Antileishmanial Effect of 1,5- and 1,8-Substituted Fused Naphthyridines
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. In Silico ADME
2.3. Antileishmanial Effect
3. Discussion
4. Materials and Methods
4.1. Drugs
4.2. Experimental Animals and Ethical Statement
4.3. Parasites
4.4. Experimental Infections and Set Up of Primary Cultures
4.5. Axenic and Intramacrophagic Amastigotes Viability Assays
4.6. Cytotoxicity in Murine Splenic Cells and Selectivity Index Determination
4.7. Preparation of Murine Intestinal Organoids
4.8. Drug Tolerance in Murine Intestinal Organoids
4.9. Computational Assays—ADME Properties
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet 2018, 392, 951–970. [Google Scholar] [CrossRef] [PubMed]
- Sasidharan, S.; Saudagar, P. Leishmaniasis: Where are we and where are we heading? Parasitol. Res. 2021, 120, 1541–1554. [Google Scholar] [CrossRef]
- Yadav, P.; Azam, M.; Ramesh, V.; Singh, R. Unusual observations in leishmaniasis-an overview. Pathogens 2023, 12, 297. [Google Scholar] [CrossRef] [PubMed]
- van Griensven, J.; Diro, E. Visceral leishmaniasis. Infect. Dis. Clin. N. Am. 2012, 26, 309–322. [Google Scholar] [CrossRef] [PubMed]
- WHO. Leishmaniasis. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 25 October 2023).
- Hendrickx, S.; Caljon, G.; Maes, L. Need for sustainable approaches in antileishmanial drug discovery. Parasitol. Res. 2019, 118, 2743–2752. [Google Scholar] [CrossRef]
- Ponte-Sucre, A.; Gamarro, F.; Dujardin, J.C.; Barrett, M.P.; López-Vélez, R.; García-Hernández, R.; Pountain, A.W.; Mwenechanya, R.; Papadopoulou, B. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl. Trop. Dis. 2017, 11, e0006052. [Google Scholar] [CrossRef]
- Pradhan, S.; Schwartz, R.A.; Patil, A.; Grabbe, S.; Goldust, M. Treatment options for leishmaniasis. Clin. Exp. Dermatol. 2022, 47, 516–521. [Google Scholar] [CrossRef]
- van Griensven, J.; Diro, E. Visceral leishmaniasis, recent advances in diagnostic and treatment regimens. Infect. Dis. Clin. N. Am. 2019, 33, 79–99. [Google Scholar] [CrossRef]
- Younis, B.M.; Mudawi Musa, A.; Monnerat, S.; Abdelrahim Saeed, M.; Awad Gasim Khalil, E.; Elbashir Ahmed, A.; Ahmed Ali, M.; Noureldin, A.; Muthoni Ouattara, G.; Nyakaya, G.M.; et al. Safety and efficacy of paromomycin/miltefosine/liposomal amphotericin B combinations for the treatment of post-kala-azar dermal leishmaniasis in Sudan: A phase II, open label, randomized, parallel arm study. PLoS Negl. Trop. Dis. 2023, 21, e0011780. [Google Scholar] [CrossRef]
- Verrest, L.; Roseboom, I.C.; Wasunna, M.; Mbui, J.; Njenga, S.; Musa, A.M.; Olobo, J.; Mohammed, R.; Ritmeijer, K.; Chu, W.-Y.; et al. Population pharmacokinetics of a combination of miltefosine and paromomycin in Eastern African children and adults with visceral leishmaniasis. J. Antimicrob. Chemother. 2023, 78, 2702–2714. [Google Scholar] [CrossRef]
