pH-Dependent HEWL-AuNPs Interactions: Optical Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Fabrication of AuNPs
4.2. Dynamic Light Scattering
4.3. Fluorescence Spectroscopy
4.4. Absorbance Spectroscopy
4.5. ζ-Potential Measurement
4.6. Refractometry
4.7. Enzymatic Activity of HEWL
4.8. Potentiometric Studies
4.9. Circular Dichroism Spectroscopy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kononenko, V.V.; Ashikkalieva, K.K.; Arutyunyan, N.R.; Romshin, A.M.; Kononenko, T.V.; Konov, V.I. Femtosecond laser-produced plasma driven nanoparticle formation in gold aqueous solution. J. Photochem. Photobiol. A Chem. 2022, 426, 113709. [Google Scholar] [CrossRef]
- Nastulyavichus, A.A.; Kudryashov, S.I.; Emelyanenko, A.M.; Boinovich, L.B. Laser Generation of Colloidal Nanoparticles in Liquids: Key Processes of Laser Dispersion and Main Characteristics of Nanoparticles. Colloid J. 2023, 85, 233–250. [Google Scholar] [CrossRef]
- Ko, W.-C.; Wang, S.-J.; Hsiao, C.-Y.; Hung, C.-T.; Hsu, Y.-J.; Chang, D.-C.; Hung, C.-F. Pharmacological Role of Functionalized Gold Nanoparticles in Disease Applications. Molecules 2022, 27, 1551. [Google Scholar] [CrossRef] [PubMed]
- Gawas, G.; Ayyanar, M.; Gurav, N.; Hase, D.; Murade, V.; Nadaf, S.; Khan, M.S.; Chikhale, R.; Kalaskar, M.; Gurav, S. Process Optimization for the Bioinspired Synthesis of Gold Nanoparticles Using Cordyceps militaris, Its Characterization, and Assessment of Enhanced Therapeutic Efficacy. Pharmaceuticals 2023, 16, 1311. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Ma, G.; Shen, Q.; Tang, Z. Engineering Gold Nanostructures for Cancer Treatment: Spherical Nanoparticles, Nanorods, and Atomically Precise Nanoclusters. Nanomaterials 2022, 12, 1738. [Google Scholar] [CrossRef] [PubMed]
- Bucharskaya, A.B.; Khlebtsov, N.G.; Khlebtsov, B.N.; Maslyakova, G.N.; Navolokin, N.A.; Genin, V.D.; Genina, E.A.; Tuchin, V.V. Photothermal and Photodynamic Therapy of Tumors with Plasmonic Nanoparticles: Challenges and Prospects. Materials 2022, 15, 1606. [Google Scholar] [CrossRef]
- Zhou, W.; Gao, X.; Liu, D.; Chen, X. Gold Nanoparticles for In Vitro Diagnostics. Chem. Rev. 2015, 115, 10575–10636. [Google Scholar] [CrossRef]
- Shanwar, S.; Liang, L.; Nechaev, A.V.; Bausheva, D.K.; Balalaeva, I.V.; Vodeneev, V.A.; Roy, I.; Zvyagin, A.V.; Guryev, E.L. Controlled Formation of a Protein Corona Composed of Denatured BSA on Upconversion Nanoparticles Improves Their Colloidal Stability. Materials 2021, 14, 1657. [Google Scholar] [CrossRef]
- Sotnikov, D.V.; Berlina, A.N.; Ivanov, V.S.; Zherdev, A.V.; Dzantiev, B.B. Adsorption of proteins on gold nanoparticles: One or more layers? Colloids Surf. B Biointerfaces 2019, 173, 557–563. [Google Scholar] [CrossRef]
