Exciton Delocalization and Polarizability in Perylenetetracarboxylic Diimide Probed Using Electroabsorption and Fluorescence Spectroscopies
Abstract
:1. Introduction
2. Theoretical Background
3. Results and Discussion
3.1. Absorption and Electroabsorption Spectra
3.2. Fluorescence and Stark Fluorescence Spectra
4. Experimental and Calculation Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Q.; Hu, W.; Sirringhaus, H.; Müllen, K. Recent Progress in Emerging Organic Semiconductors. Adv. Mater. 2022, 34, 2108701–2108704. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Gao, C.; Ni, Z.; Zhang, X.; Hu, W.; Dong, H. Recent advances in n-type and ambipolar organic semiconductors and their multi-functional applications. Chem. Soc. Rev. 2023, 52, 1331–1381. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Lin, C.; Schultz, J.D.; Young, R.M.; Wasielewski, M.R. π-Stacking-Dependent Vibronic Couplings Drive Excited-State Dynamics in Perylenediimide Assemblies. J. Am. Chem. Soc. 2022, 144, 11386–11396. [Google Scholar] [CrossRef] [PubMed]
- Würthner, F.; Saha-Möller, C.R.; Fimmel, B.; Ogi, S.; Leowanawat, P.; Schmidt, D. Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials. Chem. Rev. 2016, 116, 962–1052. [Google Scholar] [CrossRef] [PubMed]
- Hecht, M.; Würthner, F. Supramolecularly Engineered J-Aggregates Based on Perylene Bisimide Dyes. Acc. Chem. Res. 2021, 54, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Sapagovas, V.J.; Gaidelis, V.; Kovalevskij, V.; Undzenas, A. 3,4,9,10-Perylenetetracarboxylic acid derivatives and their photophysical properties. Dyes Pigm. 2006, 71, 178–187. [Google Scholar] [CrossRef]
- Xu, R.P.; Li, Y.Q.; Tang, J.X. Recent advances in flexible organic light-emitting diodes. J. Mater. Chem. C 2016, 4, 9116–9142. [Google Scholar] [CrossRef]
- Iftikhar, R.; Khan, F.Z.; Naeem, N. Recent synthetic strategies of small heterocyclic organic molecules with optoelectronic applications: A review. Mol. Divers. 2024, 28, 271–307. [Google Scholar] [CrossRef]
- Fan, P.; Zheng, Y.; Song, J.; Yu, J. N-type small molecule as an interfacial modification layer for efficient inverted polymer solar cells. J. Sol. Energy 2017, 158, 278–284. [Google Scholar] [CrossRef]
- Wieland, L.; Li, H.; Zhang, X.; Chen, J.; Flavel, B.S. Ternary PM6:Y6 Solar Cells with Single-Walled Carbon Nanotubes. Small Sci. 2023, 3, 2200079–2200087. [Google Scholar] [CrossRef]
- Gillanders, R.N.; Samuel, I.D.W.; Turnbull, G.A. A low-cost, portable optical explosive-vapour sensor. Sens. Actuators B Chem. 2017, 245, 334–340. [Google Scholar] [CrossRef]
- Huang, Y.; Fu, L.; Zou, W.; Zhang, F. Probing the effect of substituted groups on sensory properties based on single-crystalline micro/nanostructures of perylenediimide dyes. New J. Chem. 2012, 36, 1080–1084. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, W.; Liao, M.; Zhou, S.; He, W.; Liu, M.; Yao, Z. Fluorescent detection of tartrazine based on the supramolecular self-assembly of cationic perylene diimide. Mikrochim. Acta 2023, 190, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Soufi, G.; Bagheri, H.; Karimi, M.; Karimi, M.; Jamali, S. Perylene bisimide-based nanocubes for selective vapour phase ultra-trace detection of aniline derivatives. Anal. Chim. Acta 2023, 1238, 340632–340640. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Ma, M.; Li, W.; Yang, J.; Miao, H.; Zhang, Z.; Zhu, Y. Enhanced photocatalytic activity of PTCDI-C60 via π–π interaction. Appl. Catal. B Environ. 2018, 238, 302–308. [Google Scholar] [CrossRef]
