Recent Investigations on the Use of Copper Complexes as Molecular Materials for Dye-Sensitized Solar Cells
Abstract
:1. Introduction
2. Copper Complexes Applied to DSSCs
2.1. Copper Complexes Employed as Dyes
Entry | Dye | Redox Couple | Voc (V) | Jsc (mA cm−2) | FF | η (%) | ηrel (%) | CE | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | 1a + N719 b | I−/I3− | 0.652 | 1.580 | 0.566 | 2.92 | 63.6 | Pt | [26] |
2 | 1b + N719 b | I−/I3− | 0.643 | 1.446 | 0.579 | 2.69 | 58.6 | Pt | [26] |
3 | N719 b | I−/I3− | 0.708 | 2.265 | 0.572 | 4.59 | - | Pt | [26] |
4 | 2 c | I−/I3− | 0.616 | 5.78 | 0.64 | 2.27 | 51.7 | Pt | [28] |
5 | Ni-Fc c | I−/I3− | 0.610 | 3.83 | 0.63 | 1.48 | 33.7 | Pt | [28] |
6 | Co-Fc c | I−/I3− | 0.620 | 7.65 | 0.63 | 3.01 | 68.5 | Pt | [28] |
7 | 2 + N719 c | I−/I3− | 0.728 | 10.67 | 0.63 | 4.91 | 112 | Pt | [28] |
8 | Co-Fc + N719 c | I−/I3− | 0.730 | 11.41 | 0.64 | 5.31 | 121 | Pt | [28] |
9 | 2 + Co-Fc + N719 c | I−/I3− | 0.733 | 12.87 | 0.64 | 6.05 | 138 | Pt | [28] |
10 | N719 c | I−/I3− | 0.718 | 9.68 | 0.63 | 4.39 | - | Pt | [28] |
11 | 3a d | I−/I3− | 0.550 | 2.87 | 0.74 | 1.17 | 15.4 | Pt | [29] |
12 | 3b d | I−/I3− | 0.563 | 3.31 | 0.74 | 1.38 | 18.1 | Pt | [29] |
13 | 3c d | I−/I3− | 0.555 | 3.17 | 0.70 | 1.23 | 16.2 | Pt | [29] |
14 | 3d d | I−/I3− | 0.563 | 4.79 | 0.68 | 1.81 | 23.8 | Pt | [29] |
15 | 3e d | I−/I3− | 0.565 | 4.79 | 0.73 | 2.05 | 27.0 | Pt | [29] |
16 | 3f d | I−/I3− | 0.553 | 3.35 | 0.67 | 1.24 | 16.3 | Pt | [29] |
17 | 3g d | I−/I3− | 0.566 | 4.16 | 0.72 | 1.73 | 22.7 | Pt | [29] |
18 | N719 d | I−/I3− | 0.700 | 17.81 | 0.61 | 7.60 | - | Pt | [29] |
Entry | Dye | Redox Couple | Voc (V) | Jsc (mA cm−2) | FF | η (%) | CE | Ref. |
---|---|---|---|---|---|---|---|---|
1 | 4a b,c | I−/I3− | 0.446 | 0.26 | 0.66 | 0.08 | Pt | [30] |
2 | 4a b,d | I−/I3− | 0.470 | 0.60 | 0.55 | 0.15 | Pt | [30] |
3 | 4b b,c | I−/I3− | 0.465 | 0.41 | 0.56 | 0.11 | Pt | [30] |
4 | 4b b,d | I−/I3− | 0.585 | 2.87 | 0.68 | 1.15 | Pt | [30] |
5 | 4b b,e | I−/I3− | 0.549 | 2.42 | 0.64 | 0.85 | Pt | [30] |
6 | 4b b,f | I−/I3− | 0.591 | 2.94 | 0.69 | 1.20 | Pt | [30] |
7 | 4c b,f | I−/I3− | 0.576 | 2.90 | 0.63 | 1.05 | Pt | [30] |
8 | 4d b,d | I−/I3− | 0.480 | 0.37 | 0.57 | 0.10 | Pt | [30] |
9 | 4e b,d | I−/I3− | 0.443 | 0.28 | 0.43 | 0.05 | Pt | [30] |
10 | 5a g | I−/I3− | 0.69 | 9.80 | 0.7054 | 4.77 | Pt | [32] |
11 | 5b g | I−/I3− | 0.79 | 14.86 | 0.7198 | 8.45 | Pt | [32] |
12 | PPV-SF-Cd g | I−/I3− | 0.73 | 10.28 | 0.7086 | 5.30 | Pt | [32] |
13 | PBDTT-SF-Cd g | I−/I3− | 0.79 | 14.94 | 0.7261 | 8.59 | Pt | [32] |
Entry | Dye | Redox Couple | Voc (V) | Jsc (mA cm−2) | FF | η (%) | ηrel (%) | CE | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | 6 b,c | I−/I3− | 0.60 | 0.35 | 0.32 | 0.067 | 33.7 | Pt | [33] |
2 | 6 b,d | I−/I3− | 0.58 | 0.40 | 0.32 | 0.074 | 38.4 | Pt | [33] |
