Simultaneous Determination of Steroids and NSAIDs, Using DLLME-SFO Extraction and HPLC Analysis, in Milk and Eggs Collected from Rural Roma Communities in Transylvania, Romania
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of DLLME-SFO Conditions
+ β34X3X4 + β123X1X2X3+ β124X1X2X4 + β134X1X3X4 + β234X2X3X4 + β1234X1X2X3X4
− 0.98X2X3 − 0.64X2X4 − 3.38X3X4 + 0.39X1X2X3 + 0.35X1X2X4 − 1.53X1X3X4 −
1.28X2X3X4 + 2.11X1X2X3X4
2.2. Validation of DLLME-SFO-LC-PDA Method
2.3. Matrix Effect
2.4. Analysis of Milk and Egg Samples Collected in Rural Roma Communities
2.5. Comparison with Other Reports
3. Material and Methods
3.1. Chemicals and Reagents
3.2. Instrumentation
3.3. Extraction by DLLME-SFO Protocol
3.4. Enrichment Factor and Extraction Recovery
3.5. Statistical Approach Used for DLLME-SFO Optimization
3.6. Sample Collection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Badali, A.; Javadi, A.; Mogaddam, M.R.A.; Mashak, Z. Dispersive solid phase extraction-dispersive liquid–liquid microextraction of mycotoxins from milk samples and investigating their decontamination using microwave irradiations. Microchem. J. 2023, 190, 108645. [Google Scholar] [CrossRef]
- Liu, Y.; Qing, M.; Zang, J.; Chi, Y.; Chi, Y. Effects of CaCl2 on salting kinetics, water migration, aggregation behavior and protein structure in rapidly salted separated egg yolks. Food Res. Int. 2023, 163, 112266. [Google Scholar] [CrossRef] [PubMed]
- Applegate, E. Introduction: Nutritional and Functional Roles of Eggs in the Diet. J. Am. Coll. Nutr. 2000, 19, 495S–498S. [Google Scholar] [CrossRef] [PubMed]
- Dasenaki, M.E.; Thomaidis, N.S. Multi-residue determination of 115 veterinary drugs and pharmaceutical residues in milk powder, butter, fish tissue and eggs using liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 2015, 880, 103–121. [Google Scholar] [CrossRef]
- Teglia, C.M.; Gonzalo, L.; Culzoni, M.J.; Goicoeche, H.C. Determination of six veterinary pharmaceuticals in egg by liquid chromatography: Chemometric optimization of a novel air assisted dispersive liquid-liquid microextraction by solid floating organic drop. Food Chem. 2019, 273, 194–202. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, J.J.; Cong, J.M.; Cai, Z.X.; Zhang, J.S.; Wang, J.L.; Ren, Y.P. Optimization for quick, easy, cheap, effective, rugged and safe extraction of mycotoxins and veterinary drugs by response surface methodology for application to egg and milk. J. Chromatogr. A 2018, 1532, 20–29. [Google Scholar] [CrossRef]
- Rúbies, A.; Guo, L.; Centrich, F.; Granados, M. Analysis of non-steroidal anti-inflammatory drugs in milk using QuEChERS and liquid chromatography coupled to mass spectrometry: Triple quadrupole versus Q-Orbitrap mass analyzers. Anal. Bioanal. Chem. 2016, 408, 5769–5778. [Google Scholar] [CrossRef]
- EUR-Lex Acces to European Union Law. Available online: http://data.europa.eu/eli/reg/2010/37(1)/oj (accessed on 29 November 2023).
- EUR-Lex Acces to European Union Law. Available online: https://eur-lex.europa.eu/eli/dir/1996/22/oj (accessed on 29 November 2023).
- EUR-Lex Acces to European Union Law. Available online: http://data.europa.eu/eli/dir/2003/74/oj (accessed on 29 November 2023).