- Piella, J.; Bastus, N.G.; Puntes, V. Size-Dependent Protein–Nanoparticle Interactions in Citrate-Stabilized Gold Nanoparticles: The Emergence of the Protein Corona. Bioconjugate Chem. 2016, 28, 88–97. [Google Scholar] [CrossRef]
- Park, S.J. Protein–Nanoparticle Interaction: Corona Formation and Conformational Changes in Proteins on Nanoparticles. Int. J. Nanomed. 2020, 15, 5783–5802. [Google Scholar] [CrossRef]
- Giraudon-Colas, G.; Devineau, S.; Marichal, L.; Barruet, E.; Zitolo, A.; Renault, J.-P.; Pin, S. How Nanoparticles Modify Adsorbed Proteins: Impact of Silica Nanoparticles on the Hemoglobin Active Site. Int. J. Mol. Sci. 2023, 24, 3659. [Google Scholar] [CrossRef]
- Panico, S.; Capolla, S.; Bozzer, S.; Toffoli, G.; Dal Bo, M.; Macor, P. Biological Features of Nanoparticles: Protein Corona Formation and Interaction with the Immune System. Pharmaceutics 2022, 14, 2605. [Google Scholar] [CrossRef]
- Shemetov, A.A.; Nabiev, I.; Sukhanova, A. Molecular Interaction of Proteins and Peptides with Nanoparticles. ACS Nano 2012, 6, 4585–4602. [Google Scholar] [CrossRef]
- Kyomuhimbo, H.D.; Feleni, U.; Haneklaus, N.H.; Brink, H. Recent Advances in Applications of Oxidases and Peroxidases Polymer-Based Enzyme Biocatalysts in Sensing and Wastewater Treatment: A Review. Polymers 2023, 15, 3492. [Google Scholar] [CrossRef]
- Zheng, Z.-Y.; Feng, C.-H.; Xie, G.; Liu, W.-L.; Zhu, X.-L. Proteolysis Degree of Protein Corona Affect Ultrasound-Induced Sublethal Effects on Saccharomyces cerevisiae: Transcriptomics Analysis and Adaptive Regulation of Membrane Homeostasis. Foods 2022, 11, 3883. [Google Scholar] [CrossRef]
- Lai, W.; Li, D.; Wang, Q.; Ma, Y.; Tian, J.; Fang, Q. Bacterial Magnetosomes Release Iron Ions and Induce Regulation of Iron Homeostasis in Endothelial Cells. Nanomaterials 2022, 12, 3995. [Google Scholar] [CrossRef]
- Thai, L.-P.-A.; Mousseau, F.; Oikonomou, E.; Radiom, M.; Berret, J.-F. Effect of Nanoparticles on the Bulk Shear Viscosity of a Lung Surfactant Fluid. ACS Nano 2019, 14, 466. [Google Scholar] [CrossRef]
- Rananaware, P.; Pandit, P.; Naik, S.; Mishra, M.; Keri, R.S.; Brahmkhatri, V.P. Anti-amyloidogenic property of gold nanoparticle decorated quercetin polymer nanorods in pH and temperature induced aggregation of lysozyme. RSC Adv. 2022, 12, 23661–23674. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Gao, T.; Lou, C.; Wang, H.; Liu, Y.; Cao, A. Folding of Flexible Protein Fragments and Design of Nanoparticle-Based Artificial Antibody Targeting Lysozyme. J. Phys. Chem. B 2022, 126, 5045–5054. [Google Scholar] [CrossRef]
- Zhilnikova, M.I.; Barmina, E.V.; Shafeev, G.A.; Pridvorova, S.M.; Uvarov, O.V. Laser-assisted generation of elongated Au nanoparticles in aqueous solutions of divalent ions. Gold Bull. 2020, 53, 129–134. [Google Scholar] [CrossRef]