- Chakravarty, J.; Sundar, S. Current and emerging medications for the treatment of leishmaniasis. Expert Opin. Pharmacother. 2019, 20, 1251–1265. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jiang, J.; Zheng, L.; Liu, Z.Q. Recent advances in the synthesis of nitrogen heterocycles using arenediazonium salts as nitrogen sources. Adv. Synth. Catal. 2020, 362, 4876–4895. [Google Scholar] [CrossRef]
- Heravi, M.M.; Zadsirjan, V. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Adv. 2020, 10, 44247–44311. [Google Scholar] [CrossRef]
- Aatif, M.; Raza, M.; Javed, K.; Nashreul-Islam, S.M.; Farhan, M.; Alam, M. Potential nitrogen-based heterocyclic compounds for treating infectious diseases: A literature review. Antibiotics 2022, 11, 1750. [Google Scholar] [CrossRef]
- Tran, T.N.; Henary, M. Synthesis and applications of ni trogen-containing heterocycles as antiviral agents. Molecules 2022, 27, 2700. [Google Scholar] [CrossRef]
- Mermer, A.; Keles, T.; Sirin, Y. Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review. Bioorg. Chem. 2021, 114, 105076. [Google Scholar] [CrossRef]
- Thomas, M.G.; De Rycker, M.; Wall, R.J.; Spinks, D.; Epemolu, O.; Manthri, S.; Norval, S.; Osuna-Cabello, M.; Patterson, S.; Riley, J.; et al. Identification and Optimization of a Series of 8-Hydroxy Naphthyridines with Potent In Vitro Antileishmanial Activity: Initial SAR and Assessment of In Vivo Activity. J. Med. Chem. 2020, 63, 9523–9539. [Google Scholar] [CrossRef]
- Passaes, A.C.S.d.J.; Dantas, J.A.; Lopes, F.L.; Sangi, D.P.; Albuquerque, M.G.; Nakamura, C.V.; Yoneda, J. Quinoxalines against Leishmania amazonensis: SAR study, proposition of a new derivative, QSAR prediction, synthesis, and biological evaluation. Sci. Rep. 2023, 13, 18136. [Google Scholar] [CrossRef]
- Wall, R.J.; Moniz, S.; Thomas, M.; Norval, S.; Ko, E.J.; Marco, M.; Miles, T.J.; Gilbert, I.; Horn, D.; Fairlamb, A.; et al. Anti-trypanosomal 8-hydroxyl naphthyridines are chelators of divalent transition metals. Antimicrob. Agents Chemoth. 2018, 62, 1–15. [Google Scholar] [CrossRef]
- Bhutani, P.; Joshi, G.; Raja, N.; Bachhav, N.; Rajanna, P.K.; Bhutani, H.; Paul, A.T.; Kumar, R.U.S. FDA Approved drugs from 2015–June 2020: A perspective. J. Med. Chem. 2021, 64, 2339–2381. [Google Scholar] [CrossRef]
- Ferreira de Paiva, W.; de Freitas Rego, Y.; de Fátima, A.; Fernandes, S.A. The Povarov reaction: A versatile method to synthesize tetrahydroquinolines, quinolines and julolidines. Synthesis 2022, 54, 3162–3179. [Google Scholar]