- Socas-Rodríguez, B.; Herrera-Herrera, A.V.; Hernández-Borges, J.; Rodríguez-Delgado, M.A. Multiresidue determination of estrogens in different dairy products by ultra-high-performance liquid chromatography triple quadrupole mass spectrometry. J. Chromatogr. A 2017, 1496, 58–67. [Google Scholar] [CrossRef]
- Socas-Rodríguez, B.; Asensio-Ramos, M.; Hernández-Borges, J.; Herrera-Herrera, A.V.; Rodríguez-Delgado, M.A. Chromatographic analysis of natural and synthetic estrogens in milk and dairy products. Trends Anal. Chem. 2013, 44, 58–77. [Google Scholar] [CrossRef]
- Yan, Y.; Ai, L.; Zhang, H.; Kang, W.; Zhang, Y.; Lian, K. Development an automated and high-throughput analytical platform for screening 39 glucocorticoids in animal-derived food for doping control. Microchem. J. 2021, 165, 106142. [Google Scholar] [CrossRef]
- Mi, X.; Li, S.; Li, Y.; Wang, K.; Zhu, D.; Chen, G. Quantitative determination of 26 steroids in eggs from various species using liquid chromatography–triple quadrupole-mass spectrometry. J. Chromatogr. A 2014, 1356, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shao, B.; Zhang, J.; Wu, Y.; Duan, H. Determination of the residues of 50 anabolic hormones in muscle, milk and liver by very-high-pressure liquid chromatography–electrospray ionization tandem mass spectrometry. J. Chromatogr. B 2009, 877, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Yu, X.J.; Zhong, Y.Y.; Zhang, Z.T.; Cui, X.M.; Peng, J.F.; Feng, R.; Liu, X.T.; Zhu, Y. Generic and rapid determination of veterinary drug residues and other contaminants in raw milk by ultra performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2012, 906, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Gallo, P.; Fabbrocino, S.; Dowling, G.; Salini, M.; Fiori, M.; Perretta, G.; Serpe, L. Confirmatory analysis of non-steroidal anti-inflammatory drugs in bovine milk by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. A 2010, 1217, 2832–2839. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Tao, H.; Tao, H.; Shuai, Q.; Huang, L. Recent progress of covalent organic frameworks as attractive materials for solid-phase microextraction: A review. Anal. Chim. Acta 2023, 23, 341953. [Google Scholar] [CrossRef]
- Rutkowska, M.; Płotka-Wasylka, J.; Sajid, M.; Andruch, V. Liquid–phase microextraction: A review of reviews. Microchem. J. 2019, 149, 103989. [Google Scholar] [CrossRef]
- Kokosa, J.M. Principles for developing greener liquid-phase microextraction methods. Trends Anal. Chem. 2023, 167, 117256. [Google Scholar] [CrossRef]
- El-Deen, A.K.; Shimizu, K. Deep Eutectic Solvents as Promising Green Solvents in Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplet: Recent Applications, Challenges and Future Perspectives. Molecules 2021, 26, 7406. [Google Scholar] [CrossRef]
- Dmitrieva, E.; Temerdashev, A.; Azaryan, A.; Gashimova, E. Quantification of steroid hormones in human urine by DLLME and UHPLC-HRMS detection. J. Chromatogr. B. 2020, 1159, 122390. [Google Scholar] [CrossRef]
- El-Deen, A.K.; Shimizu, K. Deep eutectic solvent as a novel disperser in dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFOD) for preconcentration of steroids in water samples: Assessment of the method deleterious impact on the environment using Analytical Eco-Scale and Green Analytical Procedure Index. Microchem. J. 2019, 149, 10398. [Google Scholar]
- El-Deen, A.K.; Shimizu, K. Application of D-Limonene as a Bio-based Solvent in Low Density Dispersive Liquid–Liquid Microextraction of Acidic Drugs from Aqueous Samples. Anal. Sci. 2019, 35, 1385–1391. [Google Scholar] [CrossRef]