3 | 6 b,e | I−/I3− | 0.60 | 0.45 | 0.30 | 0.081 | 44.2 | Pt | [33] |
4 | 6 b,f | I−/I3− | 0.58 | 0.43 | 0.32 | 0.080 | 42.8 | Pt | [33] |
5 | 6 b,g | I−/I3− | 0.60 | 0.44 | 0.35 | 0.093 | 48.2 | Pt | [33] |
6 | 6 b,h | I−/I3− | 0.58 | 0.41 | 0.35 | 0.082 | 42.0 | Pt | [33] |
7 | N3 b,c | I−/I3− | 0.76 | 1.05 | 0.25 | 0.199 | - | Pt | [33] |
8 | N3 b,d | I−/I3− | 0.74 | 1.04 | 0.25 | 0.193 | - | Pt | [33] |
9 | N3 b,e | I−/I3− | 0.74 | 0.99 | 0.25 | 0.183 | - | Pt | [33] |
10 | N3 b,f | I−/I3− | 0.74 | 1.01 | 0.25 | 0.187 | - | Pt | [33] |
11 | N3 b,g | I−/I3− | 0.76 | 1.01 | 0.25 | 0.193 | - | Pt | [33] |
12 | N3 b,h | I−/I3− | 0.76 | 1.04 | 0.25 | 0.195 | - | Pt | [33] |
13 | 7 i | I−/I3− | 0.632 | 7.84 | 0.60 | 3.00 | - | Pt | [34] |
14 | Co-Sal i | I−/I3− | 0.648 | 9.75 | 0.61 | 3.84 | - | Pt | [34] |
15 | 8 + N719 j | I−/I3− | 0.757 | 5.095 | 0.527 | 2.03 | 92.3 | Pt | [35] |
16 | N719 j | I−/I3− | 0.770 | 6.030 | 0.473 | 2.2 | - | Pt | [35] |
Entry | Dye | Redox Couple | Voc (V) | Jsc (mA cm−2) | FF | η (%) | ηrel (%) | CE | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | 9a b | I−/I3− | 0.531 | 4.90 | 0.68 | 1.78 | 32.8 | Pt | [36] |
2 | 9b c | I−/I3− | 0.599 | 4.77 | 0.64 | 1.82 | 33.6 | Pt | [36] |
3 | 9c b | I−/I3− | 0.503 | 4.90 | 0.71 | 1.76 | 32.5 | Pt | [36] |
4 | 9d c | I−/I3− | 0.564 | 6.81 | 0.66 | 2.54 | 46.9 | Pt | [36] |
5 | N719 d | I−/I3− | 0.615 | 15.02 | 0.59 | 5.42 | - | Pt | [36] |
2.2. Copper Complexes Employed as Redox Mediators
Entry | Dye | Redox Couple | Voc (V) | Jsc (mA cm−2) | FF | η (%) | CE | Ref. |
---|---|---|---|---|---|---|---|---|
1 | TY6 b | [(dmp)2Cu]+/2+ | 1.08 | 9.8 | 0.67 | 7.06 | TR-Pt_1 c | [40] |
2 | TY6 b | [(dmp)2Cu]+/2+ | 1.08 | 10.4 | 0.70 | 7.84 | TR-Pt_10 c | [40] |
3 | TY6 b | [(dmp)2Cu]+/2+ | 1.09 | 10.4 | 0.72 | 8.17 | PVP-Pt c | [40] |
4 | TY6 b | [(dmp)2Cu]+/2+ | 1.09 | 10.4 | 0.73 | 8.26 | PVA-Pt c | [40] |
5 | TY6 b | [(dmp)2Cu]+/2+ | 1.07 | 10.1 | 0.73 | 7.95 | PEDOT c | [40] |
6 | MK-2 d | [(tbbpbi)2Cu]+/2+ e | 0.73 | 8.98 | 0.46 | 3.04 | Pt | [41] |
7 | MK-2 d | [(mbpbi)2Cu]+/2+ e | 0.74 | 11.02 | 0.50 | 4.08 | Pt | [41] |
8 | MK-2 d | [(tbbpbi)3Co]2+/3+ f | 0.73 | 1.83 | 0.46 | 0.61 | Pt | [41] |
9 | MK-2 d | [(mbpbi)3Co]2+/3+ f | 0.78 | 3.92 | 0.53 | 1.62 | Pt | [41] |
10 | ZS4 g | [(tmby)2Cu]+/2+ | 1.05 | 16.3 | 0.771 | 13.2 | PEDOT | [42] |
11 | ZS5 g | [(tmby)2Cu]+/2+ | 0.95 | 14.7 | 0.750 | 10.5 | PEDOT | [42] |
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Regan, B.; Grätzel, M. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Yahya, M.; Bouziani, A.; Ocak, C.; Seferoğlu, Z.; Sillanpää, M. Organic/metal-organic photosensitizers for dye-sensitized solar cells (DSSC): Recent developments, new trends, and future perceptions. Dyes Pigments 2021, 192, 109227. [Google Scholar] [CrossRef]
