennius salei to Potentiate Toxicity on Insects. Toxins 2020, 12, 250. [Google Scholar] [CrossRef] [PubMed]
- Craik, D.J.; Daly, N.L.; Waine, C. The cystine knot motif in toxins and implications for drug design. Toxicon 2001, 39, 43–60. [Google Scholar] [CrossRef] [PubMed]
- Shekh, S.; Moi, S.; Govindu, P.C.V.; Gowd, K.H. Conformations of disulfides are conserved in inhibitory cystine knot (ICK) motif polypeptides. Toxicon 2022, 219, 106926. [Google Scholar] [CrossRef]
- Wang, X.; Connor, M.; Smith, R.; Maciejewski, M.W.; Howden, M.E.; Nicholson, G.M.; Christie, M.J.; King, G.F. Discovery and characterization of a family of insecticidal neurotoxins with a rare vicinal disulfide bridge. Nat. Struct. Biol. 2000, 7, 505–513. [Google Scholar] [CrossRef]
- Mourão, C.B.; Heghinian, M.D.; Barbosa, E.A.; Marí, F.; Bloch, C., Jr.; Restano-Cassulini, R.; Possani, L.D.; Schwartz, E.F. Characterization of a novel peptide toxin from Acanthoscurria paulensis spider venom: A distinct cysteine assignment to the HWTX-II family. Biochemistry 2013, 52, 2440–2452. [Google Scholar] [CrossRef]
- Zhong, Y.; Song, B.; Mo, G.; Yuan, M.; Li, H.; Wang, P.; Yuan, M.; Lu, Q. A novel neurotoxin from venom of the spider, Brachypelma albopilosum. PLoS ONE 2014, 9, e110221. [Google Scholar] [CrossRef] [PubMed]
- Langenegger, N.; Nentwig, W.; Kuhn-Nentwig, L. Spider Venom: Components, Modes of Action, and Novel Strategies in Transcriptomic and Proteomic Analyses. Toxins 2019, 11, 611. [Google Scholar] [CrossRef] [PubMed]
- Akef, H.M. Anticancer; antimicrobial, and analgesic activities of spider venoms. Toxicol. Res. 2018, 7, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Deng, M.; Xiang, J.; Ma, H.; Hu, W.; Zhao, Y.; Li, D.W.; Liang, S. A novel spider peptide toxin suppresses tumor growth through dual signaling pathways. Curr. Mol. Med. 2012, 12, 1350–1360. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S.R.; Dowd, P.F.; Johnson, E.T. Cell-penetrating recombinant peptides for potential use in agricultural pest control applications. Pharmaceuticals 2012, 5, 1054–1063. [Google Scholar] [CrossRef] [PubMed]
- Garcia, F.; Villegas, E.; Espino-Solis, G.P.; Rodriguez, A.; Paniagua-Solis, J.F.; Sandoval-Lopez, G.; Possani, L.D.; Corzo, G. Antimicrobial peptides from arachnid venoms and their microbicidal activity in the presence of commercial antibiotics. J. Antibiot. 2013, 66, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Megaly, A.M.A.; Miyashita, M.; Abdel-Wahab, M.; Nakagawa, Y.; Miyagawa, H. Molecular Diversity of Linear Peptides Revealed by Transcriptomic Analysis of the Venom Gland of the Spider Lycosa poonaensis. Toxins 2022, 14, 854. [Google Scholar] [CrossRef]
- Wadhwani, P.; Sekaran, S.; Strandberg, E.; Bürck, J.; Chugh, A.; Ulrich, A.S. Membrane Interactions of Latarcins: Antimicrobial Peptides from Spider Venom. Int. J. Mol. Sci. 2021, 22, 10156. [Google Scholar] [CrossRef]
- Gaza, J.T.; Leyson, J.J.C.; Peña, G.T.; Nellas, R.B. pH-Dependent Conformations of an Antimicrobial Spider Venom Peptide, Cupiennin 1a, from Unbiased HREMD Simulations. ACS Omega 2021, 6, 24166–24175. [Google Scholar] [CrossRef]
- Kuznetsov, A.S.; Dubovskii, P.V.; Vorontsova, O.V.; Feofanov, A.V.; Efremov, R.G. Interaction of linear cationic peptides with phospholipid membranes and polymers of sialic acid. Biochemistry 2014, 79, 459–468. [Google Scholar] [CrossRef]
- Idiong, G.; Won, A.; Ruscito, A.; Leung, B.O.; Hitchcock, A.P.; Ianoul, A. Investigating the effect of a single glycine to alanine substitution on interactions of antimicrobial peptide latarcin 2a with a lipid membrane. Eur. Biophys. J. 2011, 40, 1087–1100. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wu, S.; Chen, N.; Zhu, J.; Zhao, X.; Zhang, P.; Zeng, Y.; Liu, Z. Fatty Acid Modification of the Anticancer Peptide LVTX-9 to Enhance Its Cytotoxicity against Malignant Melanoma Cells. Toxins 2021, 13, 867. [Google Scholar] [CrossRef]
- Won, A.; Khan, M.; Gustin, S.; Akpawu, A.; Seebun, D.; Avis, T.J.; Leung, B.O.; Hitchcock, A.P.; Ianoul, A. Investigating the effects of L- to D-amino acid substitution and deamidation on the activity and membrane interactions of antimicrobial peptide anoplin. Biochim. Biophys. Acta 2011, 1808, 1592–1600. [Google Scholar] [CrossRef] [PubMed]
- Oparin, P.B.; Nadezhdin, K.D.; Berkut, A.A.; Arseniev, A.S.; Grishin, E.V.; Vassilevski, A.A. Structure of purotoxin-2 from wolf spider: Modular design and membrane-assisted mode of action in arachnid toxins. Biochem. J. 2016, 473, 3113–3126. [Google Scholar] [CrossRef] [PubMed]