- Ashikkalieva, K.K.; Kononenko, V.V.; Vasil’ev, A.L. Synthesis of Gold Nanoparticles from Aqueous Solutions of Hydrochloroauric Acid under Multipulse Femtosecond Irradiation. Phys. Wave Phenom. 2022, 30, 17–24. [Google Scholar] [CrossRef]
- Simakin, A.V.; Astashev, M.E.; Baimler, I.V.; Uvarov, O.V.; Voronov, V.V.; Vedunova, M.V.; Sevost’yanov, M.A.; Belosludtsev, K.N.; Gudkov, S.V. The Effect of Gold Nanoparticle Concentration and Laser Fluence on the Laser-Induced Water Decomposition. J. Phys. Chem. B 2019, 123, 1869–1880. [Google Scholar] [CrossRef]
- Vilcacundo, R.; Méndez, P.; Reyes, W.; Romero, H.; Pinto, A.; Carrillo, W. Antibacterial Activity of Hen Egg White Lysozyme Denatured by Thermal and Chemical Treatments. Sci. Pharm. 2018, 86, 48. [Google Scholar] [CrossRef]
- Ermakova, E.A.; Makshakova, O.N.; Zuev, Y.F.; Sedov, I.A. Fibril fragments from the amyloid core of lysozyme: An accelerated molecular dynamics study. J. Mol. Graph. Model. 2021, 106, 107917. [Google Scholar] [CrossRef]
- Link, S.; El-Sayed, M.A. Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. J. Phys. Chem. B 1999, 103, 4212–4217. [Google Scholar] [CrossRef]
- Skordaris, G.; Dzhardimalieva, G.; Kim, G.-H.; Shi, W.; Justin, C.; Meenakshi, V.; Liang, T. Synthesis and Characterization of Gold Nanoparticles with Plasmon Absorbance Wavelength Tunable from Visible to Near Infrared Region. Int. Sch. Res. Not. 2012, 2012, 659043. [Google Scholar] [CrossRef]
- Shang, L.; Wang, Y.; Jiang, J.; Dong, S. pH-Dependent Protein Conformational Changes in Albumin: Gold Nanoparticle Bioconjugates: A Spectroscopic Study. Langmuir 2007, 23, 2714–2721. [Google Scholar] [CrossRef]
- Nicolai, E.; Minicozzi, V.; Di Paola, L.; Medda, R.; Pintus, F.; Mei, G.; Di Venere, A. Symmetric versus Asymmetric Features of Homologous Homodimeric Amine Oxidases: When Water and Cavities Make the Difference. Symmetry 2022, 14, 522. [Google Scholar] [CrossRef]
- Kumari, M.; Singh, U.K.; Beg, I.; Alanazi, A.M.; Khan, A.A.; Patel, R. Effect of cations and anions of ionic liquids on the stability and activity of lysozyme: Concentrations and temperature effect. J. Mol. Liq. 2018, 272, 253–263. [Google Scholar] [CrossRef]
- Wawer, J.; Szociński, M.; Olszewski, M.; Piątek, R.; Naczk, M.; Krakowiak, J. Influence of the ionic strength on the amyloid fibrillogenesis of hen egg white lysozyme. Int. J. Biol. Macromol. 2019, 121, 63–70. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, L.; Feng, J.; Zhang, H.; Zhang, H.; Sun, J.Z.; Tang, B.Z. In situ monitoring of protein aggregation via clusteroluminescence. Mater. Chem. Front. 2023, 7, 713–719. [Google Scholar] [CrossRef]