- Dragonetti, C.; Colombo, A.; Magni, M.; Mussini, P.R.; Nisic, F.; Roberto, D.M.; Ugo, R.; Valore, A.; Valsecchi, A.; Salvatori, P. Thiocyanate-Free Ruthenium(II) Sensitizer with a Pyrid-2-yltetrazolate Ligand for Dye-Sensitized Solar Cells. Inorg. Chem. 2013, 52, 10723–10725. [Google Scholar] [CrossRef] [PubMed]
- Fiorini, V.; Marchini, E.; Averardi, M.; Giorgini, L.; Muzzioli, S.; Dellai, A.; Argazzi, R.; Sanson, A.; Sangiorgi, N.; Caramori, S.; et al. New examples of Ru(II)-tetrazolato complexes as thiocyanate-free sensitizers for dye-sensitized solar cells. Dalton Trans. 2020, 49, 14543–14555. [Google Scholar] [CrossRef] [PubMed]
- Mauri, L.; Colombo, A.; Dragonetti, C.; Roberto, D.; Fagnani, F. Recent Investigations on Thiocyanate-Free Ruthenium(II) 2,2′-Bipyridyl Complexes for Dye-Sensitized Solar Cells. Molecules 2021, 26, 7638. [Google Scholar] [CrossRef]
- Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B.F.E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M.K.; Grätzel, M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6, 242–247. [Google Scholar] [CrossRef]
- Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.; Hanaya, M. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 2015, 51, 15894–15897. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, X.; Wang, W.; Gurzadyan, G.G.; Li, J.; Li, X.; An, J.; Yu, Z.; Wang, H.; Hagfeldt, A.; et al. 13.6% Efficient Organic Dye-Sensitized Solar Cells by Minimizing Energy Losses of the Excited State. ACS Energy Lett. 2019, 4, 943–951. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, D.; Suo, J.; Cao, Y.; Eickemeyer, F.T.; Vlachopoulos, N.; Zakeeruddin, S.M.; Hagfeldt, A.; Grätzel, M. Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells. Nature 2023, 613, 60–65. [Google Scholar] [CrossRef]
- Colombo, A.; Dragonetti, C.; Magni, M.; Roberto, D.; Demartin, F.; Caramori, S.; Bignozzi, C.A. Efficient Copper Mediators Based on Bulky Asymmetric Phenanthrolines for DSSCs. ACS Appl. Mater. Interfaces 2014, 6, 13945–13955. [Google Scholar] [CrossRef]
- Freitag, M.; Giordano, F.; Yang, W.; Pazoki, M.; Hao, Y.; Zietz, B.; Grätzel, M.; Hagfeldt, A.; Boschloo, G. Copper Phenanthroline as a Fast and High-Performance Redox Mediator for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2016, 120, 9595–9603. [Google Scholar] [CrossRef]
- Housecroft, C.E.; Constable, E.C. The emergence of copper(I)-based dye sensitized solar cells. Chem. Soc. Rev. 2015, 44, 8386–8398. [Google Scholar] [CrossRef]
- Conradie, J. Polypyridyl copper complexes as dye sensitizer and redox mediator for dye-sensitized solar cells. Electrochem. Commun. 2022, 134, 107182. [Google Scholar] [CrossRef]
- Housecroft, C.E.; Constable, E.C. Solar Energy Conversion Using First Row d-Block Metal Coordination Compound Sensitizers and Redox Mediators. Chem. Sci. 2022, 13, 1225–1262. [Google Scholar] [CrossRef] [PubMed]
- Mauri, L.; Colombo, A.; Dragonetti, C.; Fagnani, F. A Fascinating Trip into Iron and Copper Dyes for DSSCs. Inorganics 2022, 10, 137. [Google Scholar] [CrossRef]