- Yang, B.; Lu, L.; Liu, S.; Cheng, W.; Liu, H.; Huang, C.; Meng, X.; Rodriguez, D.R.; Jia, X. Recent progress in perylene diimide supermolecule-based photocatalysts. J. Mater. Chem. A 2024, 12, 3807–3843. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, Q.; Nan, J.; Shi, W.; Cui, F.; Zhu, Y. Perylenetetracarboxylic acid nanosheets with internal electric fields and anisotropic charge migration for photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 2067–2076. [Google Scholar] [CrossRef]
- Brown, J.; Karlsmo, M.; Bendadesse, E.; Johansson, P.; Grimaud, A. Exploring the electrochemistry of PTCDI for aqueous lithium-ion batteries. Energy Storage Mater. 2024, 66, 103218–103226. [Google Scholar] [CrossRef]
- Shao, G.; Liu, H.; Chen, L.; Wu, M.; Wang, D.; Wu, D.; Xia, J. Precise synthesis of BN embedded perylene diimide oligomers for fast-charging and long-life potassium-organic batteries. Chem. Sci. 2024, 15, 3323–3329. [Google Scholar] [CrossRef]
- Struijk, C.W.; Sieval, A.B.; Dakhorst, J.E.J.; Dijk, M.V.; Kimkes, P.; Koehorst, R.B.M.; Donker, H.; Schaafsma, T.J.; Picken, S.J.; Van de Craats, A.M.; et al. Liquid Crystalline Perylene Diimides: Architecture and Charge Carrier Mobilities. J. Am. Chem. Soc. 2000, 122, 11057–11066. [Google Scholar] [CrossRef]
- Zhang, L.; Zhong, X.; Pavlica, E.; Li, S.; Klekachev, A.; Bratina, G.; Ebbesen, T.W.; Orgiu, E.; Samorì, P. A nanomesh scaffold for supramolecular nanowire optoelectronic devices. Nat. Nanotechnol. 2016, 11, 900–906. [Google Scholar] [CrossRef] [PubMed]
- Karak, S.; Ray, S.K.; Dhar, A. Photoinduced charge transfer and photovoltaic energy conversion in self-assembled N, N′-dioctyl-3, 4, 9, 10-perylenedicarboximide nanoribbons. Appl. Phys. Lett. 2010, 97, 043306. [Google Scholar] [CrossRef]
- Pradhan, S.; Redwine, J.; McLeskey, J.T.; Dhar, A. Fabrication of N, N′-dioctyl-3,4,9,10-perylenedicarboximide nanostructures through solvent influenced π–π stacking and their morphological impact on photovoltaic performance. Thin Solid Films 2014, 562, 423–429. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, L.; Leydecker, T.; Samorì, P. Direct Photolithography on Molecular Crystals for High Performance Organic Optoelectronic Devices. J. Am. Chem. Soc. 2018, 140, 6984–6990. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Slattum, P.; Wang, C.; Zang, L. Self-Assembly of Perylene Imide Molecules into 1D Nanostructures: Methods, Morphologies, and Applications. Chem. Rev. 2015, 115, 11967–11998. [Google Scholar] [CrossRef] [PubMed]
- Weitz, R.T.; Amsharov, K.; Zschieschang, U.; Villas, E.B.; Goswami, D.K.; Burghard, M.; Dosch, H.; Jansen, M.; Kern, K.; Klauk, H. Organic n-channel transistors based on core-cyanated perylene carboxylic diimide derivatives. J. Am. Chem. Soc. 2008, 130, 4637–4645. [Google Scholar] [CrossRef]
- Choi, B.; Kwon, D.; Tarsoly, G.; Park, J.; Pyo, S. Solution-Processed PTCDI-C8 Crystalline Wire: Dual Role as Mask and Active Layer for Organic Transistors with Increased Switching Speeds. Adv. Electron. Mater. 2024, 10, 2300548. [Google Scholar] [CrossRef]
- Chesterfield, R.J.; McKeen, J.C.; Newman, C.R.; Ewbank, P.C.; Da Silva Filho, D.A.; Brédas, J.L.; Miller, L.L.; Mann, K.R.; Frisbie, C.D. Organic Thin Film Transistors Based on N-Alkyl Perylene Diimides: Charge Transport Kinetics as a Function of Gate Voltage and Temperature. J. Phys. Chem. B 2004, 108, 19281–19292. [Google Scholar] [CrossRef]
- Kennehan, E.R.; Grieco, C.; Brigeman, A.N.; Doucette, G.S.; Rimshaw, A.; Bisgaier, K.; Giebink, N.C.; Asbury, J.B. Using molecular vibrations to probe exciton delocalization in films of perylene diimides with ultrafast mid-IR spectroscopy. Phys. Chem. Chem. Phys. 2017, 19, 24829–24839. [Google Scholar] [CrossRef]
- Schmidt, R.; Oh, J.H.; Sun, Y.S.; Deppisch, M.; Krause, A.M.; Radacki, K.; Braunschweig, H.; Könemann, M.; Erk, P.; Bao, Z.; et al. High-performance air-stable n-channel organic thin film transistors based on halogenated perylene bisimide semiconductors. J. Am. Chem. Soc. 2009, 131, 6215–6228. [Google Scholar] [CrossRef]