- Beldean-Galea, M.S.; Klein, R.; Coman, M.V. Simultaneous determination of four nonsteroidal anti-inflammatory drugs and three estrogen steroid hormones in wastewater samples by dispersive liquid-liquid microextraction based on solidification of floating organic droplet and HPLC. J. AOAC Int. 2020, 103, 392–398. [Google Scholar] [CrossRef]
- Alshana, U.; Göger, N.G.; Ertas, N. Dispersive liquid–liquid microextraction combined with field-amplified sample stacking in capillary electrophoresis for the determination of non-steroidal anti-inflammatory drugs in milk and dairy products. Food Chem. 2013, 138, 890–897. [Google Scholar] [CrossRef]
- Qiao, L.; Sun, R.; Yu, C.; Tao, Y.; Yan, Y. Novel hydrophobic deep eutectic solvents for ultrasound-assisted dispersive liquid-liquid microextraction of trace non-steroidal anti-inflammatory drugs in water and milk samples. Microchem. J. 2021, 170, 106686. [Google Scholar] [CrossRef]
- Xu, X.; Liang, F.; Shi, J.; Zhao, X.; Liu, Z.; Wu, L.; Song, Y.; Zhang, H.; Wang, Z. Determination of hormones in milk by hollow fiber-based stirring extraction bar liquid–liquid microextraction gas chromatography mass spectrometry. Anal. Chim. Acta 2013, 790, 39–46. [Google Scholar] [CrossRef]
- Shishov, A.; Nechaeva, D.; Bulatov, A. HPLC-MS/MS determination of non-steroidal anti-inflammatory drugs in bovine milk based on simultaneous deep eutectic solvents formation and its solidification. Microchem. J. 2019, 150, 104080. [Google Scholar] [CrossRef]
- Sajid, M. Dispersive liquid-liquid microextraction: Evolution in design, application areas, and green aspects. TRAC Trends Anal. Chem. 2022, 152, 116636. [Google Scholar] [CrossRef]
- Chormey, D.S.; Bodur, S.; Baskın, D.; Fırat, M.; Bakırdere, S. Accurate and sensitive determination of selected hormones, endocrine disruptors, and pesticides by gas chromatography–mass spectrometry after the multivariate optimization of switchable solvent liquid-phase microextraction. J. Sep. Sci. 2018, 41, 2895–2902. [Google Scholar] [CrossRef]
- Azzouz, A.; Ballesteros, E. Multiresidue method for the determination of pharmacologically active substances in egg and honey using a continuous solid-phase extraction system and gas chromatography–mass spectrometry. Food Chem. 2015, 178, 63–69. [Google Scholar] [CrossRef]
- Liu, H.; Lin, T.; Cheng, X.; Li, N.; Wang, L.; Li, Q. Simultaneous determination of anabolic steroids and -agonists in milk by QuEChERS and ultra high performance liquid chromatography tandem mass spectrometry. J. Cromatogr. B 2017, 1043, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Tso, J.; Aga, D.S. A systematic investigation to optimize simultaneous extraction and liquid chromatography tandem mass spectrometry analysis of estrogens and their conjugated metabolites in milk. J. Chromatogr. A 2010, 1217, 4784–4795. [Google Scholar] [CrossRef] [PubMed]
- Florez, D.H.A.; de Oliveira, H.L.; Borges, K.B. Polythiophene as highly efficient sorbent for microextraction in packed sorbent for determination of steroids from bovine milk samples. Microchem. J. 2020, 153, 104521. [Google Scholar] [CrossRef]
- Wang, Q.L.; Zhang, A.Z.; Pan, X.; Chen, L.R. Simultaneous determination of sex hormones in egg products by ZnCl2 depositing lipid, solid-phase extraction, and ultra performance liquid chromatography/electrospray ionization tandem mass spectrometry. Anal. Chim. Acta 2010, 678, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, B.; Zohrabi, P.; Kim, K.H.; Shamsipur, M.; Deep, A.; Hong, J. Recent advances in liquid-phase microextraction techniques for the analysis of environmental pollutants. Trends Anal. Chem. 2017, 97, 83–95. [Google Scholar] [CrossRef]