- Colombo, A.; Dragonetti, C.; Roberto, D.; Fagnani, F. Copper Complexes as Alternative Redox Mediators in Dye-Sensitized Solar Cells. Molecules 2021, 26, 194. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-García, A.B.; Benesperi, I.; Boschloo, G.; Concepcion, J.J.; Delcamp, J.H.; Gibson, E.A.; Meyer, G.J.; Pavone, M.; Pettersson, H.; Hagfeldt, A.; et al. Dye-sensitized solar cells strike back. Chem. Soc. Rev. 2021, 50, 12450–12550. [Google Scholar] [CrossRef]
- Alonso Vante, N.; Nierengarten, J.-F.; Sauvage, J.-P. Spectral Sensitization of Large-band-gap Semiconductors (Thin Films and Ceramics) by a Carboxylated Bis(1,I 0-Phenanthroline)copper(l) Complex. J Chem Soc. Dalton Trans. 1994, 1649–1654. [Google Scholar] [CrossRef]
- Colombo, A.; Dragonetti, C.; Roberto, D.; Valore, A.; Biagini, P.; Melchiorre, F. A simple copper(I) complex and its application in efficient dye sensitized solar cells. Inorg. Chim. Acta 2013, 407, 204–209. [Google Scholar] [CrossRef]
- Malzner, F.J.; Prescimone, A.; Constable, E.C.; Housecroft, C.E.; Willgert, M. Exploring simple ancillary ligands in copper-based dye-sensitized solar cells: Effects of a heteroatom switch and of co-sensitization. J. Mater. Chem. A 2017, 5, 4671–4685. [Google Scholar] [CrossRef]
- Sandroni, M.; Favereau, L.; Planchat, A.; Akdas-Kilig, H.; Szuwarski, N.; Pellegrin, Y.; Blart, E.; Le Bozec, H.; Boujtita, M.; Odobel, F. Heteroleptic copper(I)–polypyridine complexes as efficient sensitizers for dye sensitized solar cells. J. Mater. Chem. A 2014, 2, 9944–9947. [Google Scholar] [CrossRef]
- Babu, D.D.; Elsherbiny, D.; Cheema, H.; El-Shafei, A.; Vasudeva Adhikari, A. Highly efficient panchromatic dye-sensitized solar cells: Synergistic interaction of ruthenium sensitizer with novel co-sensitizers carrying different acceptor units. Dyes Pigments 2016, 132, 316–328. [Google Scholar] [CrossRef]
- Chang, S.; Wang, H.; Tien Lin Lee, L.; Zheng, S.; Li, Q.; Wong, K.Y.; Wong, W.-K.; Zhu, X.; Wong, W.-Y.; Xiao, X.; et al. Panchromatic light harvesting by N719 with a porphyrin molecule for high-performance dye-sensitized solar cells. J. Mater. Chem. C 2014, 2, 3521–3526. [Google Scholar] [CrossRef]
- Yum, J.-H.; Jang, S.-R.; Walter, P.; Geiger, T.; Nüesch, F.; Kim, S.; Ko, J.; Grätzel, M.; Nazeeruddin, M.K. Efficient co-sensitization of nanocrystalline TiO2 films by organic sensitizers. Chem. Commun. 2007, 4680–4682. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Lu, F.; Zhang, J.; Dong, Y.; Zhang, B.; Feng, Y. Stepwise co-sensitization of two metal-based sensitizers: Probing their competitive adsorption for improving the photovoltaic performance of dye-sensitized solar cells. RSC Adv. 2017, 7, 10494–10502. [Google Scholar] [CrossRef]