- Tejería, A.; Pérez-Pertejo, Y.; Reguera, R.M.; Balaña-Fouce, R.; Alonso, C.; Fuertes, M.; Gonzalez, M.; Rubiales, G.; Palacios, F. Antileishmanial effect of new indeno-1,5-naphthyridines, selective inhibitors of Leishmania infantum type IB DNA topoisomerase. Eur. J. Med. Chem. 2016, 124, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Tejería, A.; Pérez-Pertejo, Y.; Reguera, R.M.; Balaña-Fouce, R.; Alonso, C.; González, M.; Rubiales, G.; Palacios, F. Substituted 1,5-naphthyridine derivatives as novel antileishmanial agents. Synthesis and biological evaluation. Eur. J. Med. Chem. 2018, 152, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Masdeu, C.; de los Santos, J.M.; Palacios, F.; Alonso, C. The intramolecular Povarov tool in the construction of fused nitrogen-containing heterocycles. Top. Curr. Chem. 2023, 381, 20. [Google Scholar] [CrossRef]
- Martín-Encinas, E.; Rubiales, G.; Knudsen, B.R.; Palacios, F.; Alonso, C. Straightforward synthesis and biological evaluation as topoisomerase I inhibitors and antiproliferative agents of hybrid chromeno[4,3-b][1,5]naphthyridines and chrome-no[4,3-b][1,5]naphthyridin-6-ones. Eur. J. Med. Chem. 2019, 178, 752–766. [Google Scholar] [CrossRef]
- Martín-Encinas, E.; Selas, A.; Tesauro, C.; Rubiales, G.; Knudsen, B.R.; Palacios, F.; Alonso, C. Synthesis of novel hybrid quinolino[4,3-b][1,5]naphthyridines and quinolino[4,3-b][1,5]naphthyridin-6(5H)-one derivatives and biological evaluation as topoisomerase I inhibitors and antiproliferatives. Eur. J. Med. Chem. 2020, 195, 112292. [Google Scholar] [CrossRef]
- Martín-Encinas, E.; Rubiales, G.; Knudsen, B.R.; Palacios, F.; Alonso, C. Fused chromeno and quinolino[1,8]naphthyridines: Synthesis and biological evaluation as topoisomerase I inhibitors and antiproliferative agents. Bioorg. Med. Chem. 2021, 40, 116177. [Google Scholar] [CrossRef]
- Mazumder, K.; Hossain, M.E.; Aktar, A.; Mohiuddin, M.; Sarkar, K.K.; Biswas, B.; Aziz, M.A.; Abid, M.A.; Fukase, K. In Silico Analysis and Experimental Evaluation of Ester Prodrugs of Ketoprofen for Oral Delivery: With a View to Reduce Toxicity. Processes 2021, 9, 2221. [Google Scholar] [CrossRef]
- Milusheva, M.; Gledacheva, V.; Stefanova, I.; Pencheva, M.; Mihaylova, R.; Tumbarski, Y.; Nedialkov, P.; Cherneva, E.; Todorova, M.; Nikolova, S. In Silico, In Vitro, and Ex Vivo Biological Activity of Some Novel Mebeverine Precursors. Biomedicines 2023, 11, 605. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Martin, Y.C. A Bioavailability Score. J. Med. Chem. 2005, 48, 3164–3170. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Liew, K.F.; Hanapi, N.A.; Chan, K.L.; Yusof, S.R.; Lee, C.Y. Assessment of the Blood-Brain Barrier Permeability of Potential Neuroprotective Aurones in Parallel Artificial Membrane Permeability Assay and Porcine Brain Endothelial Cell Models. J. Pharm. Sci. 2017, 106, 502–551. [Google Scholar] [CrossRef] [PubMed]
- Kok-Yong, S.; Lawrence, L. Drug Distribution and Drug Elimination. In Basic Pharmacokinetic Concepts and Some Clinical Applications; InTech: London, UK, 2015; Available online: http://dx.doi.org/10.5772/59929 (accessed on 15 October 2023).