- Buckley, A.; Warren, J.; Hussain, R.; Smith, R. Synchrotron radiation circular dichroism spectroscopy reveals that gold and silver nanoparticles modify the secondary structure of a lung surfactant protein B analogue. Nanoscale 2023, 15, 4591–4603. [Google Scholar] [CrossRef]
- Ke, P.C.; Lin, S.; Parak, W.J.; Davis, T.P.; Caruso, F. A Decade of the Protein Corona. ACS Nano 2017, 11, 11773–11776. [Google Scholar] [CrossRef]
- Nasim, K.; Elham, K.; Reza, K.M.; Sara, S.; Mojtaba, Y. An Overview of Antimicrobial Activity of Lysozyme and Its Functionality in Cheese. Front. Nutr. 2022, 9, 833618. [Google Scholar] [CrossRef]
- Simakin, A.V.; Baimler, I.V.; Smirnova, V.V.; Uvarov, O.V.; Kozlov, V.A.; Gudkov, S.V. Evolution of the Size Distribution of Gold Nanoparticles under Laser Irradiation. Phys. Wave Phenom. 2021, 29, 102–107. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Astashev, M.E.; Baimler, I.V.; Uvarov, O.V.; Voronov, V.V.; Simakin, A.V. Laser-Induced Optical Breakdown of an Aqueous Colloidal Solution Containing Terbium Nanoparticles: The Effect of Oxidation of Nanoparticles. J. Phys. Chem. B 2022, 126, 5678–5688. [Google Scholar] [CrossRef]
- Bunkin, N.F.; Bolotskova, P.N.; Kozlov, V.A.; Okuneva, M.A.; Penkov, N.V. Dynamics of Polymer Membrane Swelling in an Aqueous Suspension of Amino Acids. The Role of Isotopic Composition. Phys. Wave Phenom. 2022, 30, 196–208. [Google Scholar] [CrossRef]
- Serov, D.A.; Nagaev, E.I.; Kuleshova, A.I.; Reut, V.E.; Astashev, M.E. The Effect of Surgical Laser Radiation on the Structure of Bovine Serum Albumin in vitro. Biophysics 2023, 68, 376–382. [Google Scholar] [CrossRef]
- Nagaev, E.I.; Baimler, I.V.; Baryshev, A.S.; Astashev, M.E.; Gudkov, S.V. Effect of Laser-Induced Optical Breakdown on the Structure of BSA Molecules in Aqueous Solutions: An Optical Study. Molecules 2022, 27, 6752. [Google Scholar] [CrossRef]
- Penkov, N.V.; Penkova, N.A.; Lobyshev, V.I. Special Role of Mg2+ in the Formation of the Hydration Shell of Adenosine Triphosphate. Phys. Wave Phenom. 2022, 30, 344–350. [Google Scholar] [CrossRef]
- Sarimov, R.M.; Binhi, V.N.; Matveeva, T.A.; Penkov, N.V.; Gudkov, S.V. Unfolding and Aggregation of Lysozyme under the Combined Action of Dithiothreitol and Guanidine Hydrochloride: Optical Studies. Int. J. Mol. Sci. 2021, 22, 2710. [Google Scholar] [CrossRef] [PubMed]
- Sarimov, R.M.; Simakin, A.V.; Matveeva, T.A.; Gudkov, S.V.; Lyakhov, G.A.; Pustovoy, V.I.; Troitskii, A.V.; Shcherbakov, I.A. Influence of Magnetic Fields with Induction of 7 T on Physical and Chemical Properties of Aqueous NaCl Solutions. Appl. Sci. 2021, 11, 11466. [Google Scholar] [CrossRef]
Sample | pH | Alpha Helix, % | Beta, % | Turn, % | Disorder, % |
---|---|---|---|---|---|
HEWL | 2.0 | 35.4 | 17.8 | 21.1 | 25.7 |
3.9 | 32.5 | 20.7 | 21.0 | 25.6 | |