- Kuzmenkov, A.I.; Fedorova, I.M.; Vassilevski, A.A.; Grishin, E.V. Cysteine-rich toxins from Lachesana tarabaevi spider venom with amphiphilic C-terminal segments. Biochim. Biophys. Acta 2013, 1828, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Ayroza, G.; Ferreira, I.L.; Sayegh, R.S.; Tashima, A.K.; Da, S.J.P.I. Juruin: An antifungal peptide from the venom of the Amazonian Pink Toe spider, Avicularia juruensis, which contains the inhibitory cystine knot motif. Front. Microbiol. 2012, 3, 324. [Google Scholar] [CrossRef] [PubMed]
- Budnik, B.A.; Olsen, J.V.; Egorov, T.A.; Anisimova, V.E.; Galkina, T.G.; Musolyamov, A.K.; Grishin, E.V.; Zubarev, R.A. De novo sequencing of antimicrobial peptides isolated from the venom glands of the wolf spider Lycosa singoriensis. J. Mass Spectrom. 2004, 39, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, S.A.; Vassilevski, A.A.; Feofanov, A.V.; Surovoy, A.Y.; Karpunin, D.V.; Grishin, E.V. Latarcins, antimicrobial and cytolytic peptides from the venom of the spider Lachesana tarabaevi (Zodariidae) that exemplify biomolecular diversity. J. Biol. Chem. 2006, 281, 20983–20992. [Google Scholar] [CrossRef]
- Santos, D.M.; Verly, R.M.; Piló-Veloso, D.; de Maria, M.; de Carvalho, M.A.; Cisalpino, P.S.; Soares, B.M.; Diniz, C.G.; Farias, L.M.; Moreira, D.F.; et al. LyeTx I, a potent antimicrobial peptide from the venom of the spider Lycosa erythrognatha. Amino Acids 2010, 39, 135–144. [Google Scholar] [CrossRef]
- Kuhn-Nentwig, L.; Sheynis, T.; Kolusheva, S.; Nentwig, W.; Jelinek, R. N-terminal aromatic residues closely impact the cytolytic activity of cupiennin 1a, a major spider venom peptide. Toxicon 2013, 75, 177–186. [Google Scholar] [CrossRef]
- Fuscaldi, L.L.; de Avelar Júnior, J.T.; Dos Santos, D.M.; Boff, D.; de Oliveira, V.L.S.; Gomes, K.A.G.G.; Cruz, R.C.; de Oliveira, P.L.; Magalhães, P.P.; Cisalpino, P.S.; et al. Shortened derivatives from native antimicrobial peptide LyeTx I: In vitro and in vivo biological activity assessment. Exp. Biol. Med. 2021, 246, 414–425. [Google Scholar] [CrossRef] [PubMed]
- Segura-Ramirez, P.J.; Silva, J.P.I. Loxosceles gaucho Spider Venom: An Untapped Source of Antimicrobial Agents. Toxins 2018, 10, 522. [Google Scholar] [CrossRef]
- Shin, M.K.; Hwang, I.W.; Kim, Y.; Kim, S.T.; Jang, W.; Lee, S.; Bang, W.Y.; Bae, C.H.; Sung, J.S. Antibacterial and Anti-Inflammatory Effects of Novel Peptide Toxin from the Spider Pardosa astrigera. Antibiotics 2020, 9, 422. [Google Scholar] [CrossRef] [PubMed]
- Megaly, A.M.A.; Yoshimoto, Y.; Tsunoda, Y.; Miyashita, M.; Abdel-Wahab, M.; Nakagawa, Y.; Miyagawa, H. Characterization of 2 linear peptides without disulfide bridges from the venom of the spider Lycosa poonaensis (Lycosidae). Biosci. Biotechnol. Biochem. 2021, 85, 1348–1356. [Google Scholar] [CrossRef] [PubMed]
- Camara, G.A.; Nishiyama-Jr, M.Y.; Kitano, E.S.; Oliveira, U.C.; da Silva, P.I., Jr.; Junqueira-de-Azevedo, I.L.; Tashima, A.K. A Multiomics Approach Unravels New Toxins with Possible In Silico Antimicrobial, Antiviral, and Antitumoral Activities in the Venom of Acanthoscurria rondoniae. Front. Pharmacol. 2020, 11, 1075. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yan, Q.; Fan, C.; Mo, Y.; Wang, Y.; Li, X.; Liao, Q.; Guo, C.; Li, G.; Zeng, Z.; et al. Overview and countermeasures of cancer burden in China. Sci. China Life Sci. 2023, 66, 2515–2526. [Google Scholar] [CrossRef]
- Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci. 2012, 9, 193–199. [Google Scholar] [CrossRef]
- Liberio, M.S.; Joanitti, G.A.; Fontes, W.; Castro, M.S. Anticancer peptides and proteins: A panoramic view. Protein Pept. Lett. 2013, 20, 380–391. [Google Scholar]
- Liang, H.; Lu, Q.; Yang, J.; Yu, G. Supramolecular Biomaterials for Cancer Immunotherapy. Research 2023, 6, 0211. [Google Scholar] [CrossRef]