- Briseno, A.L.; Mannsfeld, S.C.B.; Reese, C.; Hancock, J.M.; Xiong, Y.; Jenekhe, S.A.; Bao, Z.; Xia, Y. Perylenediimide nanowires and their use in fabricating field-effect transistors and complementary inverters. Nano Lett. 2007, 7, 2847–2853. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, K.; Datar, A.; Oitker, R.; Chen, H.; Zuo, J.; Zang, L. Nanobelt self-assembly from an organic n-type semiconductor: Propoxyethyl-PTCDI. J. Am. Chem. Soc. 2005, 127, 10496–10497. [Google Scholar] [CrossRef]
- Small, D.; Zaitsev, V.; Jung, Y.; Rosokha, S.V.; Head-Gordon, M.; Kochi, J.K. Intermolecular pi-to-pi bonding between stacked aromatic dyads. Experimental and theoretical binding energies and near-IR optical transitions for phenalenyl radical/radical versus radical/cation dimerizations. J. Am. Chem. Soc. 2004, 126, 13850–13858. [Google Scholar] [CrossRef]
- Che, Y.; Datar, A.; Balakrishnan, K.; Zang, L. Ultralong nanobelts self-assembled from an asymmetric perylene tetracarboxylic diimide. J. Am. Chem. Soc. 2007, 129, 7234–7235. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Lin, Z.; Su, J.; Zhang, J.; Hao, Y.; Chang, J.; Wu, J. Controllable self-assembly of PTCDI-C8 for high mobility low-dimensional organic field-effect transistors. ACS Appl. Electron. Mater. 2019, 1, 2030–2036. [Google Scholar] [CrossRef]
- Mahlmeister, B.; Schembri, T.; Stepanenko, V.; Shoyama, K.; Stolte, M.; Würthner, F. Enantiopure J-Aggregate of Quaterrylene Bisimides for Strong Chiroptical NIR-Response. J. Am. Chem. Soc. 2023, 145, 13302–13311. [Google Scholar] [CrossRef] [PubMed]
- Rehhagen, C.; Rather, S.R.; Schwarz, K.N.; Scholes, G.D.; Lochbrunner, S. Comparison of Frenkel and Excimer Exciton Diffusion in Perylene Bisimide Nanoparticles. J. Phys. Chem. Lett. 2023, 14, 4490–4496. [Google Scholar] [CrossRef] [PubMed]
- Ran, G.; Zeb, J.; Song, Y.; Denis, P.A.; Ghani, U.; Zhang, W. Photoinduced Symmetry Breaking-Charge Separation in the Aggregated State of Perylene Diimide: Effect of Hydrophobicity. J. Phys. Chem. C 2022, 126, 3872–3880. [Google Scholar] [CrossRef]
- Murugavelu, M.; Imran, P.K.M.; Sankaran, K.R.; Nagarajan, S. Self-assembly and photophysical properties of a minuscule tailed perylene bisimide. Mater. Sci. Semicond. Process. 2013, 16, 461–466. [Google Scholar] [CrossRef]
- Oltean, M.; Calborean, A.; Mile, G.; Vidrighin, M.; Iosin, M.; Leopold, L.; Maniu, D.; Leopold, N.; Chiş, V. Absorption spectra of PTCDI: A combined UV-Vis and TD-DFT study. Spectrochim. Acta—A Mol. Biomol. Spectrosc. 2012, 97, 703–710. [Google Scholar]
- Iimori, T.; Ito, R.; Ohta, N.; Nakano, H. Stark Spectroscopy of Rubrene. I. Electroabsorption Spectroscopy and Molecular Parameters. J. Phys. Chem. A 2016, 120, 4307–4313. [Google Scholar] [CrossRef]
- Boxer, S.G. Stark realities. J. Phys. Chem. B 2009, 113, 2972–2983. [Google Scholar] [CrossRef] [PubMed]
- Ohta, N. Electric Field Effects on Photochemical Dynamics in Solid Films. Bull. Chem. Soc. Jpn. 2002, 75, 1637–1655. [Google Scholar] [CrossRef]
- Liptay, W. Dipole Moments and Polarizabilities of Molecules in Excited Electronic States. Excit. States 1974, 1, 129–229. [Google Scholar]
- Bublitz, G.U.; Ortiz, R.; Marder, S.R.; Boxer, S.G. Stark Spectroscopy of Donor/Acceptor Substituted Polyenes. J. Am. Chem. Soc. 1997, 119, 3365–3376. [Google Scholar] [CrossRef]
- Ponder, M.; Mathies, R. Excited-State Polarizabilities and Dipole Moments of Diphenylpolyenes and Retinal. J. Phys. Chem. 1983, 87, 5090–5098. [Google Scholar] [CrossRef]
- Islam, A.; Syundo, K.; Iimori, T. Charge-transfer state and state mixing in tetracyanoquinodimethane probed using electroabsorption spectroscopy. Phys. Chem. Chem. Phys. 2023, 25, 21317–21323. [Google Scholar] [CrossRef]