7.5 | 32.2 | 19.6 | 21.5 | 26.6 | |
10.8 | 32.1 | 18.4 | 21.6 | 27.9 | |
HEWL + AuNPs | 2.0 | 35.7 | 17.8 | 21.2 | 25.4 |
3.9 | 35.2 | 18.7 | 23.1 | 23.0 | |
7.5 | 33.5 | 18.4 | 21.1 | 26.9 |
Feature | PH | 2.0 | 3.9 | 4.8 | 5.5 | 6.8 | 7.5 | 8.9 | 9.5 | 10.1 | 10.8 | 11.6 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Colloid | |||||||||||||
Size, nm | HEWL | 1.2 40 | 1.2 45 | 1.4 48 | 2.1 60 | 2.5 108 | 146 | 568 | 770 | 790 | 900 | 950 | |
AuNPs | 1000 | 750 | 460 | 90 | 18 146 | 18 146 | 18 125 | 18 150 | 20 160 | 20 160 | 20 160 | ||
HEWL+ AuNPs | 20 310 | 24 | 51 | 135 | 415 | 750 | 800 | 860 | 910 | 970 | 990 | ||
λmax of absorption, nm | HEWL | 280 | 281 | 281 | 280 | 280 | 280 | 281 | 281 | 281 | 280 | 281 | |
HEWL+ AuNPs | 279 522 | 280 524 | 279 531 | 280 537 | 281 543 | 280 547 | 280 548 | 280 548 | 280 548 | 281 550 | 281 543 | ||
AuNPs | 591 | 535 | 523 | 520 | 518 | 519 | 523 | 523 | 523 | 524 | 525 | ||
ODmax | HEWL | 2.48 | 2.55 | 2.56 | 2.6 | 2.61 | 2.62 | 2.63 | 2.64 | 2.65 | 2.64 | 2.43 | |
HEWL+ AuNPs | 2.45 0.38 | 2.55 0.38 | 2.57 0.4 | 2.59 0.4 | 2.6 0.39 | 2.54 0.31 | 2.55 0.30 | 2.55 0.29 | 2.53 0.26 | 2.49 0.26 | 2.3 0.24 | ||
AuNPs | 0.18 | 0.32 | 0.42 | 0.45 | 0.48 | 0.47 | 0.43 | 0.40 | 0.37 | 0.34 | 0.33 | ||
λmax of fluorescence, nm | HEWL | 334.2 | 333.6 | 334.2 | 334.4 | 335.2 | 335.2 | 335.6 | 336.6 | 338.2 | 340.0 | 341.4 | |
HEWL+ AuNPs | 334.0 | 334.2 | 334.4 | 334.6 | 334.8 | 334.8 | 335.4 | 337.6 | 337.6 | 339.4 | 341.0 | ||
Fluorescence intensity, rel.u. | HEWL | 0.78 | 0.82 | 0.83 | 0.87 | 0.97 | 1.0 | 0.94 | 0.6 | 0.45 | 0.37 | 0.29 | |
HEWL+ AuNPs | 0.53 | 0.70 | 0.72 | 0.75 | 0.88 | 1.0 | 0.82 | 0.67 | 0.52 | 0.40 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molkova, E.A.; Pustovoy, V.I.; Stepanova, E.V.; Gorudko, I.V.; Astashev, M.E.; Simakin, A.V.; Sarimov, R.M.; Gudkov, S.V. pH-Dependent HEWL-AuNPs Interactions: Optical Study. Molecules 2024, 29, 82. https://doi.org/10.3390/molecules29010082
Molkova EA, Pustovoy VI, Stepanova EV, Gorudko IV, Astashev ME, Simakin AV, Sarimov RM, Gudkov SV. pH-Dependent HEWL-AuNPs Interactions: Optical Study. Molecules. 2024; 29(1):82. https://doi.org/10.3390/molecules29010082
Chicago/Turabian StyleMolkova, Elena A., Vladimir I. Pustovoy, Evgenia V. Stepanova, Irina V. Gorudko, Maxim E. Astashev, Alexander V. Simakin, Ruslan M. Sarimov, and Sergey V. Gudkov. 2024. "pH-Dependent HEWL-AuNPs Interactions: Optical Study" Molecules 29, no. 1: 82. https://doi.org/10.3390/molecules29010082
APA StyleMolkova, E. A., Pustovoy, V. I., Stepanova, E. V., Gorudko, I. V., Astashev, M. E., Simakin, A. V., Sarimov, R. M., & Gudkov, S. V. (2024). pH-Dependent HEWL-AuNPs Interactions: Optical Study. Molecules, 29(1), 82. https://doi.org/10.3390/molecules29010082