- Al-Asmari, A.K.; Riyasdeen, A.; Al-Shahrani, M.H.; Islam, M. Snake venom causes apoptosis by increasing the reactive oxygen species in colorectal and breast cancer cell lines. Onco Targets Ther. 2016, 9, 6485–6498. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Luo, W.; Wei, L.; Chen, B.; Li, W.; Xiao, L.; Manzhos, S.; Liu, Z.; Liang, S. Quantifying the Distribution of the Stoichiometric Composition of Anticancer Peptide Lycosin-I on the Lipid Membrane with Single Molecule Spectroscopy. J. Phys. Chem. B 2016, 120, 3081–3088. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, F.M.; Daffre, S.; Maldonado, R.A.; Miranda, A.; Nimrichter, L.; Rodrigues, M.L. Gomesin, a peptide produced by the spider Acanthoscurria gomesiana, is a potent anticryptococcal agent that acts in synergism with fluconazole. FEMS Microbiol. Lett. 2007, 274, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Rooj, A.K.; McNicholas, C.M.; Bartoszewski, R.; Bebok, Z.; Benos, D.J.; Fuller, C.M. Glioma-specific cation conductance regulates migration and cell cycle progression. J. Biol. Chem. 2012, 287, 4053–4065. [Google Scholar] [CrossRef]
- Dubovskii, P.V.; Vassilevski, A.A.; Kozlov, S.A.; Feofanov, A.V.; Grishin, E.V.; Efremov, R.G. Latarcins: Versatile spider venom peptides. Cell Mol. Life Sci. 2015, 72, 4501–4522. [Google Scholar] [CrossRef] [PubMed]
- Munhoz, J.; Thomé, R.; Rostami, A.; Ishikawa, L.L.W.; Verinaud, L.; Rapôso, C. The SNX-482 peptide from Hysterocrates gigas spider acts as an immunomodulatory molecule activating macrophages. Peptides 2021, 146, 170648. [Google Scholar] [CrossRef]
- Zhang, P.; Yan, Y.; Wang, J.; Dong, X.; Zhang, G.; Zeng, Y.; Liu, Z. An Anti-Cancer Peptide LVTX-8 Inhibits the Proliferation and Migration of Lung Tumor Cells by Regulating Causal Genes’ Expression in p53-Related Pathways. Toxins 2020, 12, 367. [Google Scholar] [CrossRef]
- Bende, N.S.; Dziemborowicz, S.; Mobli, M.; Herzig, V.; Gilchrist, J.; Wagner, J.; Nicholson, G.M.; King, G.F.; Bosmans, F. A distinct sodium channel voltage-sensor locus determines insect selectivity of the spider toxin Dc1a. Nat. Commun. 2014, 5, 4350. [Google Scholar] [CrossRef]
- Herzig, V.; Ikonomopoulou, M.; Smith, J.J.; Dziemborowicz, S.; Gilchrist, J.; Kuhn-Nentwig, L.; Rezende, F.O.; Moreira, L.A.; Nicholson, G.M.; Bosmans, F.; et al. Molecular basis of the remarkable species selectivity of an insecticidal sodium channel toxin from the African spider Augacephalus ezendami. Sci. Rep. 2016, 6, 29538. [Google Scholar] [CrossRef]
- Kuhn-Nentwig, L.; Fedorova, I.M.; Lüscher, B.P.; Kopp, L.S.; Trachsel, C.; Schaller, J.; Vu, X.L.; Seebeck, T.; Streitberger, K.; Nentwig, W.; et al. A venom-derived neurotoxin, CsTx-1, from the spider Cupiennius salei exhibits cytolytic activities. J. Biol. Chem. 2012, 287, 25640–25649. [Google Scholar] [CrossRef]
- Alvarado, D.; Cardoso-Arenas, S.; Corrales-García, L.L.; Clement, H.; Arenas, I.; Montero-Dominguez, P.A.; Olamendi-Portugal, T.; Zamudio, F.; Csoti, A.; Borrego, J.; et al. A Novel Insecticidal Spider Peptide that Affects the Mammalian Voltage-Gated Ion Channel hKv1.5. Front. Pharmacol. 2020, 11, 563858. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Xu, J.; Peng, X.; Yuan, Z.; Zhao, C.; Guo, K.; Zhang, X.; He, Y.; Zhang, Z.; Wu, Y.; et al. Preparation and performance characteristics of spider venom peptide nanocapsules. Pest. Manag. Sci. 2022, 78, 4261–4267. [Google Scholar] [CrossRef] [PubMed]
- Monfared, N.; Ahadiyat, A.; Fathipour, Y.; Mianroodi, R.A. Evaluation of recombinant toxin JFTX-23, an oral-effective anti-insect peptide from the spider Selenocosmia jiafu venom gland proteome. Toxicon 2022, 217, 78–86. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, L.C.; Campos, F.V.; Figueiredo, S.G.; Cordeiro, M.N.; Adaime, B.R.; Richardson, M.; Pimenta, A.M.; Martin-Eauclaire, M.F.; Beirão, P.S.; De Lima, M.E. β/δ-PrIT1, a highly insecticidal toxin from the venom of the Brazilian spider Phoneutria reidyi (F.O. Pickard-Cambridge, 1897). Toxicon 2015, 104, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Vassilevski, A.A.; Fedorova, I.M.; Maleeva, E.E.; Korolkova, Y.V.; Efimova, S.S.; Samsonova, O.V.; Schagina, L.V.; Feofanov, A.V.; Magazanik, L.G.; Grishin, E.V. Novel class of spider toxin: Active principle from the yellow sac spider Cheiracanthium punctorium venom is a unique two-domain polypeptide. J. Biol. Chem. 2010, 285, 32293–32302. [Google Scholar] [CrossRef] [PubMed]
- Sachkova, M.Y.; Slavokhotova, A.A.; Grishin, E.V.; Vassilevski, A.A. Structure of the yellow sac spider Cheiracanthium punctorium genes provides clues to evolution of insecticidal two-domain knottin toxins. Insect Mol. Biol. 2014, 23, 527–538. [Google Scholar] [CrossRef]