- Venkatakrishnan, K.; Von Moltke, L.L.; Greenblatt, D.J. Human drug metabolism and the cytochromes P450: Application and relevance of in vitro models. J. Clin. Pharmacol. 2001, 41, 1149–1179. [Google Scholar] [CrossRef] [PubMed]
- Grime, K.; Riley, R.J. The impact of in vitro binding on in vitro-in vivo extrapolations, projections of metabolic clearance and clinical drug-drug interactions. Curr. Drug Metab. 2006, 7, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Zoete, V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Ahmed Juvale, I.I.; Abdul Hamid, A.A.; Abd Halim, K.B.; Che Has, A.T. P-glycoprotein: New insights into structure, physiological function, regulation and alterations in disease. Heliyon 2022, 8, e09777. [Google Scholar] [CrossRef]
- Gottesman, M.M.; Pastan, I. The role of multidrug resistance efflux pumps in cancer: Revisiting a JNCI publication exploring expression of the MDR1 (P-glycoprotein) gene. J. Natl. Cancer Inst. 2015, 107, 222. [Google Scholar] [CrossRef]
- Filonov, G.S.; Piatkevich, K.D.; Ting, L.M.; Zhang, J.; Kim, K.; Verkhusha, V.V. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat. Biotechnol. 2012, 29, 757–761. [Google Scholar] [CrossRef]
- Calvo-Álvarez, E.; Stamatakis, K.; Punzón, C.; Álvarez-Velilla, R.; Tejería, A.; Escudero-Martínez, J.M.; Pérez-Pertejo, Y.; Fresno, M.; Balaña-Fouce, R.; Reguera, R.M. Infrared fluorescent imaging as a potent tool for in vitro, ex vivo and in vivo models of visceral leishmaniasis. PLoS Negl. Trop. Dis. 2015, 9, e0003666. [Google Scholar] [CrossRef]
- Kandepedu, N.; Gonzàlez Cabrera, D.; Eedubilli, S.; Taylor, D.; Brunschwig, C.; Gibhard, L.; Njoroge, M.; Lawrence, N.; Paquet, T.; Eyermann, C.J.; et al. Identification, Characterization, and optimization of 2,8-disubstituted-1,5-naphthyridines as novel Plasmodium falciparum phosphatidylinositol-4-kinase inhibitors with in vivo efficacy in a humanized mouse model of malaria. J. Med. Chem. 2018, 12, 5692–5703. [Google Scholar] [CrossRef] [PubMed]
- Araújo-Neto, J.B.; Silva, M.; Oliveira-Tintino, C.D.; Begnini, I.M.; Rebelo, R.A.; Silva, L.E.; Mireski, S.L.; Nasato, M.C.; Krautler, M.I.; Ribeiro-Filho, J.; et al. Enhancement of antibiotic activity by 1,8-naphthyridine derivatives against multi-resistant bacterial strains. Molecules 2021, 26, 7400. [Google Scholar] [CrossRef] [PubMed]
- Mithula, S.; Nandikolla, A.; Murugesan, S.; Kondapalli, V.G. 1,8-naphthyridine derivatives: An updated review on recent advancements of their myriad biological activities. Future Med. Chem. 2021, 13, 1591–1618. [Google Scholar] [CrossRef] [PubMed]
- Madaan, A.; Verma, R.; Kumar, V.; Singh, A.T.; Jain, S.K.; Jaggi, M. 1,8-Naphthyridine Derivatives: A Review of Multiple Biological Activities. Arch. Pharm. 2015, 348, 837–860. [Google Scholar] [CrossRef] [PubMed]
- Sriram, D.; Senthilkumar, P.; Dinakaran, M.; Yogeeswari, P.; China, A.; Nagaraja, V. Antimycobacterial activities of novel 1-(cyclopropyl/tert-butyl/4-fluorophenyl)-1,4-dihydro- 6-nitro-4-oxo-7-(substituted secondary amino)-1,8-naphthyridine-3-carboxylic acid. J. Med. Chem. 2007, 50, 6232–6239. [Google Scholar] [CrossRef] [PubMed]
- Tsuzuki, Y.; Tomita, K.; Sato, Y.; Kashimoto, S.; Chiba, K. Synthesis and structure-activity relationships of 3-substituted 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridines as novel antitumor agents. Bioorg. Med. Chem. Lett. 2004, 14, 3189–3193. [Google Scholar] [CrossRef]
- Eweas, A.F.; Khalifa, N.M.; Ismail, N.S.; Al-Omar, M.A.; Soliman, A.M.M. Synthesis, molecular docking of novel 1,8-naphthyridine derivatives and their cytotoxic activity against HepG2 cell lines. Med. Chem. Res. 2014, 23, 76–86. [Google Scholar] [CrossRef]
- Abuzahra, M.M.; Ahmed, N.S.; Sarhan, M.O.; Mahgoub, S.; Abdelhameed, A.; Zaghary, W.A. Novel substituted 1,8-naphthyridines: Design, synthesis, radiolabeling, and evaluation of apoptosis and topoisomerase II inhibition. Arch. Pharm. 2023, 356, e2300035. [Google Scholar] [CrossRef]
- Nandikolla, A.; Srinivasarao, S.; Karan Kumar, B.; Murugesan, S.; Aggarwal, H.; Balaña-Fouce, R.; Melcón-Fernández, E.; Pérez-Pertejo, Y.; Chandra Sekhar, K.V.G. Novel phenanthridine amide analogs as potential anti-leishmanial agents: In vitro and in silico insights. Bioorg. Chem. 2021, 117, 105414. [Google Scholar] [CrossRef]
- Du, Y.; Li, X.; Niu, Q.; Mo, X.; Qui, M.; Ma, T.; Kuo, C.J.; Fu, H. Development of a miniaturized 3D organoid culture platform for ultra-high-throughput screening. J. Mol. Cell. Biol. 2020, 12, 630–643. [Google Scholar] [CrossRef]
- SwissADME Webpage. Available online: http://www.swissadme.ch/ (accessed on 25 October 2023).