- Malzner, F.J.; Willgert, M.; Constable, E.C.; Housecroft, C.E. The way to panchromatic copper(I)-based dye-sensitized solar cells: Co-sensitization with the organic dye SQ2. J. Mater. Chem. A 2017, 5, 13717–13729. [Google Scholar] [CrossRef]
- Soto-Acosta, S.; Campos-Gaxiola, J.J.; Reynoso-Soto, E.A.; Cruz-Enríquez, A.; Baldenebro-López, J.; Höpfl, H.; García, J.J.; Flores-Álamo, M.; Miranda-Soto, V.; Glossman-Mitnik, D. Synthesis, Crystal Structure, DFT Studies and Optical/Electrochemical Properties of Two Novel Heteroleptic Copper(I) Complexes and Application in DSSC. Crystals 2022, 12, 1240. [Google Scholar] [CrossRef]
- Singh, A.; Srivastava, D.; Gosavi, S.W.; Chauhan, R.; Ashokkumar, M.; Albalwi, A.N.; Muddassir, M.; Kumar, A. A double co-sensitization strategy using heteroleptic transition metal ferrocenyl dithiocarbamate phenanthrolene-dione for enhancing the performance of N719-based DSSCs. RSC Adv. 2022, 12, 28088–28097. [Google Scholar] [CrossRef]
- Franchi, D.; Leandri, V.; Pizzichetti, A.R.P.; Xu, B.; Hao, Y.; Zhang, W.; Sloboda, T.; Svanström, S.; Cappel, U.B.; Kloo, L.; et al. Effect of the Ancillary Ligand on the Performance of Heteroleptic Cu(I) Diimine Complexes as Dyes in Dye-Sensitized Solar Cells. ACS Appl. Energy Mater. 2022, 5, 1460–1470. [Google Scholar] [CrossRef]
- Peppas, A.; Sokalis, D.; Perganti, D.; Schnakenburg, G.; Falaras, P.; Philippopoulos, A.I. Sterically demanding pyridine-quinoline anchoring ligands as building blocks for copper(I)-based dye-sensitized solar cell (DSSC) complexes. Dalton Trans. 2022, 51, 15049–15066. [Google Scholar] [CrossRef]
- Okubo, T.; Tanaka, N.; Anma, H.; Kim, K.H.; Maekawa, M.; Kuroda-Sowa, T. Dye-sensitized Solar Cells with New One-Dimensional Halide-Bridged Cu(I)–Ni(II) Heterometal Coordination Polymers Containing Hexamethylene Dithiocarbamate Ligand. Polymers 2012, 4, 1613–1626. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, K.; Zhang, H.; Wu, X.; Zhong, C. Novel polymeric metal complexes of salicylaldehyde schiff base derivative being used for dye sensitizer. Tetrahedron 2022, 113, 132756. [Google Scholar] [CrossRef]
- Özaydın, C.; Gözel, M. The Use of Copper-Quercetin Complex as Photosensitizer in Dye Sensitive Solar Cells and Its Photovoltaic Performance. Braz. J. Phys. 2023, 53, 28. [Google Scholar] [CrossRef]
- Gautam, C.; Srivastava, D.; Kociok-Köhn, G.; Gosavi, S.W.; Sharma, V.K.; Chauhan, R.; Late, D.J.; Kumar, A.; Muddassir, M. Copper(II) and cobalt(III) Schiff base complexes with hydroxy anchors as sensitizers in dye-sensitized solar cells (DSSCs). RSC Adv. 2023, 13, 9046–9054. [Google Scholar] [CrossRef] [PubMed]
- Peñuelas, C.A.; Campos-Gaxiola, J.J.; Soto-Rojo, R.; Cruz-Enríquez, A.; Reynoso-Soto, E.A.; Miranda-Soto, V.; García, J.J.; Flores-Álamo, M.; Baldenebro-López, J.; Glossman-Mitnik, D. Synthesis of a New Dinuclear Cu(I) Complex with a Triazine Ligand and Diphenylphosphine Methane: X-ray Structure, Optical Properties, DFT Calculations, and Application in DSSCs. Inorganics 2023, 11, 379. [Google Scholar] [CrossRef]