- Titaux-Delgado, G.; Carrillo, E.; Mendoza, A.; Mayorga-Flores, M.; Escobedo-González, F.C.; Cano-Sánchez, P.; López-Vera, E.; Corzo, G.; Del Rio-Portilla, F. Successful refolding and NMR structure of rMagi3: A disulfide-rich insecticidal spider toxin. Protein Sci. 2018, 27, 692–701. [Google Scholar] [CrossRef]
- Estrada, G.; Silva, A.O.; Villegas, E.; Ortiz, E.; Beirão, P.S.; Corzo, G. Heterologous expression of five disulfide-bonded insecticidal spider peptides. Toxicon 2016, 119, 152–158. [Google Scholar] [CrossRef]
- Vassilevski, A.A.; Sachkova, M.Y.; Ignatova, A.A.; Kozlov, S.A.; Feofanov, A.V.; Grishin, E.V. Spider toxins comprising disulfide-rich and linear amphipathic domains: A new class of molecules identified in the lynx spider Oxyopes takobius. FEBS J. 2013, 280, 6247–6261. [Google Scholar] [CrossRef]
- Mikov, A.N.; Fedorova, I.M.; Potapieva, N.N.; Maleeva, E.E.; Andreev, Y.A.; Zaitsev, A.V.; Kim, K.K.; Bocharov, E.V.; Bozin, T.N.; Altukhov, D.A.; et al. ω-Tbo-IT1–New Inhibitor of Insect Calcium Channels Isolated from Spider Venom. Sci. Rep. 2015, 5, 17232. [Google Scholar] [CrossRef]
- Matsubara, F.H.; Meissner, G.O.; Herzig, V.; Justa, H.C.; Dias, B.C.; Trevisan-Silva, D.; Gremski, L.H.; Gremski, W.; Senff-Ribeiro, A.; Chaim, O.M.; et al. Insecticidal activity of a recombinant knottin peptide from Loxosceles intermedia venom and recognition of these peptides as a conserved family in the genus. Insect Mol. Biol. 2017, 26, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Zhang, Y.; Zeng, J.; Liang, S.; Tang, C.; Liu, Z. Purification and Characterization of a Novel Insecticidal Toxin, mu-sparatoxin-Hv2, from the Venom of the Spider Heteropoda venatoria. Toxins 2018, 10, 233. [Google Scholar] [CrossRef] [PubMed]
- Sousa, S.R.; Wingerd, J.S.; Brust, A.; Bladen, C.; Ragnarsson, L.; Herzig, V.; Deuis, J.R.; Dutertre, S.; Vetter, I.; Zamponi, G.W.; et al. Discovery and mode of action of a novel analgesic β-toxin from the African spider Ceratogyrus darlingi. PLoS ONE 2017, 12, e0182848. [Google Scholar] [CrossRef] [PubMed]
- Ikonomopoulou, M.P.; Smith, J.J.; Herzig, V.; Pineda, S.S.; Dziemborowicz, S.; Er, S.Y.; Durek, T.; Gilchrist, J.; Alewood, P.F.; Nicholson, G.M.; et al. Isolation of two insecticidal toxins from venom of the Australian theraphosid spider Coremiocnemis tropix. Toxicon 2016, 123, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.J.; Herzig, V.; Ikonomopoulou, M.P.; Dziemborowicz, S.; Bosmans, F.; Nicholson, G.M.; King, G.F. Insect-Active Toxins with Promiscuous Pharmacology from the African Theraphosid Spider Monocentropus balfouri. Toxins 2017, 9, 155. [Google Scholar] [CrossRef] [PubMed]
- Hardy, M.C.; Daly, N.L.; Mobli, M.; Morales, R.A.; King, G.F. Isolation of an orally active insecticidal toxin from the venom of an Australian tarantula. PLoS ONE 2013, 8, e73136. [Google Scholar] [CrossRef]
- Lei, Q.; Yu, H.; Peng, X.; Yan, S.; Wang, J.; Yan, Y.; Wang, X. Isolation and preliminary characterization of proteinaceous toxins with insecticidal and antibacterial activities from black widow spider (L. tredecimguttatus) eggs. Toxins 2015, 7, 886–899. [Google Scholar] [CrossRef]
- Jin, L.; Fang, M.; Chen, M.; Zhou, C.; Ombati, R.; Hakim, M.A.; Mo, G.; Lai, R.; Yan, X.; Wang, Y.; et al. An insecticidal toxin from Nephila clavata spider venom. Amino Acids 2017, 49, 1237–1245. [Google Scholar] [CrossRef]
- Herzig, V.; Sunagar, K.; Wilson, D.T.R.; Pineda, S.S.; Israel, M.R.; Dutertre, S.; McFarland, B.S.; Undheim, E.A.B.; Hodgson, W.C.; Alewood, P.F.; et al. Australian funnel-web spiders evolved human-lethal δ-hexatoxins for defense against vertebrate predators. Proc. Natl. Acad. Sci. USA 2020, 117, 24920–24928. [Google Scholar] [CrossRef]
- Korolkova, Y.; Maleeva, E.; Mikov, A.; Lobas, A.; Solovyeva, E.; Gorshkov, M.; Andreev, Y.; Peigneur, S.; Tytgat, J.; Kornilov, F.; et al. New insectotoxin from Tibellus oblongus spider venom presents novel adaptation of ICK fold. Toxins 2021, 13, 29. [Google Scholar] [CrossRef]
- Windley, M.J.; Herzig, V.; Dziemborowicz, S.A.; Hardy, M.C.; King, G.F.; Nicholson, G.M. Spider-venom peptides as bioinsecticides. Toxins 2012, 4, 191–227. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, G.M. Insect-selective spider toxins targeting voltage-gated sodium channels. Toxicon 2007, 49, 490–512. [Google Scholar] [CrossRef] [PubMed]
- King, G.F.; Escoubas, P.; Nicholson, G.M. Peptide toxins that selectively target insect NaV and CaV channels. Channels 2008, 2, 100–116. [Google Scholar] [CrossRef] [PubMed]