- pkCSM—Pharmacokinetics Webpage. Available online: http://biosig.unimelb.edu.au/pkcsm/ (accessed on 25 October 2023).
Compound | LogP | Mol. Wt. | H-Donor | H-Acceptor | TPSA | Lipinski #Violations |
---|---|---|---|---|---|---|
4a | 2.71 | 314.38 | 1 | 2 | 34.15 | 0 |
4c | 2.76 | 344.41 | 1 | 3 | 43.38 | 0 |
6a | 2.51 | 328.36 | 1 | 3 | 51.22 | 0 |
6b | 2.69 | 407.26 | 1 | 3 | 51.22 | 0 |
6c | 3.02 | 358.39 | 1 | 4 | 60.45 | 0 |
8a | 3.11 | 467.58 | 1 | 3 | 70.68 | 0 |
8b | 3.73 | 546.48 | 1 | 3 | 70.68 | 2 |
8c | 3.81 | 497.61 | 1 | 4 | 79.91 | 0 |
8d | 3.81 | 546.48 | 1 | 3 | 70.68 | 2 |
5a | 3.26 | 310.35 | 0 | 3 | 35.01 | 0 |
5b | 3.60 | 389.24 | 0 | 3 | 35.01 | 0 |
5c | 3.60 | 340.37 | 0 | 4 | 44.24 | 0 |
7a | 2.80 | 324.33 | 0 | 4 | 55.99 | 0 |
7b | 3.12 | 403.23 | 0 | 4 | 55.99 | 0 |
7c | 3.19 | 354.36 | 0 | 5 | 65.22 | 0 |
9a | 3.70 | 463.55 | 0 | 4 | 71.54 | 0 |
9b | 3.87 | 542.45 | 0 | 4 | 71.54 | 2 |
9c | 3.97 | 493.58 | 0 | 5 | 80.77 | 0 |
9d | 3.52 | 542.45 | 0 | 4 | 71.54 | 2 |
10a | 3.05 | 314.38 | 1 | 2 | 34.15 | 0 |
10b | 2.76 | 332.37 | 1 | 3 | 34.15 | 0 |
10c | 2.92 | 328.41 | 1 | 2 | 34.15 | 0 |
12a | 2.56 | 328.36 | 1 | 3 | 51.22 | 0 |
12b | 2.94 | 407.26 | 1 | 3 | 51.22 | 0 |
14a | 3.38 | 467.58 | 1 | 3 | 70.68 | 0 |
11a | 2.99 | 310.35 | 0 | 3 | 35.01 | 0 |
11b | 3.08 | 328.34 | 0 | 4 | 35.01 | 0 |
11c | 3.27 | 340.37 | 0 | 4 | 44.24 | 0 |
13a | 2.61 | 324.33 | 0 | 4 | 55.99 | 0 |
13b | 3.00 | 403.23 | 0 | 4 | 55.99 | 1 |
13c | 2.69 | 342.32 | 0 | 5 | 55.99 | 0 |
15a | 3.48 | 463.55 | 0 | 4 | 71.54 | 0 |
15b | 3.70 | 542.45 | 0 | 4 | 71.54 | 2 |
Compound | Log S (Log mol/L) | Caco-2 Perm. (Log Paap in 10−6 cm/s) | Int. Abs. (% abs) | VDss (L/kg) | Fract. Unb. (Fu.) | BBB Permeability (log BB) | CYP1A2 Inhibitor | CYP2C19 Inhibitor | CYP2C9 Inhibitor | CYP2D6 Inhibitor | CYP3A4 Inhibitor | Total Clearence Numeric (Log mL/min/kg) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4a | −4.73 | 1.779 | 96.038 | 0.312 | 0.027 | Yes | No | Yes | No | Yes | Yes | 0.180 |
4c | −5.00 | 1.195 | 94.748 | −0.121 | 0.109 | Yes | No | Yes | No | Yes | Yes | 0.493 |
6a | −4.47 | 1.268 | 98,408 | 0.190 | 0.003 | Yes | No | Yes | No | Yes | No | 0.003 |