- Perestrelo, R.; Silva, P.; Porto-Figueira, P.; Pereira, J.A.M.; Silva, C.; Medina, S.; Câmara, J.S. QuEChERS—Fundamentals, relevant improvements, applications and future trends. Anal. Chim. Acta 2019, 1070, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Callao, M.P. Multivariate experimental design in environmental analysis. Trends Anal. Chem. 2014, 62, 86–92. [Google Scholar] [CrossRef]
- Dil, E.A.; Ghaedi, M.; Asfaram, A.; Zare, F.; Mehrabi, F.; Sadeghfar, F. Comparison between dispersive solid-phase and dispersive liquid– liquid microextraction combined with spectrophotometric determination of malachite green in water samples based on ultrasound-assisted and preconcentration under multi-variable experimental design optimization. Ultrason. Sonochem. 2017, 39, 374–383. [Google Scholar]
- Alinat, E.; Delaunay, N.; Archer, X.; Vial, J.; Gareil, P. Multivariate optimization of the denitration reaction of nitrocelluloses for safer determination of their nitrogen content. Forensic Sci. Int. 2015, 250, 68–76. [Google Scholar] [CrossRef]
- Beldean-Galea, M.S.; Vial, J.; Thiébaut, D.; Coman, M.V. Analysis of multiclass organic pollutant in municipal landfill leachate by dispersive liquid-liquid microextraction and comprehensive two-dimensional gas chromatography coupled with mass spectrometry. Environ. Sci. Pollut. Res. 2020, 27, 9535–9546. [Google Scholar] [CrossRef]
Compound | Abbrev. | Extraction Recovery % | ||
---|---|---|---|---|
Minimum | Maximum | Optimum | ||
Hydrocortisone | HCOR | 15.25 | 32.03 | 23.64 |
Estrone | E1 | 42.50 | 96.77 | 69.64 |
17-β estradiol | E2 | 60.79 | 107.96 | 84.37 |
17-α ethynilestradiol | EE2 | 76.93 | 89.37 | 83.16 |
Estriol | E3 | 45.09 | 87.97 | 66.53 |
Ketoprofen | KET | 48.99 | 114.09 | 81.54 |
Naproxen | NAP | 51.92 | 117.85 | 84.88 |
Ibuprofen | IBU | 72.31 | 98.34 | 85.32 |
Diclofenac | DIC | 69.86 | 100.22 | 85.04 |
Compound | Calibration Curve Data | LOD (µg/mL) | LOQ (µg/mL) | Precision [RSD%] | ER [%] | EF | |||
---|---|---|---|---|---|---|---|---|---|
Slope | SD | R² | Intra- | Inter- | |||||
HCOR | 42,454 | 1145.5 | 1 | 0.09 | 0.27 | 3.13 | 2.83 | 14.99 | 17.64 |
E1 | 148,521 | 9617.5 | 0.9993 | 0.21 | 0.65 | 3.35 | 3.65 | 110.5 | 130.1 |
E2 | 143,601 | 4070.9 | 0.9998 | 0.09 | 0.28 | 2.55 | 2.91 | 111.6 | 130.0 |
EE2 | 143,741 | 4473.1 | 0.9975 | 0.10 | 0.31 | 2.56 | 2.87 | 110.5 | 131.3 |
E3 | 117,929 | 2612.2 | 0.9999 | 0.07 | 0.22 | 3.70 | 3.35 | 74.0 | 87.1 |
KET | 76,407 | 2193.3 | 0.9999 | 0.09 | 0.29 | 2.73 | 3.26 | 89.3 | 105.0 |
NAP | 304,120 | 7921.0 | 0.9998 | 0.09 | 0.26 | 2.19 | 3.10 | 93.2 | 109.6 |
DIC | 149,579 | 3557.8 | 0.9999 | 0.08 | 0.24 | 3.81 | 2.91 | 85.1 | 100.2 |
IBU | 244,108 | 8562.2 | 0.9988 | 0.12 | 0.35 | 3.65 | 3.84 | 111.2 | 130.8 |
Compound | Milk Amount (ng) * | Egg Amount (ng) ** | ER (%) | EF | Milk (µg/L) | Egg (µg/kg) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Initial | Found | Initial | Found | Milk | Egg | Milk | Egg | MDL | MQL | MDL | MQL | |
HCOR | nd | 10.47 | nd | 10.31 | 12.32 | 12.13 | 14.49 | 4.32 | 6.21 | 18.63 | 20.83 | 62.50 |
E1 | 0.11 | 86.06 | 0.28 | 83.40 | 101.12 | 97.79 | 118.96 | 34.86 | 1.77 | 5.46 | 6.02 | 18.65 |
E2 | 0.06 | 88.26 | 0.26 | 89.92 | 103.76 | 105.48 | 122.07 | 37.60 | 0.74 | 2.29 | 2.39 | 7.45 |
EE2 | 1.17 | 83.05 | nd | 88.89 | 96.32 | 104.58 | 113.32 | 37.28 | 0.88 | 2.74 | 2.68 | 8.32 |
E3 | 0.08 | 63.32 | 0.35 | 64.29 | 74.49 | 75.64 | 87.64 | 26.97 | 0.80 | 2.51 | 2.60 | 8.16 |