- Gunning, S.J.; Maggio, F.; Windley, M.J.; Valenzuela, S.M.; King, G.F.; Nicholson, G.M. The Janus-faced atracotoxins are specific blockers of invertebrate KCa channels. FEBS J. 2008, 275, 4045–4059. [Google Scholar] [CrossRef] [PubMed]
- Pineda, S.S.; Chin, Y.K.; Undheim, E.A.B.; Senff, S.; Mobli, M.; Dauly, C.; Escoubas, P.; Nicholson, G.M.; Kaas, Q.; Guo, S.; et al. Structural venomics reveals evolution of a complex venom by duplication and diversification of an ancient peptide-encoding gene. Proc. Natl. Acad. Sci. USA 2020, 117, 11399–11408. [Google Scholar] [CrossRef] [PubMed]
- King, G.F. Tying pest insects in knots: The deployment of spider-venom-derived knottins as bioinsecticides. Pest. Manag. Sci. 2019, 75, 2437–2445. [Google Scholar] [CrossRef] [PubMed]
- Neto, O.B.S.; Valladão, R.; Coelho, G.R.; Dias, R.; Pimenta, D.C.; Lopes, A.R. Spiders’ digestive system as a source of trypsin inhibitors: Functional activity of a member of atracotoxin structural family. Sci. Rep. 2023, 13, 2389. [Google Scholar] [CrossRef]
- Fuzita, F.J.; Pinkse, M.W.; Patane, J.S.; Verhaert, P.D.; Lopes, A.R. High throughput techniques to reveal the molecular physiology and evolution of digestion in spiders. BMC Genom. 2016, 17, 716. [Google Scholar] [CrossRef]
- Walter, A.; Bechsgaard, J.; Scavenius, C.; Dyrlund, T.S.; Sanggaard, K.W.; Enghild, J.J.; Bilde, T. Characterisation of protein families in spider digestive fluids and their role in extra-oral digestion. BMC Genom. 2017, 18, 600. [Google Scholar] [CrossRef]
- Valladão, R.; Coelho, G.R.; da Silva, D.L.; Neto, E.B.; Pimenta, D.C.; Chiariello, T.M.; Auada, A.V.; Wen, F.H.; Lopes, A.R. Loxosceles gaucho venom gland proteome: A new perspective on Loxosceles venom biochemical composition. Toxicon Off. J. Int. Soc. Toxinol. 2020, 177 (Suppl. S1), S34. [Google Scholar] [CrossRef]
- Foradori, M.J.; Tillinghast, E.K.; Smith, J.S.; Townley, M.A.; Mooney, R.E. Astacin family metallopeptidases and serine peptidase inhibitors in spider digestive fluid. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2006, 143, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Osteen, J.D.; Herzig, V.; Gilchrist, J.; Emrick, J.J.; Zhang, C.; Wang, X.; Castro, J.; Garcia-Caraballo, S.; Grundy, L.; Rychkov, G.Y.; et al. Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain. Nature 2016, 534, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Israel, M.R.; Tanaka, B.S.; Castro, J.; Thongyoo, P.; Robinson, S.D.; Zhao, P.; Deuis, J.R.; Craik, D.J.; Durek, T.; Brierley, S.M.; et al. Na(V) 1.6 regulates excitability of mechanosensitive sensory neurons. J. Physiol. 2019, 597, 3751–3768. [Google Scholar] [CrossRef] [PubMed]
- Casewell, N.R.; Wüster, W.; Vonk, F.J.; Harrison, R.A.; Fry, B.G. Complex cocktails: The evolutionary novelty of venoms. Trends Ecol. Evol. 2013, 28, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Bohlen, C.J.; Priel, A.; Zhou, S.; King, D.; Siemens, J.; Julius, D. A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell 2010, 141, 834–845. [Google Scholar] [CrossRef]
- Bohlen, C.J.; Chesler, A.T.; Sharif-Naeini, R.; Medzihradszky, K.F.; Zhou, S.; King, D.; Sánchez, E.E.; Burlingame, A.L.; Basbaum, A.I.; Julius, D. A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. Nature 2011, 479, 410–414. [Google Scholar] [CrossRef]
- Robinson, S.D.; Mueller, A.; Clayton, D.; Starobova, H.; Hamilton, B.R.; Payne, R.J.; Vetter, I.; King, G.F.; Undheim, E.A.B. A comprehensive portrait of the venom of the giant red bull ant, Myrmecia gulosa, reveals a hyperdiverse hymenopteran toxin gene family. Sci. Adv. 2018, 4, eaau4640. [Google Scholar] [CrossRef]
- Deuis, J.R.; Zimmermann, K.; Romanovsky, A.A.; Possani, L.D.; Cabot, P.J.; Lewis, R.J.; Vetter, I. An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways. Pain 2013, 154, 1749–1757. [Google Scholar] [CrossRef]
- Finol-Urdaneta, R.K.; Ziegman, R.; Dekan, Z.; McArthur, J.R.; Heitmann, S.; Luna-Ramirez, K.; Tae, H.S.; Mueller, A.; Starobova, H.; Chin, Y.K.; et al. Multitarget nociceptor sensitization by a promiscuous peptide from the venom of the King Baboon spider. Proc. Natl. Acad. Sci. USA 2022, 119, e2110932119. [Google Scholar] [CrossRef]
- Okada, M.; Corzo, G.; Romero-Perez, G.A.; Coronas, F.; Matsuda, H.; Possani, L.D. A pore forming peptide from spider Lachesana sp. venom induced neuronal depolarization and pain. Biochim. Biophys. Acta 2015, 1850, 657–666. [Google Scholar] [CrossRef]