- Islam, A.; Kikuchi, Y.; Iimori, T. Electroabsorption and Stark Fluorescence Spectroscopies of Thioflavin T. J. Phys. Chem. A 2023, 127, 1436–1444. [Google Scholar] [CrossRef]
- Bublitz, G.U.; Boxer, S.G. Stark Spectroscopy: Applications in Chemistry, Biology, and Materials Science. Annu. Rev. Phys. Chem. 1997, 48, 213–242. [Google Scholar] [CrossRef] [PubMed]
- Iimori, T.; Ito, R.; Ohta, N. Stark Spectroscopy of Rubrene. II. Stark Fluorescence Spectroscopy and Fluorescence Quenching Induced by an External Electric Field. J. Phys. Chem. A 2016, 120, 5497–5503. [Google Scholar] [CrossRef]
- Hadicke, E.; Graser, F. Structures of eleven perylene-3,4:9,10-bis(dicarboximide) pigments. Acta Crystallogr. Sec. C 1986, 42, 189–195. [Google Scholar] [CrossRef]
- Veldman, D.; Chopin, S.M.; Meskers, S.C.J.; Groeneveld, M.M.; Williams, R.M.; Janssen, R.A. Triplet Formation Involving a Polar Transition State in a Well-Defined Intramolecular Perylenediimide Dimeric Aggregate. J. Phys. Chem. A 2008, 112, 5846–5857. [Google Scholar] [CrossRef] [PubMed]
- Ara, A.M.; Iimori, T.; Yoshizawa, T.; Nakabayashi, T.; Ohta, N. External electric field effects on fluorescence of perylene doped in a polymer film. Chem. Phys. Lett. 2006, 427, 322–328. [Google Scholar] [CrossRef]
- Barford, W. Electronic and Optical Properties of Conjugated Polymers; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Mataga, N.; Kurota, T. Molecular Interactions and Electronic Spectra; Marcel Dekker: New York, NY, USA, 1970. [Google Scholar]
- Atkins, P.W.; Friedman, R.S. Molecular Quantum Mechanics; Oxford Univesity Press: Oxford, UK, 2011. [Google Scholar]
- Piet, J.J.; Taylor, P.N.; Wegewijs, B.R.; Anderson, H.L.; Osuka, A.; Warman, J.M. Photoexcitations of Covalently Bridged Zinc Porphyrin Oligomers: Frenkel versus Wannier−Mott Type Excitons. J. Phys. Chem. B 2001, 105, 97–104. [Google Scholar] [CrossRef]
- Ito, R.; Funamoto, Y.; Ohta, N.; Iimori, T. Electroabsorption Spectroscopy of Electronic Transition for Room-Temperature Ionic Liquid Molecules Dispersed in a Polymer Matrix. Chem. Phys. 2015, 456, 1–7. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.02; Gaussian, Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
) | (cm MV−2) | (MV−2) | |
---|---|---|---|
55° | −0.9 | 2.0 | 180 |
90° | −3.3 | 1.3 | 60 |
Parameter | Experiment a | Calculation b |
---|---|---|
71 | 11 | |
∆μ | 1.97 D | 0 D |
() | (cm MV−2) | (102 MV−2) | |
---|---|---|---|
Monomer | −0.11 | 1.3 | 1 |
Excimer-like | −1.04 | 9.3 | 0 |
Fluorescence Bands | Monomer (Low Concentration) a | Excimer-like (Low Concentration) a | Excimer-like (High Concentration) b |
---|---|---|---|
46 | 3.3 × 102 | 5.5 × 102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.B.; Islam, A.; Iimori, T. Exciton Delocalization and Polarizability in Perylenetetracarboxylic Diimide Probed Using Electroabsorption and Fluorescence Spectroscopies. Molecules 2024, 29, 2206. https://doi.org/10.3390/molecules29102206
Rahman MB, Islam A, Iimori T. Exciton Delocalization and Polarizability in Perylenetetracarboxylic Diimide Probed Using Electroabsorption and Fluorescence Spectroscopies. Molecules. 2024; 29(10):2206. https://doi.org/10.3390/molecules29102206
Chicago/Turabian StyleRahman, Md. Bulu, Ahatashamul Islam, and Toshifumi Iimori. 2024. "Exciton Delocalization and Polarizability in Perylenetetracarboxylic Diimide Probed Using Electroabsorption and Fluorescence Spectroscopies" Molecules 29, no. 10: 2206. https://doi.org/10.3390/molecules29102206
APA StyleRahman, M. B., Islam, A., & Iimori, T. (2024). Exciton Delocalization and Polarizability in Perylenetetracarboxylic Diimide Probed Using Electroabsorption and Fluorescence Spectroscopies. Molecules, 29(10), 2206. https://doi.org/10.3390/molecules29102206