6b | −5.59 | 1.210 | 93.336 | −0.277 | 0.122 | Yes | No | Yes | No | No | No | −0.024 |
6c | −4.75 | 1.182 | 95.066 | −0.303 | 0.112 | Yes | No | Yes | No | Yes | Yes | 0.379 |
8a | −6.21 | 1.153 | 98.895 | −0.719 | 0.081 | No | No | Yes | No | Yes | Yes | 0.286 |
8b | −7.32 | 1.136 | 97.026 | −0.669 | 0.073 | No | No | Yes | No | No | No | −0.154 |
8c | −6.49 | 1.063 | 95.572 | −0.961 | 0.238 | No | No | Yes | No | Yes | Yes | 0.392 |
8d | −7.12 | 1.140 | 97.414 | −0.810 | 0.087 | No | No | Yes | No | Yes | No | −0.103 |
5a | −4.92 | 1.660 | 100 | 0.525 | 0.26 | Yes | Yes | Yes | No | Yes | Yes | 0.834 |
5b | −6.03 | 1.143 | 96.994 | 0.099 | 0.354 | Yes | Yes | Yes | No | No | Yes | 0.135 |
5c | −5.18 | 1.122 | 98.725 | 0.025 | 0.343 | Yes | Yes | Yes | Yes | Yes | Yes | 0.881 |
7a | −5.00 | 1.410 | 100 | 0.403 | 0.368 | Yes | Yes | Yes | No | No | No | 0.921 |
7b | −6.11 | 1.137 | 98.66 | 0.193 | 0.363 | Yes | Yes | Yes | No | No | No | 0.363 |
7c | −5.27 | 1.098 | 100 | 0.108 | 0.352 | Yes | Yes | Yes | Yes | No | Yes | 1.091 |
9a | −6.36 | 1.119 | 100 | −0.312 | 0.334 | No | Yes | Yes | No | No | Yes | 0.819 |
9b | −7.48 | 1.114 | 100 | −0.293 | 0.333 | No | Yes | Yes | No | No | No | 0.137 |
9c | −6.64 | 1.167 | 99.946 | −0.574 | 0.393 | No | No | Yes | Yes | No | Yes | 0.949 |
9d | −7.27 | 1.106 | 100 | −0.386 | 0.338 | No | Yes | Yes | No | No | No | 0.123 |
10a | −4.92 | 1.765 | 96.706 | 0.142 | 0.035 | Yes | No | Yes | No | Yes | No | 0.577 |
10b | −5.07 | 1.803 | 94.633 | −0.151 | 0.031 | Yes | No | Yes | No | Yes | No | 0.268 |
10c | −5.21 | 1.054 | 95.189 | 0.014 | 0.027 | Yes | No | Yes | No | Yes | No | 0.601 |
12a | −4.66 | 1.247 | 97.879 | −0.184 | 0 | Yes | No | Yes | No | Yes | No | 0.467 |
12b | −5.56 | 1.044 | 94.333 | −0.230 | 0.007 | Yes | No | Yes | No | No | No | −0.092 |
14a | −6.40 | 0.431 | 98.124 | −0.935 | 0.086 | No | No | Yes | No | Yes | Yes | 0.384 |
11a | −5.07 | 1.550 | 100 | 0.297 | 0.285 | Yes | Yes | Yes | No | Yes | Yes | 0.928 |
11b | −5.23 | 1.659 | 98.699 | −0.046 | 0.306 | Yes | Yes | Yes | No | No | Yes | 0.777 |
11c | −5.13 | 1.121 | 100 | 0.131 | 0.294 | Yes | Yes | Yes | Yes | Yes | Yes | 0.905 |