- Zanchet, E.M.; Longo, I.; Cury, Y. Involvement of spinal neurokinins, excitatory amino acids, proinflammatory cytokines, nitric oxide and prostanoids in pain facilitation induced by Phoneutria nigriventer spider venom. Brain Res. 2004, 1021, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Little, M.J.; Wilson, H.; Zappia, C.; Cestèle, S.; Tyler, M.I.; Martin-Eauclaire, M.F.; Gordon, D.; Nicholson, G.M. δ-atracotoxins from Australian funnel-web spiders compete with scorpion α-toxin binding on both rat brain and insect sodium channels. FEBS Lett. 1998, 439, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Little, M.J.; Zappia, C.; Gilles, N.; Connor, M.; Tyler, M.I.; Martin-Eauclaire, M.F.; Gordon, D.; Nicholson, G.M. δ-Atracotoxins from australian funnel-web spiders compete with scorpion α-toxin binding but differentially modulate alkaloid toxin activation of voltage-gated sodium channels. J. Biol. Chem. 1998, 273, 27076–27083. [Google Scholar] [CrossRef] [PubMed]
- Gilles, N.; Harrison, G.; Karbat, I.; Gurevitz, M.; Nicholson, G.M.; Gordon, D. Variations in receptor site-3 on rat brain and insect sodium channels highlighted by binding of a funnel-web spider δ-atracotoxin. Eur. J. Biochem. 2002, 269, 1500–1510. [Google Scholar] [CrossRef] [PubMed]
- Catterall, W.A. Voltage-gated sodium channels at 60: Structure, function and pathophysiology. J. Physiol. 2012, 590, 2577–2589. [Google Scholar] [CrossRef] [PubMed]
- Dib-Hajj, S.D.; Cummins, T.R.; Black, J.A.; Waxman, S.G. Sodium channels in normal and pathological pain. Annu. Rev. Neurosci. 2010, 33, 325–347. [Google Scholar] [CrossRef]
- Faber, C.G.; Lauria, G.; Merkies, I.S.; Cheng, X.; Han, C.; Ahn, H.S.; Persson, A.K.; Hoeijmakers, J.G.; Gerrits, M.M.; Pierro, T.; et al. Gain-of-function Nav1.8 mutations in painful neuropathy. Proc. Natl. Acad. Sci. USA 2012, 109, 19444–19449. [Google Scholar] [CrossRef]
- Deuis, J.R.; Ragnarsson, L.; Robinson, S.D.; Dekan, Z.; Chan, L.; Jin, A.H.; Tran, P.; McMahon, K.L.; Li, S.; Wood, J.N.; et al. The Tarantula Venom Peptide Eo1a Binds to the Domain II S3-S4 Extracellular Loop of Voltage-Gated Sodium Channel Na(V)1.8 to Enhance Activation. Front. Pharmacol. 2021, 12, 789570. [Google Scholar] [CrossRef]
- Rong, M.; Chen, J.; Tao, H.; Wu, Y.; Jiang, P.; Lu, M.; Su, H.; Chi, Y.; Cai, T.; Zhao, L.; et al. Molecular basis of the tarantula toxin jingzhaotoxin-III (β-TRTX-Cj1α) interacting with voltage sensors in sodium channel subtype Nav1.5. FASEB J. 2011, 25, 3177–3185. [Google Scholar] [CrossRef]
- Catterall, W.A. Dravet Syndrome: A Sodium Channel Interneuronopathy. Curr. Opin. Physiol. 2018, 2, 42–50. [Google Scholar] [CrossRef]
- De Jonghe, P. Molecular genetics of Dravet syndrome. Dev. Med. Child. Neurol. 2011, 53 (Suppl. S2), 7–10. [Google Scholar] [CrossRef] [PubMed]
- Richards, K.L.; Milligan, C.J.; Richardson, R.J.; Jancovski, N.; Grunnet, M.; Jacobson, L.H.; Undheim, E.A.B.; Mobli, M.; Chow, C.Y.; Herzig, V.; et al. Selective NaV1.1 activation rescues Dravet syndrome mice from seizures and premature death. Proc. Natl. Acad. Sci. USA 2018, 115, E8077–E8085. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Zhao, P.; Wu, X.; Kong, X.; Wang, R.; Liang, S.; Tang, C.; Liu, Z. Variation of Two S3b Residues in KV4.1-4.3 Channels Underlies Their Different Modulations by Spider Toxin kappa-LhTx-1. Front. Pharmacol. 2021, 12, 692076. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Liao, Z.; Zeng, X.; Dai, L.; Kuang, F.; Liang, S. Jingzhaotoxin-XII, a gating modifier specific for Kv4.1 channels. Toxicon 2007, 50, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Yang, S.; Liao, Z.; Liang, S. Effects and mechanism of Chinese tarantula toxins on the Kv2.1 potassium channels. Biochem. Biophys. Res. Commun. 2007, 352, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Ebbinghaus, J.; Legros, C.; Nolting, A.; Guette, C.; Celerier, M.L.; Pongs, O.; Bähring, R. Modulation of Kv4.2 channels by a peptide isolated from the venom of the giant bird-eating tarantula Theraphosa leblondi. Toxicon 2004, 43, 923–932. [Google Scholar] [CrossRef]
- Gomes, G.M.; Dalmolin, G.D.; do Nascimento Cordeiro, M.; Gomez, M.V.; Ferreira, J.; Rubin, M.A. The selective A-type K+ current blocker Tx3-1 isolated from the Phoneutria nigriventer venom enhances memory of naive and Aβ(25-35)-treated mice. Toxicon 2013, 76, 23–27. [Google Scholar] [CrossRef]