- Risi, G.; Devereux, M.; Prescimone, A.; Housecroft, C.E.; Constable, E.C. Back to the future: Asymmetrical DπA 2,2′-bipyridine ligands for homoleptic copper(I)-based dyes in dye-sensitised solar cells. RSC Adv. 2023, 13, 4122–4137. [Google Scholar] [CrossRef]
- Kavana, L.; Saygili, Y.; Freitag, M.; Zakeeruddin, S.M.; Hagfeldt, A.; Grätzel, M. Electrochemical Properties of Cu(II/I)-Based Redox Mediators for Dye-Sensitized Solar Cells. Electrochim. Acta 2017, 227, 194–202. [Google Scholar] [CrossRef]
- Srivishnu, K.S.; Prasanthkumar, S.; Giribabu, L. Cu(II/I) redox couples: Potential alternatives to traditional electrolytes for dye-sensitized solar cells. Mater. Adv. 2021, 2, 1229. [Google Scholar] [CrossRef]
- Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S.M.; Moser, J.-E.; Grätzel, M.; et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 2017, 11, 372–378. [Google Scholar] [CrossRef]
- Nguyen, V.S.; Su, T.S.; Chen, C.-C.; Yeh, C.-Y.; Wei, T.-C. Efficient counter electrode for copper (I)(II)-mediated dye-sensitized solar cells based on polyvinyl alcohol capped platinum nanoclusters. J. Taiwan Inst. Chem. Eng. 2023, 142, 104626. [Google Scholar] [CrossRef]
- Selvaraj, B.; Shanmugam, G.; Kamaraj, S.; Thirugnanasambandam, E.; Peters, S.; Gunasekeran, A.; Sambandam, A.; Pillai, R.S. Effect of Copper and Cobalt Metal Complex Redox Mediator Based Xanthan Gum Gel Electrolyte Materials on Performance of Dye Sensitized Solar Cells. ChemistrySelect 2022, 7, e202203197. [Google Scholar] [CrossRef]
- Grobelny, A.; Shen, Z.; Eickemeyer, F.T.; Antariksa, N.F.; Zapotoczny, S.; Zakeeruddin, S.M.; Grätzel, M. A Molecularly Tailored Photosensitizer with an Efficiency of 13.2% for Dye-Sensitized Solar Cells. Adv. Mater. 2023, 35, 2207785. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fagnani, F.; Colombo, A.; Dragonetti, C.; Roberto, D. Recent Investigations on the Use of Copper Complexes as Molecular Materials for Dye-Sensitized Solar Cells. Molecules 2024, 29, 6. https://doi.org/10.3390/molecules29010006
Fagnani F, Colombo A, Dragonetti C, Roberto D. Recent Investigations on the Use of Copper Complexes as Molecular Materials for Dye-Sensitized Solar Cells. Molecules. 2024; 29(1):6. https://doi.org/10.3390/molecules29010006
Chicago/Turabian StyleFagnani, Francesco, Alessia Colombo, Claudia Dragonetti, and Dominique Roberto. 2024. "Recent Investigations on the Use of Copper Complexes as Molecular Materials for Dye-Sensitized Solar Cells" Molecules 29, no. 1: 6. https://doi.org/10.3390/molecules29010006
APA StyleFagnani, F., Colombo, A., Dragonetti, C., & Roberto, D. (2024). Recent Investigations on the Use of Copper Complexes as Molecular Materials for Dye-Sensitized Solar Cells. Molecules, 29(1), 6. https://doi.org/10.3390/molecules29010006