KET | nd | 77.86 | 0.17 | 76.08 | 91.60 | 89.31 | 107.76 | 31.84 | 0.84 | 2.69 | 2.83 | 9.11 |
NAP | 0.40 | 74.40 | 0.82 | 76.70 | 87.06 | 89.27 | 102.42 | 31.83 | 0.88 | 2.54 | 2.83 | 8.17 |
DIC | 0.07 | 74.58 | 0.12 | 77.63 | 87.66 | 91.19 | 103.13 | 32.51 | 0.78 | 2.33 | 2.46 | 7.38 |
IBU | 0.30 | 87.73 | 1.57 | 93.88 | 102.86 | 108.60 | 121.01 | 38.72 | 0.99 | 2.89 | 3.10 | 9.04 |
Analyzed Compounds | Method | Matrix | Sample Amount | Extractant | LOQ | ER (%) | Ref. |
---|---|---|---|---|---|---|---|
Hormones | |||||||
10 steroids | DLLME | urine | 3.0 mL | Cloroform | 0.25–10 µg/L | 70–90% | [22] |
9 steroids | DLLME-SFOD | water | 5 mL | 2-dodecanol | 1.0–9.7 µg/L | 41–105% | [23] |
9 steroids | HF-SEBLLME | milk | 10 mL | Ethyl acetate | 0.07–0.19 μg/L | 93.6–104.6% | [28] |
Progesterone, prednisolone, estradiol | MEPS | milk | 5 mL | Polythiophene | 16 μg/L | 88.29–98.68% | [35] |
NSAIDs | |||||||
Indomethacin, flufenamic acid, nimesulide, phenylbutazone | DLLME | water | 5 mL | D-limonene | 0.36–2.69 µg/L | 80.99–104.92% | [24] |
Diclofenac, ibuprofen ketoprofen, naproxen, E2, EE2, E3 | DLLME-SFO | wastewater | 10 | 1-undecanol | 0.22–1.29 µg/L | 59.3–92.5 | [25] |
Etodolac, naproxen, ketoprofen, diclofenac, flurbiprofen | DLLME-FASS-CE | milk, dairy products | 2.0 g | Chloroform | 10.0–43.7 μg/kg | 77.4–109.3% | [26] |
Ibuprofen, diclofenac, oxaprozin, salicylic acid | UA-HDES-DLLME | water, milk | 30 mL | HDES | 1–5 μg/L | 79.42–107.52% | [27] |
Diclofenac, mefenamic acid, flurbiprofen, ketoprofen | LLME-DES | milk | 10 g | Menthol | 0.01–0.03 μg/kg | 82–91% | [29] |
Diclofenac, ibuprofen, ketoprofen, naproxen, E1, E2, E3, EE2 | DLLME-SFO | milk, egg | 10 mL, 3 g | 1-undecanol | 2.29–5.46 µg/L 7.38–18.65 µg/kg | 74.49–108.6% | This work |
Variables | Values | ||
---|---|---|---|
Lowest (−1) | Central Point (0) | Highest (+1) | |
NaCl (mg) (X1) | 0 | 250 | 500 |
Disperser (µL) (X2) | 50 | 175 | 300 |
Extractant (µL) (X3) | 40 | 70 | 100 |
pH (X4) | 2 | 5 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herghelegiu, M.C.; Pănescu, V.A.; Bocoș-Bințințan, V.; Coman, R.-T.; Berg, V.; Lyche, J.L.; Bruzzoniti, M.C.; Beldean-Galea, M.S. Simultaneous Determination of Steroids and NSAIDs, Using DLLME-SFO Extraction and HPLC Analysis, in Milk and Eggs Collected from Rural Roma Communities in Transylvania, Romania. Molecules 2024, 29, 96. https://doi.org/10.3390/molecules29010096
Herghelegiu MC, Pănescu VA, Bocoș-Bințințan V, Coman R-T, Berg V, Lyche JL, Bruzzoniti MC, Beldean-Galea MS. Simultaneous Determination of Steroids and NSAIDs, Using DLLME-SFO Extraction and HPLC Analysis, in Milk and Eggs Collected from Rural Roma Communities in Transylvania, Romania. Molecules. 2024; 29(1):96. https://doi.org/10.3390/molecules29010096
Chicago/Turabian StyleHerghelegiu, Mihaela Cătălina, Vlad Alexandru Pănescu, Victor Bocoș-Bințințan, Radu-Tudor Coman, Vidar Berg, Jan Ludvig Lyche, Maria Concetta Bruzzoniti, and Mihail Simion Beldean-Galea. 2024. "Simultaneous Determination of Steroids and NSAIDs, Using DLLME-SFO Extraction and HPLC Analysis, in Milk and Eggs Collected from Rural Roma Communities in Transylvania, Romania" Molecules 29, no. 1: 96. https://doi.org/10.3390/molecules29010096
APA StyleHerghelegiu, M. C., Pănescu, V. A., Bocoș-Bințințan, V., Coman, R. -T., Berg, V., Lyche, J. L., Bruzzoniti, M. C., & Beldean-Galea, M. S. (2024). Simultaneous Determination of Steroids and NSAIDs, Using DLLME-SFO Extraction and HPLC Analysis, in Milk and Eggs Collected from Rural Roma Communities in Transylvania, Romania. Molecules, 29(1), 96. https://doi.org/10.3390/molecules29010096