- Rigo, F.K.; Rossato, M.F.; Trevisan, G.; De Prá, S.D.; Ineu, R.P.; Duarte, M.B.; de Castro Junior, C.J.; Ferreira, J.; Gomez, M.V. PhKv a toxin isolated from the spider venom induces antinociception by inhibition of cholinesterase activating cholinergic system. Scand. J. Pain. 2017, 17, 203–210. [Google Scholar]
- Almeida, A.P.; Andrade, A.B.; Ferreira, A.J.; Pires, A.C.; Damasceno, D.D.; Alves, M.N.; Gomes, E.R.; Kushmerick, C.; Lima, R.F.; Prado, M.A.; et al. Antiarrhythmogenic effects of a neurotoxin from the spider Phoneutria nigriventer. Toxicon 2011, 57, 217–224. [Google Scholar] [CrossRef]
- Matsumura, K.; Yokogawa, M.; Osawa, M. Peptide Toxins Targeting KV Channels. Handb. Exp. Pharmacol. 2021, 267, 481–505. [Google Scholar]
- Zamponi, G.W.; Striessnig, J.; Koschak, A.; Dolphin, A.C. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Pharmacol. Rev. 2015, 67, 821–870. [Google Scholar] [CrossRef] [PubMed]
- Nanou, E.; Catterall, W.A. Calcium Channels, Synaptic Plasticity, and Neuropsychiatric Disease. Neuron 2018, 98, 466–481. [Google Scholar] [CrossRef] [PubMed]
- Vieira, L.B.; Kushmerick, C.; Hildebrand, M.E.; Garcia, E.; Stea, A.; Cordeiro, M.N.; Richardson, M.; Gomez, M.V.; Snutch, T.P. Inhibition of high voltage-activated calcium channels by spider toxin PnTx3-6. J. Pharmacol. Exp. Ther. 2005, 314, 1370–1377. [Google Scholar] [CrossRef] [PubMed]
- Tonello, R.; Fusi, C.; Materazzi, S.; Marone, I.M.; De Logu, F.; Benemei, S.; Gonçalves, M.C.; Coppi, E.; Castro-Junior, C.J.; Gomez, M.V.; et al. The peptide Phα1β, from spider venom, acts as a TRPA1 channel antagonist with antinociceptive effects in mice. Br. J. Pharmacol. 2017, 174, 57–69. [Google Scholar] [CrossRef]
- Rigo, F.K.; Trevisan, G.; Rosa, F.; Dalmolin, G.D.; Otuki, M.F.; Cueto, A.P.; de Castro Junior, C.J.; Romano-Silva, M.A.; do N. Cordeiro, M.; Richardson, M.; et al. Spider peptide Phα1β induces analgesic effect in a model of cancer pain. Cancer Sci. 2013, 104, 1226–1230. [Google Scholar] [CrossRef]
- Klint, J.K.; Berecki, G.; Durek, T.; Mobli, M.; Knapp, O.; King, G.F.; Adams, D.J.; Alewood, P.F.; Rash, L.D. Isolation, synthesis and characterization of ω-TRTX-Cc1a, a novel tarantula venom peptide that selectively targets L-type Cav channels. Biochem. Pharmacol. 2014, 89, 276–286. [Google Scholar] [CrossRef]
Toxin | Source | Sequence | References |
---|---|---|---|
Juruin | Avicularia juruensis | FTCAISCDIKVNGKPCKGSGEKKCSGGWSCKFNVCVKV-OH a | [36] |
Lycotoxin I | Lycosa carolinensis | IWLTALKFLGKHAAKHLAKQQLSKL-NH2 | [24] |
Lycotoxin II | Lycosa carolinensis | KIKWFKTMKSIAKFIAKEQMKKHLGGE-OH | [24] |
Lycocitin 1 | Lycosa singoriensis | GKLQAFLAKMKEIAAQTL-NH2 | [37] |
Lycocitin 2 | Lycosa singoriensis | GRLQAFLAKMKEIAAQTL-NH2 | [37] |
Ltc 1 | Lachesana tarabaevi | SMWSGMWRRKLKKLRNALKKKLKGE-OH | [38] |
Ltc 2a | Lachesana tarabaevi | GLFGKLIKKFGRKAISYAVKKARGKH-OH | [38] |
Ltc 3a | Lachesana tarabaevi | SWKSMAKKLKEYMEKLKQRA-NH2 | [38] |
Ltc 3b | Lachesana tarabaevi | SWASMAKKLKEYMEKLKQRA-NH2 | [38] |
Ltc 4a | Lachesana tarabaevi | GLKDKFKSMGEKLKQYIQTWKAKF-NH2 | [38] |
Ltc 4b | Lachesana tarabaevi | SLKDKVKSMGEKLKQYIQTWKAKF-NH2 | [38] |
Ltc 5 | Lachesana tarabaevi | GFFGKMKEYFKKFGASFKRRFANLKKRL-NH2 | [38] |
CIT 1a | Lachesana tarabaevi | GFFGNTWKKIKGKADKIMLKKAVKIMVKKEGISKEEAQAKVDAMSKKQIRLYLLKYYGKKALQKASEKL-OH | [38] |
LyeTx I | Lycosa erythrognatha | IWLTALKFLGKNLGKHLAKQQLAKL-OH | [39] |
Cupiennin 1a | Cupiennius salei | GFGALFKFLAKKVAKTVAKQAAKQGAKYVVNKQME-NH2 | [40] |
LyeTx I | Lycosa erythrognatha | IWLTALKFLGKNLGKHLAKQQLAKL-NH2 | [41] |
U1-SCRTX-Lg1a | Loxosceles gaucho | VGTDFSGNDDISDVQK-NH2 | [42] |
Lycotoxin-Pa4a | Pardosa astrigera | AMMAESRKDNCIPKHHECTSRPKDCCKQNLMQFKCSCMTIIDKNNKETERCKCDNSIFQKVAKTSVNIGKAVVTK-OH b | [43] |
U5-Lycotoxin-Ls1a | Lycosa tarantula | FSLARKDKENCIPKHHECTSDRHGCCRGSMFKYKCQCVKIVNAQKEETERCACITPGLHKAAEFVVQLFKKVIA-OH c | [43] |
Lyp2370 | Lycosa poonaensis | FLASHVAMEQLSKLGSKIATKL-NH2 | [44] |
Lyp1987 | Lycosa poonaensis | G/RLQAFLAKMKEIAAQTL-NH2 | [44] |
U1-TRTX-Ar1a | Acanthoscurria rondoniae | SCVHERETCSKVRGPLCCRGECTCPIYGDCFCYGS-OH c | [45] |
Toxin | Source | Sequence | References |
---|---|---|---|
Brachyin | Brachypelma albopilosum. | CLGENVPCDKDRPNCCSRYECLEPTGYGWWYASYYCYKKRS-OH a | [21] |
Lycosin-I | Lycosa singorensis | RKGWFKAMKSIAKFIAKEKLKEHL-OH | [24] |
Gomesin | Acanthoscurria gomesiana | GCRRLCYKQRCVTYCRGR-OH b | [53] |