13a | −5.16 | 1.393 | 100 | 0.273 | 0.344 | Yes | Yes | Yes | No | No | No | 1.068 |
13b | −6.06 | 1.101 | 99.395 | 0.046 | 0.349 | Yes | Yes | Yes | No | No | No | 0.046 |
13c | −5.31 | 1.430 | 100 | 0.028 | 0.346 | Yes | Yes | Yes | No | No | No | 1.006 |
15a | −6.51 | 1.000 | 100 | −0.464 | 0.335 | No | Yes | Yes | No | No | Yes | 0.851 |
15b | −7.43 | 0.974 | 100 | −0.596 | 0.341 | No | No | Yes | No | No | No | −0.026 |
Compound | R1 | Axenic Amastigotes a | Intracellular Amastigotes EC50 (µM) | Mouse Splenic Macrophages CC50 (µM) | SI | Intestinal Organoids | |
---|---|---|---|---|---|---|---|
50 µM (%Viability) | 25 µM (%Viability) | ||||||
4a | H | >25 | n.d.* | n.d | - | ||
4c | OMe | >25 | n.d. | n.d. | - | ||
5a | H | >25 | n.d. | n.d. | - | ||
5b | Br | >25 | n.d. | n.d. | - | ||
5c | OMe | >25 | n.d. | n.d. | - | ||
6a | H | >25 | n.d. | n.d. | - | ||
6b | Br | <25 | 12.86 ± 0.82 | 55.66 ± 6.42 | 4.3 | 60 ± 7 | 72 ± 5 |
6c | OMe | >25 | n.d. | n.d. | - | ||
7a | H | >25 | n.d. | n.d. | - | ||
7b | Br | >25 | n.d. | n.d. | - | ||
7c | OMe | <25 | 36.99 ± 2.87 | 97.68 ± 1.77 | 2.6 | 85 ± 13 | 99 ± 4 |
Compound | R1 | Axenic Amastigotes a | Intracelullar Amastigotes EC50 (µM) | Mouse Splenic Macrophages CC50 (µM) * | SI | Intestinal Organoids | |
---|---|---|---|---|---|---|---|
50 µM (%Viability) | 25 µM (%Viability) | ||||||
8a | H | <25 | 5.30 ± 0.71 | 45.03 ± 3.91 | 8.5 | 89 ± 10 | 93 ± 7 |
8b | 4-Br | <25 | 5.53 ± 0.26 | >100 | >18.1 | 98 ± 13 | >100 |
8c | 6-OMe | <25 | 4.93 ± 0.35 | >100 | >20.28 | >100 | >100 |
8d | 6-Br | <25 | 34.36 ± 9.70 | >50 | 1.5 | 3 ± 1 | 4 ± 1 |
9a | H | >25 | n.d. | n.d. | - | ||
9b | 4-Br | <25 | 3.63 ± 0.15 | 16.89 ± 0.86 | 4.6 | >100 | >100 |
9c | 6-OMe | >25 | >20 | n.d. | - | ||
9d | 6-Br | >25 | >20 | n.d. | - |
Compound | R1 | R2 | R3 | Axenic Amastigotes a | Intracelullar Amastigotes EC50 (µM) | Mouse Splenic Macrophages CC50 (µM) * | SI | Intestinal Organoids | |
---|---|---|---|---|---|---|---|---|---|
50 µM (%Viability) | 25 µM (%Viability) | ||||||||
10a | - | H | H | >25 | >20 | n.d. | - | ||
10b | - | F | H | <25 | 7.57 ± 0.44 | 50.72 ± 0.99 | 6.7 | 90 ± 22 | 99 ± 8 |