PcTx-1 | Psalmopoeus cambridgei | EDCIPKWKGCVNRHGDCCEGLECWKRRRSFEVCVPKTPKT-OH a | [54] |
Latarcin 2a | Lachesana tarabaevi | GLFGKLIKKFGRKAISYAVKKARGKH-OH | [55] |
U1-TRTX-Agm3a | Acanthoscurria rondoniae | ACGSFMWKCSERLPCCQEYVCSPQWKWCQNP-OH a | [45] |
U1-TRTX-Ar1b | Acanthoscurria rondoniae | SCVYERETCSKVRGPLCCRGECTCPIYGDCFCYGS-OH c | [45] |
SNX-482 | Hysterocrates gigas | GVDKAGCRYMFGGCSVNDDCCPRLGCHSLFSYCAWDLTFSD-OH a | [56] |
LVTX-9 | Lycosa vittata | ASIGALIQKAIALIKAKAA-NH2 | [57] |
LVTX-8 | Lycosa vittata | IWLTALKFLGKNLGKHLAKQQLSKL-NH2 | [57] |
Toxin Name | Source | Sequence | References |
---|---|---|---|
β-diguetoxin-Dc1a | Diguetia canities | SAKDGDVEGPAGCKKYDVECDSGECCQKQYLWYKWRPLDCRCLKSGFFSSKCVCRDV-OH a | [58] |
CsTx-1 | Cupiennius salei | SCIPKHEECTNDKHNCCRKGLFKLRCQCSTFDDESGQPTEFCACGRPMGHQAIETGLNIFRGLFKGKKKNKKTK-OH a | [60] |
CsTx-2a | Cupiennius salei | SCIPKHEECTNDKHNCCRKGLFKLCQCSTFDDESGQPTERCACGRPMGHQAIETGLNIFRGLFA-OH a | [60] |
CsTx-2b | Cupiennius salei | SCIPKHEECTNDKHNCCRKGLFKLCQCSTFDDESGQPTERCACGRPMGHQAIETGLNIFRGLF-OH a | [60] |
CsTx-13 | Cupiennius salei | SDCTLRNNDCTDDRHSCCRSKMFKDVCTCFYPSQAKKELCTCQQPKHLKYIEKGLQKAKDYAT-OH a | [16] |
Osu1 | Oculicosa supermirabilis | RLALPPGAVCNGHKSDCQCFGAKYKCSCPFFWRFRKSAECHCKKGWAWTAIKKRSCHNRYQWSD-OH b | [61] |
ω-hexatoxin-Hvn1b | Hadronyche venenata | SPTCIPSGQPCPYNENCCSKSCTYKENENGNTVQRCD-OH c | [62] |
JFTX-23 | Selenocosmia jiafu | QRACGQLHDPCPNDRPGHRTCCLGLQCRYGNCLVQV-OH c | [63] |
β/δ-PrIT1 | Phoneutria reidyi | CGDINAPCQSDCDCCGYSVTCDCYWGNECKCRESNFAIGM-OH a | [64] |
CpTx1 | Cheiracanthium auditorium | GKTCIERNKECTNDRHGCCRGKIFKDKCTCVKNGKTEKCVCTQKKWAKIIESYIGDIPALPKPV-NH2 a | [65] |
CpTx2a | Cheiracanthium punctorium | GKKCIERNKECTNDRHGCCRGKIFKDKCECVGSGGKERRCVCKQKKWAKIIESYIGDIPTLPKPE-NH2 a | [66] |
CpTx3a | Cheiracanthium punctorium | TCVPRDGDCTENRKACCRSKIFQDRCQCRKVSQDKVACSCKQPYWLMKIEEILGDIPEKPKPV-NH2 a | [66] |
CpTx4a | Cheiracanthium punctorium | ASCTERKHDCTKDRHSCCRGKIFKDKCTCVKNGKTEKCVCTQKKWAKIIESYIGDIPALPKPV-NH2 a | [66] |
Magi3 | Macrothele gigas | GGCIKWNHSCQTTTLKCCGKCVVCYCHTPWGTNCRCDRTRLFCTED-OH d | [67] |
OxyTx1 | Oxyopes lineatus | DWECLPLHSSCDNDCVCCKNHHCHCPYSNVSKLEKWLPEWAKIPDALKRCSCQRNDKDGKINTCDKYKN-NH2 e | [68] |
OxyTx2 | Oxyopes lineatus | AWKCLPKDSTCGDDCDCCEGLHCHCPLRNMLPAILRCSCQSKDDHINTCPKYKKS-NH2 e | [68] |
OtTx1a | Oxyopes takobius | GTPVGNNKCWAIGTTCSDDCDCCPEHHCHCPAGKWLPGLFRCTCOVTESDKVVNKCPPAE-OH e | [69] |
ω-Tbo-IT1 | Tibellus oblongus | CASKNERCGNALYGTKGPGCCNGKCICRTVPRKGVNSCRCM-OH a | [70] |
U2-SCTX-Li1b | Loxosceles intermedia | GCIKSGQRCGSPHGLPSNCCDDWKYKGRCGCTMGVCTCGKNCPSRGCDYRTKG-OH a | [71] |
μ-SPRTX-Hv2 | Heteropoda venatoria | DDDCGKLFADCTSDSDCCENWVCSKTGFVKNICKYNF-OH c | [72] |
μ-TRTX-Ae1a | Augacephalus ezendami | GVDKEGCRYLLGACTIDDDCCLHLGCNKKYGHCGWDTF-OH c | [59] |
brachyin | Brachypelma albopilosum | CLGENVPCDKDRPNCCSRYECLEPTGYGWWYASYYCYKKRS-OH c | [21] |
β-TRTX-Cd1a | Ceratogyrus darlingi | DCLGWFKSCDPKNDKCCKNYSCSRRDRWCKYDL-OH c | [73] |
U1-TRTX-Ct1a | Coremiocnemis tropix | LFECSFSCDIKKNGKPCKGSGEKKCSGGWRCKMNFCVKV-OH f | [74] |
U1-TRTX-Ct1b | Coremiocnemis tropix | FECSLSCDIKKNGKPCKGSGEKKCSGGWRCKMNFCLKF-OH f | [74] |
μ/ω-TRTX-Mb1a | Monocentropus balfouri | GVDKPGCRYMFGGCVQDDDCCPHLGCKRKGLYCAWDGT-OH c | [75] |
μ/ω-TRTX-Mb1b | Monocentropus balfouri | GVDKPGCRYMFGGCVQDDDCCPHLGCKRKGLYCAWDAS-OH c | [75] |
OAIP-1 | Selenotypus plumipes | DCGHLHDPCPNDRPGHRTCCIGLQCRYGKCLVRV-NH2 c | [76] |
Latroeggtoxin-III | Latrodectus tredecimguttatus | STKSSESLYLEALYIDKMTHEPVAD (N-terminal sequence) | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, R.; Guo, G.; Wang, A.; Xu, G.; Lai, R.; Jin, H. Spider-Venom Peptides: Structure, Bioactivity, Strategy, and Research Applications. Molecules 2024, 29, 35. https://doi.org/10.3390/molecules29010035
Guo R, Guo G, Wang A, Xu G, Lai R, Jin H. Spider-Venom Peptides: Structure, Bioactivity, Strategy, and Research Applications. Molecules. 2024; 29(1):35. https://doi.org/10.3390/molecules29010035
Chicago/Turabian StyleGuo, Ruiyin, Gang Guo, Aili Wang, Gaochi Xu, Ren Lai, and Hui Jin. 2024. "Spider-Venom Peptides: Structure, Bioactivity, Strategy, and Research Applications" Molecules 29, no. 1: 35. https://doi.org/10.3390/molecules29010035
APA StyleGuo, R., Guo, G., Wang, A., Xu, G., Lai, R., & Jin, H. (2024). Spider-Venom Peptides: Structure, Bioactivity, Strategy, and Research Applications. Molecules, 29(1), 35. https://doi.org/10.3390/molecules29010035