10c | - | Me | H | >25 | >20 | n.d. | - | ||
11a | - | H | H | <25 | 7.70 ± 0.29 | >100 | >13 | 96 ± 1 | 92 ± 1 |
11b | - | F | H | >25 | >20 | n.d. | - | ||
11c | - | H | OMe | >25 | >20 | n.d. | - | ||
12a | H | H | - | >25 | >20 | n.d. | - | ||
12b | Br | H | - | >25 | >20 | n.d. | - | ||
13a | H | H | - | <25 | 10.58 ± 1.21 | 34.65 ± 1.79 | 3.3 | 53 ± 5 | 87 ± 15 |
13b | Br | H | - | <25 | 7.53 ± 0.97 | >50 | >6.6 | 61 ± 19 | 90 ± 5 |
13c | H | F | - | >25 | >20 | n.d. | - |
Compound | R1 | Axenic Amastigotes a | Intracelullar Amastigotes EC50 (µM) | Mouse Splenic Macrophages CC50 (µM) | SI | Intestinal Organoids | |
---|---|---|---|---|---|---|---|
50 µM (%Viability) | 25 µM (%Viability) | ||||||
14a | H | <25 | 9.34 ± 0.77 | 27.19 ± 1.55 | 2.9 | 56 ± 14 | 90 ± 9 |
15a | H | <25 | 67.43 ± 9.78 | 8.78 ± 2.21 | 0.1 | ||
15b | Br | <25 | 6.16 ± 0.54 | 24.64 ± 3.59 | 4.0 | 13 ± 3 | 58 ± 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melcón-Fernandez, E.; Martín-Encinas, E.; Palacios, F.; Galli, G.; Reguera, R.M.; Martínez-Valladares, M.; Balaña-Fouce, R.; Alonso, C.; Pérez-Pertejo, Y. Antileishmanial Effect of 1,5- and 1,8-Substituted Fused Naphthyridines. Molecules 2024, 29, 74. https://doi.org/10.3390/molecules29010074
Melcón-Fernandez E, Martín-Encinas E, Palacios F, Galli G, Reguera RM, Martínez-Valladares M, Balaña-Fouce R, Alonso C, Pérez-Pertejo Y. Antileishmanial Effect of 1,5- and 1,8-Substituted Fused Naphthyridines. Molecules. 2024; 29(1):74. https://doi.org/10.3390/molecules29010074
Chicago/Turabian StyleMelcón-Fernandez, Estela, Endika Martín-Encinas, Francisco Palacios, Gulio Galli, Rosa M. Reguera, María Martínez-Valladares, Rafael Balaña-Fouce, Concepción Alonso, and Yolanda Pérez-Pertejo. 2024. "Antileishmanial Effect of 1,5- and 1,8-Substituted Fused Naphthyridines" Molecules 29, no. 1: 74. https://doi.org/10.3390/molecules29010074
APA StyleMelcón-Fernandez, E., Martín-Encinas, E., Palacios, F., Galli, G., Reguera, R. M., Martínez-Valladares, M., Balaña-Fouce, R., Alonso, C., & Pérez-Pertejo, Y. (2024). Antileishmanial Effect of 1,5- and 1,8-Substituted Fused Naphthyridines. Molecules, 29(1), 74. https://doi.org/10.3390/molecules29010074